Revised: 28 October 2019

DOI: 10.1002/aoc.5387

Well-defined PEPPSI-themed palladium–NHC complexes: synthesis, and catalytic application in the direct arylation of heteroarenes

Murat Kaloğlu^{1,2} | Nevin Gürbüz^{1,2} | İlkay Yıldırım³ | Namık Özdemir⁴ | İsmail Özdemir^{1,2}

¹Faculty of Science and Arts, Department of Chemistry, İnönü University, 44280 Malatya, Turkey

² Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey

³Vocational School of Health Services, Department of Radiotherapy, Biruni University, 34010 İstanbul, Turkey

⁴Faculty of Education Department of Mathematics and Science Education, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence

İsmail Özdemir, İnönü University, Faculty of Science and Arts, Department of Chemistry, 44280. Malatya, Turkey. Email: ismail.ozdemir@inonu.edu.tr

Funding information

Technological and Scientific Research Council of Turkey TÜBİTAK, Grant/ Award Number: 117R010 In this study, a series of benzimidazolium salts were synthesized as unsymmetrical *N*-heterocyclic carbene (NHC) precursors. Benzimidazolium salts were used for synthesis of the PEPPSI (pyridine enhanced precatalyst preparation stabilization and initiation)-themed, six new Pd-complexes with the general formula [PdX₂(NHC)(pyridine)]. The structures of all compounds were characterized by various spectroscopic techniques such as ¹H NMR, ¹³C NMR and FT-IR. The more detailed structural characterization of four of the complexes was determined by single-crystal X-ray diffraction study. The catalytic activities of all Pd-complexes were evaluated in the direct arylation of the 2-acetylfuran and 2-acetylthiophene with aryl bromides in the presence of 1 mol% catalyst loading.

KEYWORDS

direct arylation, heteroarene, N-heterocyclic carbene, palladium, PEPPSI

1 | INTRODUCTION

Transition metal-catalyzed cross-coupling reactions have become one of the most important synthetic tools for synthesis of bi(hetero)aryl units in modern organic synthesis.^[1-4] Suzuki,^[5] Stille,^[6] Negishi^[7] or Kumada^[8] type reactions are widely used in the metal-catalyzed synthesis of bi(hetero)aryls. Despite the large applicability of these reactions, in most of them, the starting coupling partners should bear either a metal-containing functionality or a halogen atom and related groups. In this case in fact the preliminary preparation of two independent, expensive, starting materials is required. These processes also have some disadvantages such as generating stoichiometric amounts of waste materials, the use of unstable and corrosive chemicals, etc.^[9] Therefore, there is a need for more environmentally attractive and atom economical methods in which total synthesis steps and by-product formation are minimized. The direct arylation method represents an ideal alternative to conventional cross-coupling reactions in the synthesis of bi(hetero)aryls, because of its step-economic and eco-friendly advantages.^[10] More importantly, this method not only minimizes by-product formation, but also has a great advantage as it makes organic synthesis easier (Scheme 1).

Over the last few decades, considerable advances have been achieved in direct arylation methods. Various transition metals such as Pd, Ru, Rh, etc., have been shown to be effective for the direct arylation reactions.^[11] However, among them, the Pd-complexes are the most powerful

SCHEME 1 Comparison of conventional cross-coupling reactions and direct arylation method

and widely used catalysts in direct arylation. In recent years, Pd-catalyzed direct arylation of (hetero)arenes with (pseudo)halides have received significant attention as eco-friendly and economic alternatives to conventional methods. Here, aryl (pseudo)halides are the most commonly employed coupling partners for Pd-catalyzed direct arylation reactions.^[12] Among these reactions, the direct arylation of heteroarenes is particularly attractive owing to the fact that these moieties are present in many biologically active compounds. One of the first examples of Pdcatalyzed direct arylation of heteroarenes was reported by Nakamura, Tajima and Sakai in 1982^[13] and by Ohta in 1985.^[14] Following these pioneering studies, Pd-catalyzed direct arylation of heteroarenes by aryl halides has been demonstrated to be a convenient and attractive methodology for the synthesis of bi(hetero)aryls. To date, Pdcatalyzed direct arylation of heteroarenes, especially fivemembered heterocycles such as thiopene^[15] and furan,^[16] has been described by a large number of researchers.

N-Heterocyclic carbenes (NHCs) are neutral twoelectron donors and they are known to be strong Lewis bases and excellent nucleophiles that bind metals better than phosphines.^[17] One of the key features of NHCs compared with other classes of ligands is their stability. The strong σ -donating but poor π -accepting ability of NHC ligands leads to the formation of many stable metal-NHC complexes. Another features of NHCs is their tunability by the attachment of different substituents allowing the complexes to be obtained with desired electronic and steric properties.^[17] In 1968, the first metal complexes containing NHC ligand were reported,^[18] but these ligands received little attention in those years. However, after the first isolation and characterization of stable free NHC in 1991,^[19] interest in these ligands increased exponentially. Next, the first use of the NHCs in Pd-catalyzed Heck reaction in 1995^[20] presented a new class of ligands to the catalysis area. Nowadays, NHCs have become one of the most widely used ligand classes in organometallic chemistry and catalysis.

After the discovery of Organ's PEPPSI (pyridine enhanced precatalyst preparation stabilization and initiation)-themed Pd-complexes,^[21] this type of complex has shown remarkable catalytic activities towards various carbon-carbon and carbon-heteroatom coupling reactions. PEPPSI-themed Pd-NHC complexes represent a new class of Pd-catalysts that are completely different from other Pd-NHC complexes and easier to synthesize and use.^[22] In recent years, PEPPSI-themed Pdcomplexes have been used as effective catalysts in direct arylation and successful results have been obtained.^[23] In this context, recently we successfully reported the synthesis and structural characterization of PEPPSI-themed Pd-complexes with different NHC ligands, and we have investigated the atalytic activity of these complexes in direct arylation reactions.^{12h, 15h} Herein, we now report the successful synthesis of six new PEPPSI-themed Pd-NHC complexes (3a-3f) of the general formula $[PdX_2]$ (NHC)(pyridine)], (X = Cl, Br; NHC = 1,3-disubstituted)benzimidazole-2-ylidene), and their full characterization by various spectroscopic techniques. The solid-state structures of the four Pd-complexes (3a-3c and 3 f) have been established by single-crystal X-ray diffraction study. In the present study, the catalytic application of all Pdcatalysts has been tested in the direct arylation of 2acetylfuran and 2-acetylthiophene with aryl bromides in the presence of 1 mol% catalyst loading (Figure 1).

2 | EXPERIMENTAL SECTION

2.1 | Synthesis

The general procedures for the 1-(2,2-diethoxyethyl)benzimidazole (1), NHC ligand precursors (**2a**–**2f**) and their corresponding PEPPSI-themed Pd–carbene complexes (**3a**–**3f**) are shown in Scheme 2. Compounds 1, **2b**, **2c**

FIGURE 1 Pd-catalyzed direct arylation of C2-substituted furan and thiophene with aryl bromides

and 2d were synthesized as previously described in the literature.^[24]

2.2 | General procedure for the preparation of 1-(2,2-diethoxyethyl) benzimidazole (1)

For the preparation of 1-(2,2-diethoxyethyl)benzimidazole (1), benzimidazole (5.907 g, 50.0 mmol) and potassium hydroxide (2.805 g, 50.0 mmol) were dissolved in ethyl alcohol (50 ml), the reaction mixture was stirred at room temperature for 1 h. Then, 2,2-diethoxyethyl bromide (9.853 g, 50.0 mmol) was slowly added, and the solution was heated to reflux for 5 h. The mixture cooled to room temperature and the precipitated potassium bromide was removed by filtration. The solvent was removed by distillation. The crude product was then distilled under reduced vacuum. 1-(2,2-Diethoxyethyl)benzimidazole was isolated as a yellowish gel in 85% yields. For the ¹H NMR, ¹³C NMR and FT-IR spectra of **1** see supporting information file, pages S1 and S2.

2.2.1 | 1-(2,2-Diethoxyethyl)benzimidazole, $1^{[24]}$

Yield 85%, 9.95 g (yellowish gel); b.p.: 140–150°C-(under ~50 Torr pressure); FT-IR ($v_{C(2)-N}$): 1494 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.14 [t, *J* = 7.0 Hz, 6H, NCH₂CH(OCH₂CH₃)₂]; 3.40 and 3.70 [dq, *J* = 9.2, 7.0 Hz, 4H, NCH₂CH(OCH₂CH₃)₂]; 4.25 [d, *J* = 5.3 Hz, 2H, NCH₂CH(OCH₂CH₃)₂]; 4.67 [t, *J* = 5.3 Hz, 1H, NCH₂CH(OCH₂CH₃)₂]; 7.25–7.32 (m, 2H, NC₆H₄N); 7.45 and 7.80 (dd, *J* = 6.8, 1.9 Hz, 2H, NC₆H₄N); 7.96 (s, 1H, NCHN). ¹³C NMR

SCHEME 2 General pathway for the preparation of 1, 2a-2f and 3a-3f compounds

4 of 16 WILEY Organometalli Chemistry

(101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.21 [NCH₂CH(OCH₂CH₃)₂]; 48.12 [NCH₂CH(OCH₂CH₃)₂]; 63.91 [NCH₂CH(OCH₂CH₃)₂]; 100.86 [NCH₂CH (OCH₂CH₃)₂]; 109.65, 120.31, 122.13, 122.92, 134.07 and 143.83 (NC₆H₄N); 143.55 (NCHN).

2.3 | General procedure for the preparation of NHC ligand precursors (2a-2f)

1-(2,2-Diethoxyethyl)benzimidazole (1.17 g, 5.0 mmol) was dissolved in degassed dimethylformamide (3 ml) and alkyl halide derivative (5.0 mmol) was added at room temperature. The reaction mixture was stirred at 80°C for 36 h under argon. After completion of the reaction, the solvent was removed by vacuum and Et₂O (15 ml) was added to obtain a white crystalline solid, which was filtered off. The solid was washed with Et_2O (3 × 10 ml) and dried under vacuum. The crude product was recrystallized from EtOH/Et₂O mixture (1:5, v/v) at room temperature, and completely dried under vacuum. All NHC ligand precursors (2a-2f) were isolated as air- and moisture-stable white solids in high yields. For the ¹H NMR, ¹³C NMR and FT-IR spectrum of NHC ligand precursors (2a-2f) see supporting information file, pages S3-S14.

2.3.1 | 1-(2,2-Diethoxyethyl)-3-(4methoxybenzyl)benzimidazolium chloride, 2a

Yield 87%, 1.70 g (white solid); m.p.: 130–131°C; FT-IR ($\nu_{\rm C}$ (2)-N): 1560 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.12 [t, J = 7.0 Hz, 6H, NCH₂CH(OCH₂CH₃)₂]; 3.67 and 3.77 [dq, J = 13.9, 7.0 Hz, 4H, NCH₂CH (OCH₂CH₃)₂]; 3.76 [s, 3H, NCH₂C₆H₄(OCH₃)-4); 4.79 (d, J = 4.2 Hz, 2H, NCH₂CH(OCH₂CH₃)₂]; 5.03 [t, J = 4.1 Hz, 1H, NCH₂CH(OCH₂CH₃)₂]; 5.77 [s, 2H, $NCH_2C_6H_4(OCH_3)-4$; 6.88 [d, J = 8.3 Hz, 2H, $NCH_2C_6H_4(OCH_3)-4$; 7.50 [d, J = 8.6 Hz, 2H, $NCH_2C_6H_4(OCH_3)-4$; 7.52–7.64 (m, 3H, NC_6H_4N); 7.82 $(d, J = 8.0 \text{ Hz}, 1\text{H}, \text{NC}_6H_4\text{N}); 11.80 \text{ (s, 1H, NCHN)}.$ ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.16 [NCH₂CH(OCH₂CH₃)₂]; 49.96 [NCH₂CH(OCH₂CH₃)₂]; 51.01 [NCH₂C₆H₄(OCH₃)-4]; 55.33 [NCH₂C₆H₄(OCH₃)-4]; 64.58 [NCH₂CH (OCH₂CH₃)₂]; 100.27 [NCH₂CH (OCH₂CH₃)₂]; 113.18, 114.67, 114.75, 124.77, 126.62, 126.80, 130.05, 130.76, 132.68 and 160.19 [NC₆H₄N and NCH₂C₆H₄(OCH₃)-4]; 144.12 (NCHN).

2.3.2 | 1-(2,2-Diethoxyethyl)-3-(2,4,6trimethylbenzyl)benzimidazolium chloride, 2b^[24]

Yield 76%, 1.53 g (white solid); m.p.: 172–173°C; FT-IR (v_C (2)-N): 1560 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.10 [t, J = 7.0 Hz, 6H, NCH₂CH (OCH₂CH₃)₂]; 2.30 and 2.33 [s, 9H, NCH₂C₆H₂(CH₃)₃-2,4,6]; 3.64 and 3.74 [dq, J = 14.1, 7.0 Hz, 4H, NCH₂CH(OCH₂CH₃)₂]; 4.84 [d, J = 3.9 Hz, 2H, NCH₂CH (OCH₂CH₃)₂]; 4.98 [t, J = 3.9 Hz, 1H, NH₂CH (OCH₂CH₃)₂]; 5.80 [s, 2H, NCH₂C₆H₂(CH₃)₃-2,4,6]; 6.95 [s, 2H, NCH₂C₆H₂(CH₃)₃-2,4,6]; 7.33 (d, J = 8.4 Hz, 1H, NC₆ H_4 N); 7.45–7.49 and 7.54–7.58 (m, 2H, NC₆ H_4 N); 7.84 (d, J = 8.4 Hz, 1H, NC₆H₄N); 10.78 (s, 1H, NCHN). ¹³C NMR (101 MHz, $CDCl_3$, 25°C, TMS): δ (ppm) = 15.10 [NCH₂CH $(OCH_2CH_3)_2$; 20.18 and 21.07 $[NCH_2C_6H_2(CH_3)_3-2,4,6];$ 46.97 [NCH₂CH(OCH₂CH₃)₂]; 49.91 [NCH₂C₆H₂(CH₃)₃-2,4,6]; 64.41 [NCH₂CH (OCH₂CH₃)₂]; 99.87 [NCH₂CH (OCH₂CH₃)₂]; 113.09, 114.69, 125.07, 126.66, 126.88, 130.19, 130.97, 132.78, 137.99 and 139.77 [NC₆H₄N and NCH₂C₆H₂(CH₃)₃-2,4,6]; 143.92 (NCHN).

2.3.3 | 1-(2,2-Diethoxyethyl)-3-(2,3,5,6tetramethylbenzyl)benzimidazolium chloride, 2c^[24]

Yield 90%, 1.87 g (white solid); m.p.: 146-147°C; FT-IR $(v_{C(2)-N})$: 1563 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.08 [t, J = 7.0 Hz, 6H, NCH₂CH (OCH₂CH₃)₂]; 2.25 and 2.27 [s, 12H, NCH₂C₆H(CH₃)₄-2,3,5,6]; 3.63 and 3.72 [dq, J = 14.0, 7.0 Hz, 4H, $NCH_2CH(OCH_2CH_3)_2$; 4.87 [d, J = 4.0 Hz, 2H, $NCH_2CH(OCH_2CH_3)_2$; 4.96 [t, J = 4.0 Hz, 1H, NCH₂CH(OCH₂CH₃)₂]; 5.82 [s, 2H, NCH₂C₆H(CH₃)₄-2,3,5,6]; 7.09 [s, 1H, NCH₂C₆H(CH₃)₄-2,3,5,6]; 7.53-7.62 (m, 3H, NC₆ H_4 N); 7.89 (d, J = 7.8 Hz, 1H, NC₆ H_4 N); 10.06 (s, 1H, NCHN). ¹³C NMR (101 MHz, CDCl₃, 25° C, TMS): δ (ppm) = 15.05 [NCH₂CH(OCH₂CH₃)₂]; 15.99 and 20.55 [NCH₂C₆H(CH₃)₄-2,3,5,6]; 47.28 [NCH₂CH $(OCH_2CH_3)_2$; 49.96 $[NCH_2C_6H(CH_3)_4-2,3,5,6]$; 64.29 [NCH₂CH(OCH₂CH₃)₂]; 99.99 [NCH₂CH (OCH₂CH₃)₂]; 113.12, 114.66, 126.87, 127.02, 127.63, 131.04, 132.79, 133.62, 134.12 and 135.08 [NC₆H₄N and NCH₂C₆H(CH₃) ₄-2,3,5,6]; 142.96 (NCHN).

2.3.4 | 1-(2,2-Diethoxyethyl)-3-(2,3,4,5,6pentamethylbenzyl)benzimidazolium chloride, 2d^[24]

Yield 95%, 2.04 g (white solid); m.p.: 120–121°C; FT-IR (ν_{C} (2)-N): 1562 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ $(ppm) = 1.07 [t, J = 7.0 Hz, 6H, NCH_2CH(OCH_2 CH_3)_2];$ 2.25 and 2.29 [s, 15H, NCH₂C₆(CH₃)₅-2,3,4,5,6]; 3.64 and 3.74 [dq, J = 14.1, 7.0 Hz, 4H, NCH₂CH(OCH₂ CH₃)₂]; 4.90 [d, J = 3.4 Hz, 2H, NCH₂CH(OCH₂CH₃)₂]; 4.97 [t, J = 3.3 Hz, 1H, NCH₂CH(OCH₂CH₃)₂]; 5.77 [s, 2H, $NCH_2C_6(CH_3)_{5}-2,3,4,5,6$; 7.45 (d, J = 8.3 Hz, 1H, NC_6H_4N); 7.51 (t, J = 7.7 Hz, 1H, NC_6H_4N); 7.58 (t, J = 7.7 Hz, 1H, NC₆ H_4 N); 7.87 (d, J = 8.3 Hz, 1H, NC₆ H_4 N); 10.27 (s, 1H, NCHN). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.04 [NCH₂CH(OCH₂CH₃)₂]; 17.00, 17.05 and 17.34 $[NCH_2C_6(CH_3)_5-2,3,4,5,6];$ 47.77 [NCH₂CH(OCH₂CH₃)₂]; 50.03 [NCH₂C₆(CH₃)₅-2,3,4,5,6]; $[NCH_2CH (OCH_2CH_3)_2]; 99.80$ 64.37 [NCH₂CH (OCH₂CH₃)₂]; 112.86, 114.83, 124.83, 126.71, 126.83, 131.02, 132.93, 133.61, 133.98 and 137.42 [NC₆H₄N and NCH₂C₆(CH₃)₅-2,3,4,5,6]; 143.38 (NCHN).

2.3.5 | 1-(2,2-Diethoxyethyl)-3-(4-*tert*butylbenzyl)benzimidazolium bromide, 2e

Yield 81%, 1.87 g (white solid); m.p.: 162-163°C; FT-IR $(v_{C(2)-N})$: 1557 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.05 [t, J = 7.0 Hz, 6H, NCH₂CH (OCH₂CH₃)₂]; 1.20 {s, 9H, NCH₂C₆H₄ [C(CH₃)₃]-4}; 3.61 and 3.71 [dq, J = 13.9, 7.0 Hz, 4H, NCH₂CH(OCH₂CH₃) ₂]; 4.73 [d, J = 4.1 Hz, 2H, NCH₂CH (OCH₂CH₃)₂]; 4.99 $[t, J = 4.1 \text{ Hz}, 1\text{H}, \text{NCH}_2\text{CH} (\text{OCH}_2\text{CH}_3)_2]; 5.69 \{s, 2\text{H}, 1, 2\text{CH}, 1, 2\text{CH},$ $NCH_2C_6H_4[C(CH_3)_3]-4$; 7.32 {d, J = 8.3 Hz, 2H, NCH₂C₆ H_4 [C(CH₃)₃]-4]; 7.39 {d, J = 8.3 Hz, 2H, $NCH_2C_6H_4[C(CH_3)_3]-4$; 7.45–7.58 (m, 3H, NC_6H_4N); 7.75 (d, J = 7.1 Hz, 1H, NC₆H₄N); 11.28 (s, 1H, NCHN). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.17 $[NCH_2CH(OCH_2CH_3)_2]; 31.18 \{NCH_2C_6H_4[C(CH_3)_3]-4\};$ 34.68 $\{NCH_2C_6H_4[C(CH_3)_3]-4\};$ 50.00 [NCH₂CH $(OCH_2CH_3)_2$; 51.07 { $NCH_2C_6H_4$ [$C(CH_3)_3$]-4}; 64.65 [NCH₂CH(OCH₂CH₃)₂]; 99.99 [NCH₂CH(OCH₂CH₃)₂]; 113.11, 114.71, 126.34, 126.73, 126.90, 128.20, 129.54, 130.82, 132.60 and 152.90 {NC₆H₄N and NCH₂C₆H₄[C (CH₃)₃]-4]; 143.58 (NCHN).

2.3.6 | 1-(2,2-Diethoxyethyl)-3-(3,5-di-*tert*butylbenzyl)benzimidazolium bromide, 2f

Yield 73%, 1.89 g (white solid); m.p.: 166–167°C; FT-IR ($\nu_{C(2)-N}$): 1562 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.11 [t, J = 6.9 Hz, 6H, NCH₂CH (OCH₂CH₃)₂]; 1.28 {s, 18H, NCH₂C₆H₃ [C(CH₃)₃]₂-3,5}; 3.68 and 3.77 [dq, J = 14.1, 7.0 Hz, 4H, NCH₂CH (OCH₂CH₃)₂]; 4.83 [d, J = 3.7 Hz, 2H, NCH₂CH (OCH₂CH₃)₂]; 5.07 [t, J = 3.7 Hz, 1H, NCH₂CH (OCH₂CH₃)₂]; 5.78 {s, 2H, NCH₂C₆H₃ [C(CH₃)₃]₂-3,5}; 7.26 and 7.41 {s, 3H, NCH₂C₆H₃ [C(CH₃)₃]₂-3,5}; 7.51–

7.58 (m, 3H, NC₆ H_4 N); 7.84 (d, J = 8.5 Hz, 1H, NC₆ H_4 N); 11.30 (s, 1H, NCHN). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.18 [NCH₂CH(OCH₂ CH_3)₂]; 31.36 {NCH₂C₆H₃[C(CH₃)₃]₂-3,5}; 34.94 {NCH₂C₆H₃[C(CH₃)₃] 2⁻³,5}; 49.97 [NCH₂CH (OCH₂CH₃)₂]; 52.09 {NCH₂C₆H₃ [C(CH₃)₃]₂-3,5}; 64.65 [NCH₂CH(OCH₂CH₃)₂]; 100.08 [NCH₂CH(OCH₂CH₃)₂]; 113.12, 114.78, 122.42, 123.24, 126.68, 126.78, 130.88, 131.74, 132.74 and 152.18 {NC₆H₄N and NCH₂C₆H₃ [C(CH₃)₃]₂-3,5}; 143.61 (NCHN).

2.4 | General procedure for the preparation of PEPPSI-themed palladium-carbene complexes (3a-3f)

NHC ligand precursors (2a-2f; 1.0 mmol) were converted with high yields into the PEPPSI-themed Pd-carbene complexes (3a-3f) by reaction with PdCl₂ (1.0 mmol) in refluxing pyridine in the presence of K₂CO₃ (5.0 mmol) as a base at 80°C for 16 h. Then, all volatiles were removed under vacuum, and the solid residue was washed with npentane $(2 \times 5 \text{ ml})$. The crude product was dissolved in CH_2Cl_2 (5 ml), then filtered through a pad of celite and silica gel (70-230 mesh) to remove the unreacted PdCl₂ and NHC ligand. The crude complex was crystallized from CH_2Cl_2 -*n*-pentane mixture (1:5, v/v) at room temperature and completely dried under vacuum. All Pd-complexes were isolated as air- and moisture-stable bright yellow solids in moderate to high yields. For the ¹H NMR, ¹³C NMR and FT-IR spectrum of 3a-3f Pd-complexes see supporting information file, pages S15-S26.

2.4.1 | *Trans*-dichloro[1-(2,2diethoxyethyl)-3-(4-methoxybenzyl)benzimidazole-2-ylidene]-(pyridine)-palladium (II), 3a

Yield 71%, 0.216 g (bright yellow solid); m.p.: 149–150°C; FT-IR ($\nu_{C(2)-N}$): 1405 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.04 [t, J = 7.0 Hz, 6H, NCH₂CH(OCH₂CH₃)₂]; 3.54 and 3.79 [dq, J = 9.4, 7.0 Hz, 4H, NCH₂CH(OCH₂CH₃)₂]; 3.70 [s, 3H, NCH₂C₆H₄(OCH₃)-4]; 4.94 [d, J = 5.5 Hz, 2H, NCH₂CH (OCH₂CH₃)₂]; 5.49 [t, J = 5.5 Hz, 1H, NCH₂CH (OCH₂CH₃)₂]; 6.09 [s, 2H, NCH₂C₆H₄(OCH₃)-4]; 6.79– 6.83 [m, 2H, NCH₂C₆H₄(OCH₃)-4]; 7.03 (d, J = 3.9 Hz, 2H, NC₆H₄N); 7.12–7.15 (m, 1H, NC₆H₄N); 7.29–7.33 [m, 2H, NCH₂C₆H₄(OCH₃)-4]; 7.46 (d, J = 8.7 Hz, 2H, pyridine); 7.56 (d, J = 8.2 Hz, 1H, NC₆H₄N); 7.73 (tt, J = 7.7, 1.6 Hz, 1H, pyridine); 8.93 (dd, J = 6.5, 1.5 Hz, 2H, pyridine). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.35 [NCH₂CH (OCH₂CH₃)₂]; 51.52

6 of 16 WILEY Organometallic

2.4.2 | *Trans*-dichloro[1-(2,2diethoxyethyl)-3-(2,4,6-trimethylbenzyl) benzimidazole-2-ylidene]-(pyridine)-palladium (II), 3b

Yield 64%, 0.199 g (bright yellow solid); m.p.: 192-193°C; FT-IR ($\nu_{C(2)-N}$): 1400 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.03 [t, J = 7.0 Hz, 6H, NCH₂CH (OCH₂CH₃)₂]; 2.25 and 2.26 [s, 9H, NCH₂C₆H₂(CH₃)₃-2,4,6]; 3.53 and 3.78 [dq, J = 9.4, 7.0 Hz, 4H, NCH₂CH $(OCH_2CH_3)_2$; 4.93 [d, J = 5.5 Hz, 2H, NCH₂CH $(OCH_2CH_3)_2$; 5.49 [t, J = 5.5 Hz, 1H, NCH₂CH (OCH₂CH₃)₂]; 6.11 [s, 2H, NCH₂C₆H₂(CH₃)₃-2,4,6]; 6.40 (d, J = 8.3 Hz, 1H, NC₆H₄N); 6.86 [s, 2H, NCH₂C₆H₂ $(CH_3)_3$ -2,4,6]; 6.90 (t, J = 7.4 Hz, 1H, NC₆ H_4 N); 7.08 (t, J = 7.4 Hz, 1H, NC₆ H_4 N); 7.31 (ddd, J = 7.6, 5.1, 1.3 Hz, 2H, pyridine); 7.54 (d, J = 8.2 Hz, 1H, NC₆H₄N); 7.73 (tt, J = 7.7, 1.6 Hz, 1H, pyridine); 8.89 (dd, J = 6.5, 1.5 Hz, 2H, pyridine). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.36 [NCH₂CH(OCH₂CH₃)₂]; 20.80 and 21.11 [NCH₂C₆H₂(CH₃)₃-2,4,6]; 49.96 [NCH₂CH (OCH₂CH₃)₂]; $[NCH_2C_6H_2(CH_3)_3-2,4,6];$ 64.66 51.53 [NCH₂CH (OCH₂CH₃)₂]; 102.79 [NCH₂CH (OCH₂CH₃)₂]; 110.90, 112.36, 122.64, 123.06, 127.51, 129.66, 134.21, 135.70, 138.55 and 138.78 [NC₆H₄N and NCH₂C₆H₂ (CH₃)₃-2,4,6]; 124.58, 138.15 and 151.18 (pyridine); 163.80 [Pd-C (2)].

2.4.3 | *Trans*-dichloro[1-(2,2diethoxyethyl)-3-(2,3,5,6tetramethylbenzyl)benzimidazole-2-ylidene]-(pyridine)-palladium (II), 3c

Yield 75%, 0.238 g (bright yellow solid); m.p.: 191–192°C; FT-IR ($\nu_{C(2)-N}$): 1403 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.03 [t, J = 7.0 Hz, 6H, NCH₂CH(OCH₂CH₃)₂]; 2.17 and 2.18 [s, 12H, NCH₂C₆H (CH₃)₄-2,3,5,6]; 3.53 and 3.77 [qq, J = 9.4, 7.0 Hz, 4H, NCH₂CH(OCH₂CH₃)₂]; 4.93 [d, J = 5.5 Hz, 2H, NCH₂CH(OCH₂CH₃)₂]; 5.49 [t, J = 5.5 Hz, 1H, NCH₂CH(OCH₂CH₃)₂]; 6.13 [s, 2H, NCH₂C₆H(CH₃)₄-2,3,5,6]; 6.37 (d, J = 8.3 Hz, 1H, NC₆H₄N); 6.88 (t, J = 7.4 Hz, 1H, NC₆H₄N); 7.01 [s, 1H, NCH₂C₆H(CH₃)₄-2,3,5,6]; 7.06 (t, J = 7.4 Hz, 1H, NC₆H₄N); 7.30 (ddd, J = 7.5, 5.1, 1.3 Hz, 2H, pyridine); 7.53 (d, J = 8.2 Hz, 1H, NC₆*H*₄N); 7.72 (tt, *J* = 7.7, 1.6 Hz, 1H, pyridine); 8.85 (dd, *J* = 6.4, 1.5 Hz, 2H, pyridine). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.36 [NCH₂CH(OCH₂CH₃)₂]; 16.48 and 20.63 [NCH₂C₆H (CH₃)₄-2,3,5,6]; 50.40 [NCH₂CH(OCH₂CH₃)₂]; 51.58 [NCH₂C₆H(CH₃)₄-2,3,5,6]; 64.64 [NCH₂CH(OCH₂CH₃)₂]; 102.78 [NCH₂CH(OCH₂CH₃)₂]; 110.86, 112.34, 122.57, 123.03, 130.50, 132.53, 134.34, 134.41, 135.05 and 136.62 [NC₆H₄N and NCH₂C₆H(CH₃)₄-2,3,5,6]; 124.56, 138.15 and 151.11 (pyridine); 163.77 [Pd-*C*(2)].

2.4.4 | *Trans*-dichloro[1-(2,2diethoxyethyl)-3-(2,3,4,5,6pentamethylbenzyl)benzimidazole-2-ylidene]-(pyridine)-palladium (II), 3d

Yield 77%, 0.250 g (bright yellow solid); m.p.: 215–216°C; FT-IR ($\nu_{C(2)-N}$): 1402 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.03 (t, J = 7.0 Hz, 6H, NCH₂CH (OCH₂CH₃)₂); 2.15, 2.22 and 2.24 [s, 15H, NCH₂C₆(CH₃) $_{5}$ -2,3,4,5,6]; 3.53 and 3.78 [dq, J = 9.4, 7.0 Hz, 4H, $NCH_2CH(OCH_2CH_3)_2$; 4.93 [d, J = 5.5 Hz, 2H, NCH_2CH $(OCH_2CH_3)_2$; 5.49 [t, J = 5.5 Hz, 1H, NCH_2CH (OCH₂CH₃)₂]; 6.36 [s, 2H, NCH₂C₆(CH₃)₅-2,3,4,5,6]; 6.34 (d, J = 8.3 Hz, 1H, NC₆H₄N); 6.85 (t, J = 7.4 Hz, 1H, NC_6H_4N ; 7.07 (t, J = 7.4 Hz, 1H, NC_6H_4N); 7.30 (ddd, J = 7.6, 5.2, 1.3 Hz, 2H, pyridine); 7.52 (d, J = 8.2 Hz, 1H, NC₆ H_4 N); 7.72 (tt, J = 7.7, 1.6 Hz, 1H, pyridine); 8.86 (dd, J = 6.4, 1.5 Hz, 2H, pyridine). ¹³C NMR (101 MHz, $CDCl_3$, 25°C, TMS): δ (ppm) = 15.36 [NCH₂CH (OCH₂CH₃)₂]; 16.95, 17.32 and 17.48 [NCH₂C₆(CH₃)₅-2,3,4,5,6]; 51.11 [NCH₂CH(OCH₂CH₃)₂]; 51.58 [NCH₂C₆ (CH₃)₅-2,3,4,5,6]; 64.65 [NCH₂CH(OCH₂ CH₃)₂]; 102.80 [NCH₂CH(OCH₂CH₃)₂]; 111.04, 112.25, 122.48, 122.98, 127.77, 133.36, 134.47, 134.63, 136.67 and 136.96 [NC₆H₄N and NCH₂C₆(CH₃)₅-2,3,4,5,6]; 124.54, 138.13 and 151.11 (pyridine); 163.57 [Pd-C(2)].

2.4.5 | *Trans*-dibromo[1-(2,2diethoxyethyl)-3-(4-*tert*-butylbenzyl)benzimidazole-2-ylidene]-(pyridine)-palladium (II), 3e

Yield 61%, 0.221 g (bright yellow solid); m.p.: 91–92°C; FT-IR ($\nu_{C(2)-N}$): 1406 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.07 [t, J = 7.0 Hz, 6H, NCH₂CH(OCH₂CH₃)₂]; 1.22 {s, 9H, NCH₂C₆H₄ [C (CH₃)₃]-4}; 3.57 and 3.80 [dq, J = 9.4, 7.0 Hz, 4H, NCH₂CH(OCH₂CH₃)₂]; 4.91 [d, J = 5.5 Hz, 2H, NCH₂CH(OCH₂CH₃)₂]; 5.55 [t, J = 5.5 Hz, 1H, NCH₂CH(OCH₂CH₃)₂]; 6.07 {s, 2H, NCH₂C₆H₄ [C (CH₃)₃]-4}; 6.96–7.02 (m, 2H, NC₆H₄N); 7.13 (dd, J = 8.2, 1.3 Hz, 1H, NC₆H₄N); 7.27-7.41 {m, 4H, NC_6H_4N and $NCH_2C_6H_4[C(CH_3)_3]-4];$ 7.45 (d, J = 8.2 Hz, 2H, pyridine); 7.57 (d, J = 8.2 Hz, 1H, NC_6H_4N); 7.75 (tt, J = 7.7, 1.6 Hz, 1H, pyridine); 8.95 (dd, J = 6.5, 1.5 Hz, 2H, pyridine). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.43 $[NCH_2CH(OCH_2CH_3)_2]; 31.34 \{NCH_2C_6H_4[C(CH_3)_3]-4\};$ $\{NCH_2C_6H_4[C(CH_3)_3]-4\};$ 34.60 51.84 [NCH₂CH $(OCH_2CH_3)_2$; 53.45 {NCH_2C_6H_4 [C(CH_3)_3]-4}; 64.63 [NCH₂CH(OCH₂CH₃)₂]; 102.10 [NCH₂CH(OCH₂CH₃)₂]; 111.20, 112.47, 122.83, 122.94, 125.77, 127.78, 131.77, 134.10, 136.12 and 151.12 $[NC_6H_4N]$ and $NCH_2C_6H_2$ (CH₃)₃-2,4,6]; 124.67, 138.03 and 152.55 (pyridine); 163.43 [Pd-C(2)].

2.4.6 | *Trans*-dibromo[1-(2,2diethoxyethyl)-3-(3,5-di-*tert*-butylbenzyl) benzimidazole-2-ylidene]-(pyridine)-palladium (II), 3f

Yield 69%, 0.269 g (bright yellow solid); m.p.: 151-152° C; FT-IR ($\nu_{C(2)-N}$): 1404 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 1.03 [t, J = 7.0 Hz, 6H, NCH₂CH(OCH₂CH₃)₂]; 1.20 {s, 18H, NCH₂C₆H₃ [C $(CH_3)_3]_2$ -3,5}; 3.54 and 3.79 [dq, J = 9.4, 7.0 Hz, 4H, $NCH_2CH(OCH_2CH_3)_2$; 4.91 [d, J = 5.6 Hz, 2H, $NCH_2CH(OCH_2CH_3)_2$; 5.59 [t, J = 5.6 Hz, 1H, NCH₂CH(OCH₂CH₃)₂]; 6.11 {s, 2H, NCH₂C₆H₃ [C $(CH_3)_3]_2$ -3,5}; 6.90 (d, J = 8.1 Hz, 1H, NC_6H_4N); 6.99 $(t, J = 7.6 \text{ Hz}, 1\text{H}, \text{NC}_6H_4\text{N}); 7.12 (t, J = 7.8 \text{ Hz}, 1\text{H},$ NC₆ H_4 N); 7.27 {s, 3H, NCH₂C₆ H_3 [C(CH₃]₃]₂-3,5); 7.28 (ddd, J = 7.6, 5.2, 1.3 Hz, 2H, pyridine); 7.57 (d,J = 8.2 Hz, 1H, NC₆H₄N); 7.69 (tt, J = 7.7, 1.6 Hz, 1H, pyridine); 8.97 (dd, J = 6.4, 1.4 Hz, 2H, pyridine). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS): δ (ppm) = 15.40 [NCH₂CH(OCH₂CH₃)₂]; 31.47 {NCH₂C₆H₃[C(CH₃)₃]₂-3,5}; 34.97 {NCH₂C₆H₃[*C*(CH₃)₃]₂-3,5}; 51.71 [N*C*H₂CH $(OCH_2CH_3)_2$; 54.34 { $NCH_2C_6H_3[C(CH_3)_3]_2$ -3,5}; 64.74 [NCH₂CH(OCH₂CH₃)₂]; 102.03 [NCH₂CH (OCH₂CH₃) 2]; 111.28, 112.45, 121.78, 122.36, 122.70, 122.82, 133.86, 134.07, 136.11 and 151.32 [NC₆H₄N and NCH₂C₆H₂(CH₃)₃-2,4,6]; 124.64, 137.99 and 152.99 (pvridine); 163.38 [Pd-C(2)].

2.5 | X-Ray analysis of the palladium-carbene complexes

X-Ray diffraction data were recorded with a STOE IPDS II diffractometer at room temperature using graphitemonochromated Mo K α radiation by applying the ω -scan method. Data collection and cell refinement were carried out using X-AREA^[25] while data reduction was applied using X-RED32.^[25] The structures were solved by direct methods with SIR2019^[26] and refined by means of the full-matrix full-matrix least-squares calculations on F^2 using SHELXL-2018.^[27] All carbon-bound H atoms were located in difference electron-density map and then treated as riding atoms in geometrically idealized positions, with C-H = 0.93 (aromatic CH), 0.97 (CH₂), 0.96 (CH₃) and 0.98 Å (methine CH), and with U_{iso} (H) = $kU_{eq}(C)$, where k = 1.5 for the methyl groups and 1.2 for all other H atoms. In 3c, there is a disordered solvent water molecule with very large displacement parameters which could not be modeled properly. The diffused electron densities resulting from this were removed by the SQUEEZE routine in PLATON.^[28] There are two cavities of volume 105 $Å^3$ per unit cell centered at (0, 0.5, 0) and (0.5, 1, 0.5). Each cavity contains approximately 23 electrons which were assigned to two solvent water molecules. Since Z is equal to 4, each Pd complex has one solvent water equivalent. In the final refinement, these contributions were removed from the intensity data to produce better refinement results. The crystallographic data and refinement parameters are summarized in Table 1. Molecular graphic was created by using OLEX2.^[29]

2.6 | General procedure for the direct arylation of C2-substituted heteroarenes

Typically, C2-substituted heteroarene (2.0 mmol), aryl bromide (1.0 mmol), KOAc (2.0 mmol), and DMA (2 ml) were added to an oven-dried Schlenk tube under argon atmosphere. Subsequently, the Pd–carbene catalyst (**3a–3f**) (0.01 mmol, 1 mol%) was added to stirred solution in a Schlenk tube, and the closed Schlenk tube was stirred at 120°C (oil bath temperature). At the end of the reaction, the solution was cooled to room temperature and dichloromethane (2 ml) was then added to the crude mixture. This solution was used for GC analysis and yields (%) were calculated according to aryl bromide.

3 | **RESULTS AND DISCUSSION**

3.1 | Synthesis of 1-(2,2-diethoxyethyl) benzimidazole

1-(2,2-Diethoxyethyl)benzimidazole (1) was synthesized as previously described in the literature.^[24] Compound 1 was synthesized by the reaction of benzimidazole with 2,2-diethoxyethyl bromide in ethyl alcohol at 78°C for 5 h. Then it was isolated as a viscous liquid in moderate

	and su acture reminent parameters for	DG-DC GITH DI		
Parameters	3a	3b	3c	3f
CCDC depository	1944388	1944389	1944390	1944391
Color/shape	Yellow/prism	Yellow/prism	Yellow/prism	Yellow/prism
Chemical formula	$[PdCl_2(C_{21}H_{26}N_2O_3)(C_5H_5N)]$	$[PdCl_2(C_{23}H_{30}N_2O_2)(C_5H_5N)]$	$[PdCl_2(C_{24}H_{32}N_2O_2)(C_5H_5N)]\cdot H_2O$	$[PdBr_2(C_{28}H_{40}N_2O_2)(C_5H_5N)]$
Formula weight	610.84	622.89	654.93	781.94
Temperature (K)	296(2)	296(2)	296(2)	296(2)
Wavelength (Å)	0.71073 Mo K α	0.71073 Mo Ka	0.71073 Mo Ka	0.71073 Mo Kα
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	P2 ₁ /c (No. 14)	P <u>1</u> (No. 2)	$P2_1/n$ (No. 14)	P <u>T</u> (No. 2)
Unit cell parameters				
$a, b, c (m \AA)$	16.6281(6), 19.8875(6), 8.2339(3)	8.6354(6), 10.7837(8), 16.0757(10)	8.7632(3), 21.2927(7), 16.9191(6)	12.8334(5), 14.2106(7), 22.7943(12)
α, β, γ (deg)	90, 92.511(3), 90	75.347(5), 82.221(5), 79.341(5)	90, 101.907(3), 90	79.628(4), 83.346(4), 63.310(3)
Volume (Å ³)	2720.26(16)	1417.13(17)	3089.05(19)	3650.5(3)
Z	4	2	4	4
$D_{\rm calc.}$ (g/cm ³)	1.491	1.460	1.408	1.423
$\mu \ (\mathrm{mm}^{-1})$	0.910	0.873	0.807	2.727
Absorption correction	Integration	Integration	Integration	Integration
T_{\min}, T_{\max}	0.7306, 0.9406	0.8575, 0.9751	0.6126, 0.7988	0.2068, 0.8059
F_{000}	1248	640	1352	1584
Crystal size (mm ³)	$0.69 \times 0.20 \times 0.07$	$0.32 \times 0.11 \times 0.03$	$0.79 \times 0.36 \times 0.34$	$0.70 \times 0.40 \times 0.09$
Diffractometer	STOE IPDS II	STOE IPDS II	STOE IPDS II	STOE IPDS II
Measurement method	w scan	ω scan	ω scan	ω scan
Index ranges	$\begin{aligned} -21 \le h \le 21, -25 \le k \le 25, \\ -10 \le l \le 10 \end{aligned}$	$-11 \le h \le 11, -13 \le k \le 14, \\ -20 \le l \le 20$	$-11 \le h \le 11, -27 \le k \le 27, \\ -19 \le l \le 22$	$-16 \le h \le 16, -18 \le k \le 18, -29 \le l \le 29$
θ range for data collection (deg)	$2.048 \le \theta \le 27.754$	$2.410 \le \theta \le 27.705$	$1.913 \le \theta \le 27.721$	$1.740 \le \theta \le 27.727$
Reflections collected	32,424	14,709	21,431	47,604
Independent/observed reflections	6379/4510	6544/3566	7215/4603	17,087/6133
$R_{ m int.}$	0.0503	0.0839	0.0810	0.1383
				(Continues)

TABLE 1 Crystal data and structure refinement parameters for **3a-3c** and **3f**

ABLE 1 (Continued)				
Parameters	3a	3b	3c	3f
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data/restraints/ parameters	6379/0/319	6544/0/330	7215/0/340	17,087/0/755
Goodness-of-fit on F^2	0.978	0.911	0.930	0.867
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0407, wR_2 = 0.0733$	$R_1 = 0.0638, wR_2 = 0.0885$	$R_1 = 0.0494, wR_2 = 0.1104$	$R_1 = 0.0659, wR_2 = 0.1152$
R indices (all data)	$R_1 = 0.0718, wR_2 = 0.0807$	$R_1 = 0.1351, wR_2 = 0.1038$	$R_1 = 0.0840, wR_2 = 0.1227$	$R_1 = 0.2067, wR_2 = 0.1520$
$\Delta \rho_{\text{max.}} \Delta \rho_{\text{min.}} (e/\text{\AA}^3)$	0.39, -0.42	0.79, -0.43	0.77, -0.75	1.19, -0.36

KALOĞLU et al.

NILEY-Organometallic 9 of 16 Chemistry

to high yield (85%). Compound **1** was characterized by ¹H NMR, ¹³C NMR and FT-IR spectroscopies. In the ¹³C NMR spectra of **1**, the characteristic peak of the imino carbon (N*C*HN), resonance was detected as typical singlet at $\delta = 14,355$ ppm. The signal of the N*CH*N proton was also detected as a singlet at $\delta = 7.96$ ppm for **1**. FT-IR spectra showed a broad band at 1494 cm⁻¹ for the - C=N- bond vibration of **1**.

3.2 | Synthesis of NHC ligand precursors

The NHC ligand precursors (2a-2f) were synthesized by the reaction of 1-(2,2-diethoxyethyl)-benzimidazole with substituted benzyl halides in dimethylformamide at 80° C for 36 h. The salts 2b-2d were synthesized as previously described in the literature.^[24] All NHC ligand precursors were characterized by various spectroscopic techniques such as ¹H NMR, ¹³C NMR and FT-IR. The FT-IR data clearly indicated that the **2a-2f** ligand precursors exhibit a characteristic $\nu_{(CN)}$ band typically at 1560, 1560, 1563, 1562, 1557 and 1562 cm⁻¹, respectively. In the ¹H NMR spectra, the C(2)-H proton downfield resonances of 2a-2f were observed as sharp singlets at $\delta = 11.80, 10.78, 10.06, 10.27, 11.28$ and 11.30 ppm, respectively. In the 13 C NMR spectra, the C(2)-carbon resonance of **2a–2f** compounds appeared at $\delta = 144.12$, 143.92, 142.96, 143.38, 143.58 and 143.61 ppm, respectively, as a single signal. These spectroscopic values are in line with those found for other benzimidazolium salts in the literature.^{12e-h, 15f, 16h}

3.3 | Synthesis of PEPPSI-themed palladium-carbene complexes

The PEPPSI-themed Pd-carbene complexes (3a-3f) were synthesized according to procedures similar to those reported previously by Organ for other Pd-NHC-PEPPSI complexes.^[21] The **3a-3f** complexes, which are highly moisture- and air-stable both in solution and in solid state against air, light and moisture, could be stored at room temperature for months without an obvious decline in catalytic efficiency. They are soluble in most organic solvents, such as dichloromethane, chloroform, ethanol and acetonitrile, with the exception of non-polar ones, such as pentane and hexane. Next, Pd-complexes were succesfully characterized by various spectroscopic techniques such as NMR, FT-IR and single-crystal X-ray analysis. In the ¹H NMR and ¹³C NMR spectra of the Pdcomplexes, the absence of the characteristic signals of the acidic C(2)-H proton and C(2)-carbon of the benzimidazolium salts suggests the formation of a Pdcarbene bond. Also, in the ¹³C NMR spectra, the 10 of 16 WILEY Organometalli

characteristic *C*(2)-carbene signals of **3a–3f** complexes appear as singlets at $\delta = 163.82$, 163.80, 163.77, 163.57, 163.43 and 163.38 ppm, respectively. The FT-IR data clearly indicate that the PEPPSI-themed Pd–carbene complexes exhibit a characteristic $v_{(CN)}$ band typically between 1400 and 1406 cm⁻¹. Owing to the flow of electrons from the NHC ligand to the Pd, the C–N bond is weakened, and as a result, a decrease in the $v_{(CN)}$ stretching frequency is expected. Also, for **3a–3c** and **3 f** complexes appropriate single crystals and structures of these complexes were elucidated by X-ray diffraction studies. These complexes show typical spectroscopic signatures, which are in line with those recently reported for other similar types of Pd–carbene complexes.^{12h, 15h}

3.4 | Description of the crystal structures of the palladium-carbene complexes

The molecular diagrams of 3a-3c and 3f with the adopted atom-labeling scheme are shown in Figures 2–5, while important bond distances and angles are listed in Table 2. The asymmetric unit of 3f contains the two independent molecules, labeled **A** and **B**. In the following discussion, parameters related to molecule **B** are given in square brackets.

The Pd–carbene complexes are structurally similar, in which Pd is surrounded by the carbon atom of NHC

FIGURE 3 Molecular structure of 3b showing the atom numbering scheme

FIGURE 2 Molecular structure of 3a showing the atom numbering scheme.

FIGURE 4 Molecular structure of **3c** showing the atom numbering scheme.

FIGURE 5 Molecular structure of **3f** showing the atom numbering scheme. For the sake of clarity, only molecule A is shown.

and the nitrogen atom of the pyridine ring. The remaining coordination sites are occupied by two chloride atoms in **3a–3c** and by two bromide atoms in **3f**. The metal coordination environments of the complexes feature a slightly distorted square-planar geometry, in which the

TABLE 2 Selected geometric parameters for 3a-3c and 3 f

WILEY-Organometallic 11 of 16 Chemistry

NHC and pyridine ligands, and the anion atoms are *trans* to each other for all complexes. The *cis* angles varying from 86.0(2) to 92.6(2)° and the *trans* angles changing from 175.11(4) to 178.80(12)° are a little off from the ideal values of 90 and 180°. The two anion atoms are bent toward the NHC ligand rather than the non-bulky pyridine ligand, as evident from the X—Pd—C (X is the anion atom) angles smaller than those for X—Pd—N_{pyridine}. The four-coordinate geometry index, τ_4 ,^[30] is 0.04 for **3a**, 0.05 for **3b**, 0.07 for **3c** and 0.05 for **3 f**, which has to be 0 for an ideal square-planar geometry and has to be 1 for a perfect tetrahedral geometry. The values of τ_4 indicate that the coordination polyhedron of the Pd atoms is a slightly distorted square-planar.

The average Pd– $C_{\rm NHC}$ bond distance [1.946 Å] is smaller than the sum of the individual covalent radii of the Pd and carbon atoms (2.12 Å), while the average Pd– $N_{\rm pyridine}$ bond distance [2.109 Å] is nearly equal to the sum of the covalent individual radii of the Pd and nitrogen atoms (2.10 Å).^[31] The Pd–Br and Pd–Cl bond lengths are in the typical range, and the internal N–C–N ring angle at the carbene centers varies from 105.9(7) to 107.6(2)° in the complexes. These values lie within the same range as those observed for analogous PEPPSI-themed Pd-complexes.^[32] The carbene ring is nearly perpendicular to the PdCNX₂ coordination plane with a dihedral angle of 75.58(9)° in **3a**, 68.82(16)° in **3b**, 80.44(12)° in **3c** and 73.8(3)° [77.4(3)°] in **3 f**, which is typical for NHC complexes to reduce steric congestion.

Parameters	3a	3b	3c	3f	
				Molecule A	Molecule B
Bond lengths (Å)					
Pd1—X1	2.3091(8)	2.305(2)	2.3008(11)	2.4273(12)	2.4286(12)
Pd1—X2	2.2993(9)	2.315(2)	2.3124(12)	2.4247(12)	2.4364(12)
Pd1—N3	2.114(2)	2.129(5)	2.113(3)	2.091(8)	2.096(8)
Pd1—C1	1.953(3)	1.944(5)	1.947(4)	1.946(8)	1.940(8)
N1-C1	1.351(4)	1.346(6)	1.351(5)	1.341(9)	1.357(10)
N2-C1	1.350(4)	1.365(6)	1.356(5)	1.362(8)	1.358(8)
Bond angles (deg)					
X1—Pd1—X2	175.23(3)	176.30(8)	175.11(4)	175.14(5)	175.91(5)
X1—Pd1—N3	92.16(8)	91.90(17)	91.33(10)	90.8(2)	92.6(2)
X2—Pd1—N3	92.40(8)	91.77(17)	92.43(10)	91.1(2)	91.4(2)
X1—Pd1—C1	88.10(8)	88.29(18)	86.33(12)	90.6(2)	89.9(2)
X2-Pd1-C1	87.38(8)	88.07(18)	90.12(12)	87.7(2)	86.0(2)
N3—Pd1—C1	178.80(12)	177.2(2)	175.62(13)	178.0(3)	177.4(3)
N1-C1-N2	107.6(2)	106.5(4)	107.1(3)	106.0(7)	105.9(7)

X1, Cl1 or Br1; X2, Cl2 or Br2.

12 of 16 WILEY-Organometallic Chemistry

On the other hand, the dihedral angle between the pyridine ring and the coordination plane is $37.68(14)^{\circ}$ for **3a**, $35.8(3)^{\circ}$ for **3b**, $41.35(17)^{\circ}$ for **3c** and $56.1(6)^{\circ}$ [48.7(5)°] for **3 f**.

3.5 | The direct arylation of 2-acetylfuran and 2-acetylthiophene with aryl bromides

In 1990, the first examples of Pd-catalyzed direct arylation of furans and thiophenes were reported by Ohta.^{14b} In this pioneering work, the direct C(2)-arylation of furan and thiophene was carried out in medium to good yields with electron-rich or electron-poor aryl bromides using [Pd $(PPh_3)_4$ as the catalyst, potassium acetate (KOAc) as the base and dimethylacetamide (DMA) as the solvent. In the last two decades, Pd-catalyzed direct arylation was successfully performed using DMA/KOAc combination.^[15,16] Therefore, in this study, we selected DMA as the solvent, and KOAc as the base. The direct arylation of furan or thiophene itself to prepare C(2)-arylated products remains difficult as the formation of C(2)- and C(5)diarylated products from C(2)-arylated products appears to be faster than the C(2)-arylation of furan or thiophene. Therefore, the use of a blocking group at the C(2)-position of furans and thiophenes in order to control the selectivity towards C(5)-arylation has also been described.^{12d} Therefore, regioselective arylation on only the C(5)-position of C(2)-blocked furan or thiophene was observed. It is supposed that because the C(2)-position is blocked, the acidic C(5)-position is used for arylation and bonding of electron-deficient aryl groups is difficult compared with electron-rich aryl groups. For this reason, we selected C (2)-blocked 2-acetylfuran and 2-acetylthiophene as heteroaromatic subsrates, and we focused on the direct arylation at the C(5)-position of these heteroarenes.

Initially, to optimize the reaction conditions, the arylation of 2-acetylfuran with 3-bromoquinoline was carried out at 120°C for 2 h without the addition of any Pdcatalyst in order to examine the effect of the catalyst on the reaction. No product was formed without the addition of Pd-catalyst (Table 3, entry 1). Then we examined the effect of the reaction time on the reaction. When the reaction time was reduced from 2 to 1 h in the presence of 3f catalyst, 85% yield was observed (Table 3, entry 2). When the reaction time was reduced to 0.5 h in the presence of **3f** catalyst, the percentage conversion was significantly reduced to 60% with 81% yield (Table 3, entry 3). After these preliminary trials, it was concluded that the best conditions for the direct arlyation were achieved at 120° C, 2 h. Next, we evaluated the scope and limitations of the Pd-complexes **3a-3f** for the direct arylation of 2acetylfuran and 2-acetylthiophene with different aryl

bromides. The reaction worked well for a wide variety of aryl bromides such as 3-bromoquinoline, bromobenzene, 4-bromotoluene, 4-bromobenzaldehyde and 4-bromoacetophenone, affording 2-acetylfuran for 30 examples, and 2-acetylthiophene for another 30 examples, and the results are summarized in Tables 3 and 4, respectively.

Firstly, under the optimal conditions, direct arylation of 2-acetylfuran with aryl bromides was examined and the C (5)-arylated furan derivatives were obtained. Full conversion was obtained when 3-bromoquinoline was used with 2-acetylfuran with 71-85% GC yields (Table 3, entries 4-9). C(5)-arylated 2-acetylfuran was obtained with 85% GC yield in the presence of 3f catalyst. Similar results were obtained when bromobenzene was used. In this case 2acetyl-5-phenylfuran was obtained in 68-92% GC yield (Table 3, entries 10-15). 4-Bromotoluene, which contained an electron-rich aryl bromide, was also obtained at 69-87% GC yield with high conversion (Table 3, entries 16-21). 2-Acetyl-5-(4-methylphenyl)furan was obtained with 87% yield in the presence of 3d catalyst (Table 3, entry 19). The coupling of 2-acetylfuran with electron-poor aryl bromide such as 4-bromobenzaldehyde proceeds nicely. 4-Bromobenzaldehyde gave the C(5)-arylated furan with 69-89% GC yields with full conversion (Table 3, entries 22-27). This product was obtained at 80% yield in the presence of 3f catalyst (Table 3, entry 27). The electron-poor 4bromoacetophenone was also a good substrate to afford the corresponding products 2-acetyl-5-(4-acetylphenyl) furan at between 76 and 80% CG yields (Table 3, entries 28-33).

Using the same reaction conditions, we investigated the reactivity of 2-acetylthiophene in Pd-catalyzed direct C(5)-arylation. As shown in Table 4, high-yield C(5)arylated products were obtained. When 2-acetylthiophene was arylated with 3-bromoguinoline, bromobenzene, 4bromotoluene, 4-bromobenzaldehyde and 4bromoacetophenone, products were obtained using only 1 mol% Pd-complexes (3a-3f) as catalyst, and yields at 84-90, 67-88, 65-91, 69-85 and 81-92% were observed, respectively (Table 4, entries 1-30). When the reaction of 2-acetylthiophene with 3-bromoguinoline was investigated, C(5)-arylated product was obtained at 90% GC yield in the presence of 3d catalyst (Table 4, entry 4). The reaction of 2-acetylthiophene with bromobenzene generated the 5-phenyl-2-acetylthiophene at 87 and 88% yield in the presence of **3b** and **3c** catalysts, respectively (Table 4, entries 8,9). The reaction of 2-acetylthiophene with 4bromotoluene gave the expected product at 91 and 86% yield in the presence of **3b** and **3d** catalysts, respectively (Table 4, entries 14,16). The reaction of 2-acetylthiophene with 4-bromobenzaldehyde gave the expected product at 85% yield in the presence of **3e** catalyst (Table 4, entry 23).

TABLE 3 Pd-catalyzed direct C(5)-arylation of 2-acetylfuran with aryl bromides^a

		o + Br	$\begin{array}{c} & & \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \\ & \\ \hline \\ \\ & \\ \hline \\ \\ \\ \hline \\ \\ \\ \\$	^D R	
Entry	Aryl bromide	[Pd]	Product	Conversion (%) ^b	Yield (%) ^c
1^d		None		_	—
2 ^e	Br	3 f		85	85
3^{f}		3 f		60	81
4		3a		100	79
5		3b		100	71
6		3c		100	81
7		3d		100	74
8		3e		100	84
9		3f		100	85
10	Br	3a	O II	90	71
11		3b		96	68
12		3c		92	92
13		3d		100	90
14		3e		94	76
15		3f		100	90
16	Br	3a	O 	85	69
17		3b		100	86
18		3c		100	84
19		3d		100	87
20		3e		96	80
21		3f		100	85
22	Br	3a	O H	100	82
23	DI	3b		100	69
24		3c		100	76
25		3d		100	75
36		3e		100	85
27		3f		100	89
28	Br	3a	O H	95	76
29		3b		95	78
30		3c		100	73
31		3d		100	71
32		3e		100	80
33		3f		100	80

Applied Organometallic-Chemistry

WILEY

13 of 16

^aConditions: [Pd] 3a-3f (0.01 mmol, 1 mol%), 2-acetylfuran (2.0 mmol), aryl bromide (1.0 mmol), KOAc (2.0 mmol), DMA (2 ml), 120°C, 2 h. ^bConversions were calculated with respect to aryl bromide from the results of GC spectrometry.

^cGC yield.

^dWithout any [Pd] catalyst.

^eThe reaction was carried out at 1 h.

 $^{\rm f}\!The$ reaction was carried out at 0.5 h.

14 of 16 WILEY Organometalli Chemistry

TABLE 4 Pd-catalyzed direct C(5)-arylation of 2-acetylthiophene with aryl bromides^a

		S + Br	$\mathbb{R} \xrightarrow{[Pd] 3a-3f(1 \text{ mol}\%)}_{KOAc, DMA}$	ĽS→ CS ^R	
Entry	Aryl bromide	[Pd]	Product	Conversion (%) ^b	Yield (%) ^c
1		3a		100	84
2	Br	3b	s S	97	89
3		3c		100	87
4		3d		100	90
5		3e		100	85
6		3 f		100	88
7	Br	3a	O II	90	67
8		3b	s S	95	87
9		3c		92	88
10		3d		95	85
11		3e		100	83
12		3 f		94	83
13	Br	3a	O II	90	65
14		3b	s S	100	91
15		3c		100	83
16		3d		100	86
17		3e		96	79
18		3 f		100	84
19	Pr O	3a	0	97	72
20	ы	3b		100	69
21		3c		100	71
22		3d		100	74
23		3e		100	85
24		3 f		100	74
25	Br	3a	0	100	86
36		3b	s S	95	81
27		3c		100	86
28		3d		100	89
29		3e		100	90
30		3 f		100	92

^aConditions: [Pd] **3a-3f** (0.01 mmol, 1 mol%), 2-acetylthiophene (2.0 mmol), aryl bromide (1.0 mmol), KOAc (2.0 mmol), DMA (2 ml), 120°C, 2 h. ^bConversions were calculated with respect to aryl bromide from the results of GC spectrometry. ^cGC yield.

Moderate to high yields of 5-(4-acetylphenyl)-2acetylthiophene were obtained for the coupling with 4bromoacetophenone (Table 4, entries 25–30).

The Pd-catalyzed direct arylation of furan and thiophene with a variety of electrophilic reagents has been previously described.^[15,16] In previous studies, similar or close substrates have been employed with higher catalyst loading (1–20 mol%), and a higher reaction time (1–48 h) has been chosen for the direct arylation of furan and thiophene in the presence of Pd-catalysts. In the present work, 1 mol% catalyst loading was used, and the reaction time was shortened to 2 h. Moreover, thiophene and furan derivatives can be efficiently and selectively arylated at the C(5)-position. In this study, satisfactory

results were obtained as compared with previously reported similar studies.^[15,16]

Finally, the catalytic activities of the PEPPSI-themed new Pd–carbene complexes were investigated in the direct C(5)-arylation of C(2)-blocked furan and thiophene. In most cases, high yields were observed with all complexes. Only a minor effect of the NHC ligand on the Pd-complex was observed for the coupling of aryl bromide with heteroaromatics. Surprisingly, similar conversions were obtained for the coupling of each aryl bromide. There is no significant difference between these complexes on the catalytic activity of direct arylation of heteroaromatics by aryl bromides. The only significant difference between **3a–3e** complexes indicates that electronic and steric effects also play some role in these processes.

4 | CONCLUSIONS

In summary, we have developed six new well-defined and air-stable PEPPSI-themed Pd-carbene complexes containing a benzimidazole-2-ylidene backbone. The catalytic activity of these Pd-carbene complexes was tested for the direct arylation of 2-acetylfuran and 2-acetylthiophene with aryl bromides using the C-H activation process. It was found that the new Pd-complexes were effective catalysts for this direct arylation. Overall, except in a few cases, satisfactory results were obtained. Since the NHC ligands were similar to each other, no significant difference was observed between the catalytic activities of the Pd-complexes. This study is of environmental and economic interest owing to the low catalyst loading and shorter reaction time. In this study, only AcOH and HBr were formed as a by-products by the use of direct arylation method and thus by-product formation was minimized compared with the multistep traditional transition metal-catalyzed reactions. Also, this study contributes to both organometallic synthesis and the literature in the preparation of bi(hetero)aryl derivatives. Further studies focused on its applicability to other reactions are currently underway in our laboratory.

ACKNOWLEDGMENTS

This study was supported by the Technological and Scientific Research Council of Turkey TÜBİTAK (project no. 117R010).

SUPPLEMENTARY DATA

CCDC 1944388–1944391 contain the supplementary crystallographic data for the compound reported in this article. These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336 033, e-mail: deposit@ccdc. cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/).

ORCID

Murat Kaloğlu (D) https://orcid.org/0000-0002-2770-5532 *Nevin Gürbüz* (D) https://orcid.org/0000-0003-3201-3597 *İlkay Yıldırım* (D) https://orcid.org/0000-0002-7423-5043 *Namık Özdemir* (D) https://orcid.org/0000-0003-3371-9874 *İsmail Özdemir* (D) https://orcid.org/0000-0001-6325-0216

REFERENCES

- K. Tamao, N. Miyaura, Introduction to cross-coupling reactions, in *Cross-Coupling Reactions: A Practical Guide*, (Ed: N. Miyaura), Springer, Berlin **2002** 1.
- [2] A. M. Echavarren, D. J. Cárdenas, Mechanistic aspects of metal-catalyzed C,C- and C,X-bond-forming reactions, in *Metal-catalyzed Cross-coupling Reactions*, (Eds: A. de Meijere, F. Diederich), Wiley-VCH, Weinheim **2004** 1.
- [3] J. Tsuji, Transition Metal Reagents and Catalysis: Innovations in Organic Synthesis, John Wiley & Sons, Chichester 2000.
- [4] M. Beller, C. Bolm, Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, Weinheim, Wiley-VCH 1998.
- [5] a)J. I. Setsune, M. Toda, K. Watanabe, P. K. Panda, T. Yoshida, *Tetrahedron Lett.* 2006, 47, 7541. b)H. Maeda, Y. Haketa, T. Nakanishi, J. Am. Chem. Soc. 2007, 129, 13661.
- [6] a) P. Vachal, L. M. Toth, *Tetrahedron Lett.* 2004, 45, 7157. b)L.
 Torun, S. Liu, B. K. Madras, P. C. Meltzer, *Tetrahedron Lett.* 2006, 47, 599.
- [7] K. Takahashi, A. A. Gunji, Heterocycles 1996, 43, 941.
- [8] A. Dinsmore, D. G. Billing, K. Mandy, J. P. Michael, D. Mogano, S. Patil, Org. Lett. 2004, 6, 293.
- [9] a) B. M. Trost, Acc. Chem. Res. 2002, 35, 695; b) G. Vasapollo,
 G. Mele, A. Maffei, R. D. Sole, Appl. Organomet. Chem. 2003,
 17, 835; c) J. Bayardon, J. Holz, B. Schäffner, V. Andrushk, S. Verevkin, A. Preetz, A. Börner, Angew. Chem. Int. Ed. 2007,
 46, 5971; d) A. M. Berman, J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 14926; e) D. A. Colby,
 R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624.
- [10] a) S. Gorelsky, D. Lapointe, K. J. Fagnou, Org. Chem. 2012, 77, 658; b) T. M. Figg, M. Wasa, J. Q. Yu, D. G. Musaev, J. Am. Chem. Soc. 2013, 135, 14206.
- [11] J.-Q. Yu, Z. Shi (Eds), C-H activation, in *Topics in Current Chemistry*, Vol. 292, Springer, Berlin 2010.
- [12] a) F. Bellina, R. Rossi, Chem. Rev. 2009, 110, 1082; b) J. Roger, A. L. Gottumukkala, H. Doucet, ChemCatChem 2010, 2, 20; c) N. Hofmann, L. Ackermann, J. Am. Chem. Soc. 2013, 135, 5877; d) C. B. Bheeter, L. Chen, J.-F. Soulé, H. Doucet, Catal. Sci. Technol. 2016, 6, 2005; e) M. Kaloğlu, N. Kaloğlu, İ. Özdemir, ChemistrySelect 2018, 3, 5600; f) M. Kaloğlu, N. Kaloğlu, İ. Özdemir, Chin. J. Chem. 2018, 36, 837; g) M. Kaloğlu, İ. Özdemir, Tetrahedron 2018, 74, 2837; h) N. Kaloğlu,

16 of 16 WILEY-Organometallic Chemistry

M. Kaloğlu, M. N. Tahir, C. Arıcı, C. Bruneau, H. Doucet, P. H. Dixneuf, B. Çetinkaya, İ. Özdemir, *J. Organomet. Chem.* **2018**, *867*, 404.

- [13] N. Nakamura, Y. Tajima, K. Sakai, Heterocycles 1982, 17, 235.
- [14] a) Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara, M. Shimizu, *Heterocycles* 1985, 23, 2327; b) A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga, A. Miyafuji, T. Nakata, N. Tani, Y. Aoyagi, *Heterocycles* 1990, 31, 1951; c) Y. Aoyagi, A. Inoue, I. Koizumi, R. Hashimoto, A. Miyafuji, J. Kunoh, R. Honma, Y. Akita, A. Ohta, *Heterocycles* 1992, 33, 257.
- [15] a) E. David, C. Rangheard, S. Pellet-Rostaing, M. Lemaire, Synlett 2006, 13, 2016; b) E. David, S. Pellet-Rostaing, E. Lemaire, Tetrahedron 2007, 63, 8999; c) H. A. Chiong, O. Daugulis, Org. Lett. 2007, 9, 1449; d) A. Battace, M. Lemhadri, T. Zair, H. Doucet, M. Santelli, Adv. Synth. Catal. 2007, 349, 2507; e) P. Amaladass, J. A. Clement, A. K. Mohanakrishnan, Tetrahedron 2007, 63, 10363; f) F. Derridj, A. L. Gottumukkala, S. Djebbar, H. Doucet, Eur. J. Inorg. Chem. 2008, 16, 2550; g) J. Roger, F. Pozgan, H. Doucet, Green Chem. 2009, 11, 425; h) M. Kaloğlu, İ. Özdemir, V. Dorcet, C. Bruneau, H. Doucet, Eur. J. Inorg. Chem. 2017, 10, 1382.
- [16] a) M. S. McClure, B. Glover, E. McSorley, E. Millar, M. H. Osterhout, F. Roschangar, Org. Lett. 2001, 3, 1677; b) B. Glover, K. A. Harvey, B. Liu, M. J. Sharp, M. F. Tymoschenko, Org. Lett. 2003, 5, 301; c) M. Parisien, D. Valette, K. Fagnou, J. Org. Chem. 2005, 70, 7578; d) A. Battace, M. Lemhadri, T. Zair, H. Doucet, M. Santelli, Organometallics 2007, 26, 472; e) F. Pozgan, J. Roger, H. Doucet, ChemSusChem 2008, 1, 404; f) M. Kaloğlu, İ. Özdemir, Appl. Organometal. Chem. 2018, 32, e4399.
- [17] a) S. P. Nolan (Ed), N-Heterocyclic Carbenes in Synthesis, Wiley, Weinheim 2006; b) F. Glorius (Ed), Topics in Organometallic Chemistry: N-Heterocyclic Carbenes in Transition Metal Catalysis, Vol. 21, Springer, Heidelberg 2007; c) E. Peris, Chem. Rev. 2018, 118, 9988.
- [18] a) H. W. Wanzlick, H. J. Schönherr, Angew. Chem. Int. Ed. 1968, 7, 141; b) K. Öfele, J. Organomet. Chem. 1968, 12, 42.
- [19] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
- [20] W. A. Herrmann, M. Elison, J. Fischer, C. Köcher, G. R. J. Artus, Angew. Chem. Int. Ed. 1995, 34, 2371.
- [21] C. J. O'Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, *Chem. – Eur. J.* 2006, *12*, 4743.
- [22] a) N. Marion, S. P. Nolan, Acc. Chem. Res. 2008, 41, 1440; b) G.
 C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151; c) C.
 M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247;
 d) F. Glorius (Ed), N-Heterocyclic Carbenes in Transition Metal Catalysis, Springer, Berlin 2007; e) S. P. Nolan (Ed), N-Heterocyclic Carbenes in Synthesis, Wiley-VCH, NewYork 2006.
- [23] a) X. X. He, Y. Li, B. B. Ma, Z. Ke, F. S. Liu, Organometallics 2016, 35, 2655; b) R. D. J. Froese, C. Lombardi, M. Pompeo,

R. P. Rucker, M. G. Organ, Acc. Chem. Res. 2017, 50, 2244; c)
S. Karthik, T. Gandhi, Org. Lett. 2017, 19, 5486; d) W. Chen,
J. Yang, J. Organomet. Chem. 2018, 872, 24; e) H. H. Li, R. Maitra, Y. T. Kuo, J. H. Chen, C. H. Hu, H. M. Lee, Appl. Organometal. Chem. 2018, 32, e3956; f) N. Touj, N. Gürbüz,
N. Hamdi, S. Yaşar, İ. Özdemir, Inorg. Chim. Acta 2018, 78, 187; g) L. Boubakri, K. Dridi, A. A. Al-Ayed, İ. Özdemir, S. Yaşar, N. Hamdi, J. Coord. Chem. 2019, 72, 516; h) N. Kaloğlu,
İ. Özdemir, Tetrahedron 2019, 75, 2306.

- [24] Z. Şahin, Synthesis of substituted amine by metal catalysis, M. Sc. thesis, İnönü University, Malatya, 2014.
- [25] Stoe & Cie, X-AREA Version 1.18 and X-RED32 Version 1.04, Stoe & Cie, Darmstadt, Germany, 2002.
- [26] M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, J. Appl. Crystallogr. 2015, 48, 306.
- [27] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
- [28] A. L. Spek, Acta Crystallogr. D 2009, 65, 148.
- [29] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
- [30] L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 9, 955.
- [31] B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez, *Dalton Trans.* 2008, 21, 2832.
- [32] a) C.-H. Ke, B.-C. Kuo, D. Nandi, H. M. Lee, Organometallics
 2013, 32, 4775; b) J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev, C. J. O'Brien, A. Lough, M. G. Organ, Chem. Eur. J. 2010, 16, 10844; c) M. Teci, E. Brenner, D. Matt, C. Gourlaouen, L. Toupet, Dalton Trans. 2014, 43, 12251; d) G. Onar, C. Gürses, M. O. Karataş, S. Balcıoğlu, N. Akbay, N. Özdemir, B. Ateş, B. Alıcı, J. Organomet. Chem. 2019, 886, 48. eY.-C. Lin, H.-H. Hsueh, S. Kanne, L.-K. Chang, F.-C. Liu, I. J. B. Lin, G.-H. Lee, S.-M. Peng, Organometallics 2013, 32, 3859. fL. Barbu, M. M. Popa, S. Shova, M. Ferbinteanu, C. Draghici, F. Dumitrascu, Inorg. Chim. Acta 2017, 463, 97.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Kaloğlu M, Gürbüz N, Yıldırım İ, Özdemir N, Özdemir İ. Well-defined PEPPSI-themed palladium–NHC complexes: synthesis, and catalytic application in the direct arylation of heteroarenes. *Appl Organometal Chem*. 2019;e5387. https://doi.org/10.1002/aoc.5387