

Cutting-edge research for a greener sustainable future

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: G. Wang, Z. Li, C. Li and S. Zhang, Green Chem., 2020, DOI: 10.1039/D0GC03133J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/greenchem

1	View Article Online Unraveling the Cation and Anion Effects and Kinetics for Ionic EO: 10.1030/DOGC03133J
2	Catalyzed Direct Synthesis of Methyl Acrylate at Mild Condition
3	Gang Wang ^{a, b} , Zengxi Li ^{a, b*} , Chunshan Li ^{c, d*} , Suojiang Zhang ^{c, d}
4	^a School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408,
5	China
6	^b CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering,
7	Chinese Academy of Sciences, Beijing, 100190, China
8	^c State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids
9	Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190,
10	China
11	^d Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190,
12	China
13	Corresponding E-mail: zxli@ipe.ac.cn (Prof. Z.X. Li)
14	csli@home.ipe.ac.cn (Prof. C.S. Li)
15	The direct synthesis of methyl acrylate (MA) from methyl acetate and trioxane at 350-
16	380°C is regarded as a supplementary route for the industrial propylene oxidation
17	process, however, it suffers rapid catalyst deactivation. Herein, a novel ionic liquid
18	catalyzed mild liquid-phase system was developed for direct synthesis of MA from
19	methyl acetate and trioxane, where the N, O-bis(trimethylsilyl) acetamide (BSA) was
20	used as probase for α -deprotonation and enol silvl etherification of methyl acetate. The
21	trioxane decomposition to formaldehyde and methyl acetate enolization to 1-methoxy-
22	1-trimethylsilyloxyethene proceeded with the catalysis of [Cation]Cl/MCl _x (M = Cu ⁺ ,
23	Fe ³⁺ , Zn ²⁺ and Al ³⁺) and [Cation]F, respectively. The cation and anion were observed
24	to have significant effects on yield and selectivity of MA, owing to the steric hindrance,
25	acid site category and strength confirmed by pyridine probing FT-IR characterization.

/iew Article Online

As a result, up to 60.2% yield with 94.6% selectivity of MA could be achieved when (N3,3,3,3) and (N3,3,3) and (N3,3,3,3) and (N3,3,3,3) and (N3,3,3,3) and (N3,3,3,3) and (N3,3,3,3) and (N3,3,3) a

Keywords: Methyl acrylate, Ionic liquid, Aldol condensation, Liquid-phase system,
Kinetic

7 Introduction

1

2

3

4

Methyl acrylate (MA) as a very important chemical stock is widely used in the 8 field of paints, polyacrylate materials and acrylic plastics production.¹⁻³ The industrial 9 routes to MA are mainly based on two-step propylene oxidation, which includes 10 selective oxidation to acrolein first on Mo-Bi and then to acrylic acid on Mo-V catalyst, 11 and acrylonitrile hydrolysis. ⁴⁻⁷ However, the propylene oxidation process is recently 12 restricted by the gradual depletion resource of fossil oil and increase of petroleum price. 13 And the acrylonitrile hydrolysis technology needs large amounts of poisonous 14 hydrogen cyanide as raw material, leading to the production of equivalent mole of 15 ammonium sulfate wastes, which are relatively difficult to dispose.⁸ In recent years, 16 the coal-based chemicals and their downstream products, especially for formaldehyde, 17 trioxane, methyl acetate and methanol, are faced with the challenging problems of 18 19 overcapacity and commercial marketing. Hence, the development of new strategy for production of MA based on the utilization of these low-cost and well-sourced feedstock 20 has stimulated researchers' interests. 21

Aldol condensation as an effective and atom-economic reaction is widely used for

Page 3 of 31

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.

Green Chemistry

1	C-C and C=C construction. ⁹⁻¹² Since Ai reported the gaseous one-step synthesis of MA
2	from coal-based products of methyl acetate and formaldehyde (or trioxane) via aldol
3	reaction at 350-380°C, it has been paid more attention to. ¹³⁻¹⁶ Up to now, series of VPO
4	and Cs-P based acid-base bifunctional catalysts have been developed for this attractive
5	process. Feng developed a kind of VPO catalyst with high fraction of δ -VOPO ₄ entity
6	and density of medium strong acid sites, which was fabricated by employing poly
7	ethylene glycol additive, for conversion of methyl acetate and formaldehyde with the
8	highest formation rate of 19.8 μ mol g _{cat} ⁻¹ min ⁻¹ for desired acrylic acid and MA. ¹⁷ Guo
9	conducted this reaction on VPO composite and found the P/V ratio had great influence
10	on not only the physicochemical properties of catalyst, but also catalytic activity and
11	selectivity, the highest yield of MA could reach 75.9 % at 370°C when the P/V ratio
12	was 1.2. ¹⁸ Yang modified the VPO compound with zirconium element, which would
13	be distributed in the surface adjacent layers and partially incorporated into VPO species,
14	to enhance the fraction of β -VOPO ₄ and distorted entity of (VO) ₂ P ₂ O ₇ , which could
15	promote the formation rate of MA and inhibit the carbon deposition. ^{19, 20} While Zhao
16	reported a VPO supported γ -Al ₂ O ₃ catalyst and found the yield of MA could be
17	enhanced from 35% to 42% when the γ -Al ₂ O ₃ support was pre-treated with phosphoric
18	acid. ²¹ Zuo performed the reaction on VPO catalyst in the oxygen atmosphere, which
19	could efficiently inhibit carbon deposition and increase the yield and selectivity of MA.
20	²² Zhang observed the loading percentage of Cs and P elements would affect the acid-
21	base properties of Cs-P/ γ -Al ₂ O ₃ catalyst and the highest yield of MA could climb to
22	46.2% at 380°C when the Cs and P element was loaded as 5 wt.% and 10 wt.%,

~	
4	
1	
~	
\sim	
<u>~</u>	
$\overline{\Delta}$	
÷1	
~	
<i>(</i> 1 <i>)</i>	
(1	
\simeq	
2	
\circ	
\sim	
~	
1	
-	
\sim	
\cap	
\simeq	
~	
0	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
<u>_</u>	
9	
ರ	
0	
~	
<u> </u>	
~	
~	
~	
5	
õ	
ð	
Do	
. Do	
0. Dov	
20. Dov	
020. Dov	
2020. Dov	
2020. Dov	
r 2020. Dov	
er 2020. Dov	
per 2020. Dov	
ber 2020. Dov	
ober 2020. Dov	
stober 2020. Dov	
ctober 2020. Dov	
October 2020. Dov	
October 2020. Dov	
8 October 2020. Dov	
38 October 2020. Dov	
08 October 2020. Dov	
n 08 October 2020. Dov	
on 08 October 2020. Dov	
on 08 October 2020. Dov	
1 on 08 October 2020. Dov	
ed on 08 October 2020. Dov	
ied on 08 October 2020. Dov	
hed on 08 October 2020. Dov	
shed on 08 October 2020. Dov	
lished on 08 October 2020. Dov	
olished on 08 October 2020. Dov	
iblished on 08 October 2020. Dov	
ublished on 08 October 2020. Dov	
Published on 08 October 2020. Dov	
Published on 08 October 2020. Dov	

1	respectively. ²³ Jiang carried out the reaction on Cs-P/ $\gamma$ -Al ₂ O ₃ catalyst with 5 Wt. ^{View Article C}
2	and 10 wt.% P loading in fluidized bed reactor, which solved the problems of rapid
3	deactivation and regeneration of catalyst, and the yield of MA could still remain 39.5%
4	after 1000 h of lifetime evaluation. ²⁴ Zuo utilized ZSM-5 instead of $\gamma$ -Al ₂ O ₃ as support
5	to modulate the acid-base properties of Cs-P catalyst and the maximum yield of MA
6	could attain 43% at 370°C. ^{25, 26} He prepared Cs supported silica catalyst for MA
7	synthesis and conducted DFT calculation, revealing the appropriate amount of Cs was
8	required since much higher loading would lead to excessive decomposition of methyl
9	acetate and MA. ^{27, 28} Yan reported a Cs/SBA-15 catalyst with weak Lewis acid-base
10	pairs loaded on the surface, the highest yield and selectivity of MA could reach 46.0%
11	and 95.0%, respectively. ²⁹

12 Except for the VOP and Cs-P catalysts, Bao reported barium based catalysts including Ba/Al₂O₃, Ba/y-Ti-Al₂O₃ and Ba-La/Al₂O₃ for MA production, and the yield 13 could reach up to 45.1% with a selectivity of 90.2%. ³⁰⁻³² Although it has achieved 14 progress in vaporous one-step synthesis of MA from methyl acetate and trioxane (or 15 formaldehyde) via heterogeneous catalysis, the problem of rapid catalyst deactivation 16 and regeneration at high temperature still confuses the researchers. Very recently, our 17 group developed the mild liquid-phase catalytic system for direct synthesis of MA from 18 methyl acetate and trioxane (or methanol) with the highest 90.7% yield and 91.8% 19 selectivity, and found the  $\alpha$ -deprotonation of methyl acetate and trioxane 20 decomposition (or methanol dehydrogenation to formaldehyde) were the crucial steps. 21 ³³⁻³⁸ However, both of the trimethylsilyl trifluoromethanesulfonate and dibutylboryl 22

## Green Chemistry

trifluoromethanesulfonate for methyl acetate activation are not stable at lab condition
and require the experimental operation under inert atmosphere. In addition, the
generated silicon and boron wastes are difficult to recycle, and the effects of cation and
anion of ionic liquid catalyst are still unknown.

It is reported that the decomposition of trioxane can proceed with catalysis of 5 strong Lewis acid ³³⁻³⁶, and the  $\alpha$ -deprotonation and enolization of ester will undergo 6 with catalysis of fluoride ion in the presence of probase N, O-bis(trimethylsilyl) 7 acetamide (BSA)^{39, 40}. Stimulated by these discoveries, a novel and efficient ionic 8 liquid catalyzed reaction system was developed for direct synthesis of MA from methyl 9 acetate and trioxane in the presence of BSA at 25°C, which can be operated under lab 10 atmosphere. The effects of cation and anion of ionic liquid on yield and selectivity of 11 MA were investigated and demonstrated with pyridine probing FT-IR. The reaction 12 pathway for MA production was proposed based on the mechanistic experiments and 13 intermediates determined by GC-MS. Also, the kinetic studies were conducted to obtain 14 the parameters and activation barriers, which will promote to have a better 15 understanding on this new process. In addition, the ionic liquid catalyst can be recycled 16 and the silicon compounds generated during reaction can be recovered for BSA 17 18 preparation.

- 19 **Experimental**
- 20 Main materials

21 Methyl acetate (purity  $\geq$  99.0%), AgF (purity of 99.0%) and *N*, *O*-22 bis(trimethylsilyl) acetamide (BSA, purity  $\geq$  97.0%) were purchased from *J&K* 

View Article Online

Scientific Ltd., China. Dry dichloromethane (purity ≥ 99.5%) and trioxane (purity of /D0GC031333
99.5%) were provided by Xilong Chemical Co., Ltd., China. Octane (purity ≥ 99.5%)
was supported by Aladdin Industrial Co., China. All of the ionic liquids (purity ≥ 99.0%)
were supplied by Linzhou Keneng Materials Technology Co. Ltd., China. It should be
noted that the reactants used for synthesis reactions should be dehydrated by 5 Å zeolite.

6

# Preparation of ionic liquid catalysts

The fluoride-type ionic liquids ([Cation]F) were synthesized from the 7 corresponding chloride-type ionic liquids ([Cation]Cl) and AgF, and the general 8 procedure was described as follows. The aqueous AgF (1.02 eq.) solution was dropwise 9 added into the ethanol solution of [Cation]Cl (1 eq.) at room temperature under 10 vigorous stirring. Then the generated precipitates were filtered off and the filtrate was 11 placed under high vacuum at 40°C to remove the solvent. After that, the obtained crude 12 [Cation]F ionic liquid was dissolved in ethanol and then filtered off again to remove 13 the remaining AgF. Afterwards, the filtrate was placed under high vacuum at 40°C 14 again, giving the needed [Cation]F ionic liquid with required purity confirmed by ¹⁹F-15 NMR (Table S1, ESI). 16

The Lewis acid-type ionic liquids ([Cation]Cl/MCl_x,  $M = Cu^+$ ,  $Fe^{3+}$ ,  $Zn^{2+}$  and  $Al^{3+}$ ) were prepared from metal chloride and corresponding [Cation]Cl ionic liquids according to the following procedures. In a glove box, the suitable amount of metal chloride was charged into a flask, then the flask was sealed and kept in the alcohol bath under -20°C. Afterwards, the [Cation]Cl ionic liquid, which had been dried under high vacuum at 90°C for 24 h, in a needed molar ratio was added dropwise into the flask

1 under vigorous stirring and kept it for 4 h.

## 2 Synthesis reaction

The synthesis reactions for catalytic evaluation were carried out in a 50 mL round-3 bottomed flask equipped with condenser and magnetic stirrer under atmospheric 4 pressure. The air and moisture inside it should be purged out by charging N₂ before 5 adding the reagents and the reaction mixture was kept in a temperature-controlled water 6 bath. A typical reaction solution was consisted of methyl acetate, BSA, ionic liquid 7 catalyst ([Cation]F and [Cation]Cl/MCl_x) and octane which was used as the internal 8 standard for quantitative analysis. To keep the concentrations consistent, solutions for 9 synthesis reactions with other reagents were prepared to have the same concentration 10 as that of methyl acetate (0.1 mol L⁻¹). The methyl acetate in a needed molar ratio to 11 trioxane, octane and 5 wt.% ionic liquid catalyst were mixed in the solvent of CH₂Cl₂ 12 prior to being charged into the flask. Then BSA with the needed ratio to methyl acetate 13 was added dropwise into the solution under the suitable stirring speed. The product 14 samples collected periodically were qualitatively and quantitatively analyzed on MS 15 and GC part of GC-MS. The yield and selectivity of MA were defined as equations (1) 16 and (2). 17

18 Yield of MA = 
$$\frac{C_{\text{methyl acetate, }o} - C_{\text{methyl acetate, }t}}{C_{\text{methyl acetate, }o}} \times 100\%$$
 (1)

19 Selectivity of MA = 
$$\frac{C_{MA, t}}{C_{methyl acetate, o} - C_{methyl acetate, t}} \times 100\%$$
 (2)

20 Where the  $C_{\text{methyl acetate, } o}$  is the initial concentration of methyl acetate before 21 reaction,  $C_{\text{methyl acetate, } t}$  and  $C_{\text{MA, } t}$  is respect to the concentration of methyl acetate and 1 MA after reaction.

For the understanding of reaction pathway, the synthesis reaction in the absence of [Cation]Cl/MCl_x and the treatment of methyl acetate with BSA and [Cation]F in the medium of CH₂Cl₂ were also performed under similar condition. The decomposition of trioxane (0.1 mol/L) without methyl acetate catalyzed by [N3,3,3,3]Cl/MCl_x (5 wt.%) in the solvent of CH₂Cl₂ was conducted at 25°C. While the synthesis of MA from 1methoxy-1-trimethylsilyloxyethene (0.1 mol/L) and trioxane (0.1 mol/L) with catalysis of [N3,3,3,3]Cl/MCl_x (5 wt.%) in the solvent of CH₂Cl₂ was conducted at 25°C.

## 9 Product analysis and quantification

The product samples were quantitatively analyzed on GC part of GC-MS (QP 10 2020, Shimadzu) equipped with an Rtx-5MS column (30 m  $\times$  0.32 mm  $\times$  0.25  $\mu$ m) by 11 using octane as internal standard. Each component in reaction mixture was identified 12 by comparison with the standards and MS information. The initial temperature of oven 13 was 40°C and hold for 2 min, then increased to 300°C at the rate of 15°C min⁻¹ and kept 14 for 5 min. The injector and detector temperature was 300°C and 250°C. The relative 15 mass correction factor of each component to octane was obtained from the standard 16 mixture samples. For other compounds without the standard sample, it was estimated 17 with effective carbon number method. 41, 42 18

19

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.

## Characterization methods

The ¹⁹F-NMR analysis was conducted on a Bruker AVANCE instrument (600 MHz) and the spectra were recorded at ambient temperature. All of the pyridine probing FT-IR spectra were obtained from a Nicolet Fourier transform infrared 1

2

3

4

5

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.

## Green Chemistry

spectrophotometer at room temperature and the samples were prepared by MiXing
pyridine, which was firstly dried with KOH and distilled over 4 Å zeolite, with ionic
liquid catalyst in the volume ratio of 1:5 under inert atmosphere.
Results and discussion
Catalytic system evaluation
First of all, the ionic liquid catalyzed system for direct synthesis of MA from

6 methyl acetate and trioxane in liquid-phase at 25°C was constructed and evaluated, and 7 the results were shown in Table 1. Without probase BSA (Entry 1, 2 and 3), no product 8 of MA can be detected even if [N3,3,3,3]F is used in combination with 9 [N3,3,3,3]Cl/AlCl₃ ionic liquid. In the presence of BSA, there's still no MA is recorded 10 on GC-MS when [N3,3,3,3]F (Entry 4) or [N3,3,3,3]Cl/AlCl₃ (Entry 5) ionic liquid is 11 used alone. Only if the [N3,3,3,3]F is utilized with [N3,3,3,3]Cl/AlCl₃ ionic liquid in 12 the existence of BSA (Entry 6), 60.2% yield of MA is achieved with a selectivity of 13 94.6%, which is comparable to the bulk VPO catalytic system ¹⁷⁻²⁰ and much higher 14 15 than that obtained under the catalysis of Cs-P supported materials at 350-380°C²³⁻²⁹.

As reported in literatures, the trioxane should be decomposed into formaldehyde monomer, which then undergoes aldol condensation with the enolate of methyl acetate for MA production, and the fluoride ion can catalyze the cleavage of Si-O in BSA to generate the strong onium amide base, which is very efficient for  $\alpha$ -deprotonation and enol silyl etherification of ester. ^{33, 40} When the reactions were conducted in the absence of BSA (Entry 1, 2 and 3), the onium amide base would not generate for  $\alpha$ deprotonation and enol silyl etherification of methyl acetate, so the aldol condensation

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.

10

11

1	between formaldehyde and the enolate of methyl acetate for production of MA could
2	not proceed. Very similarly, the onium amide base will not produce without catalysis
3	of [N3,3,3,3]F (Entry 5), despite the BSA exists in the reaction system and
4	formaldehyde monomer will generate with catalysis of [N3,3,3,3]Cl/AlCl ₃ . Although
5	the strong onium base will form with the catalysis of [N3,3,3,3]F for $\alpha$ -deprotonation
6	and enol silyl etherification of methyl acetate (Entry 4), the trioxane unit can't undergo
7	aldol condensation with the enolate of methyl acetate. Therefore, the [N3,3,3,3]F must
8	be used in combination with $[N3,3,3,3]Cl/AlCl_3$ ionic liquid in the presence of BSA for
9	production of MA.

Table 1. Catalytic system evaluation for MA synthesis from methyl acetate and trioxane ^a

+ 1/3 0 0	

Entry	Ionic liquid catalyst ^b	probase	Yield of MA /%	Selectivity of MA /%
1	[N3,3,3,3]F	-	0	-
2	[N3,3,3,3]Cl/AlCl ₃	-	0	-
3	[N3,3,3,3]F and [N3,3,3,3]Cl/AlCl ₃	-	0	-
4	[N3,3,3,3]F	BSA	0	-
5	[N3,3,3,3]Cl/AlCl ₃	BSA	0	-
6	[N3,3,3,3]F and [N3,3,3,3]Cl/AlCl ₃	BSA	60.2	94.6

^{*a*} Reaction condition: 0.1 mol/L trioxane, methyl acetate and BSA ( $n_{trioxane}$ :  $n_{methyl acetate}$ :  $n_{BSA} = 1:1:1$ ) 12

in 20 mL CH₂Cl₂ with 5 mol.% of catalyst at 25°C for 3 h. 13

14 ^b The fraction of AlCl₃ in [Cation]Cl/AlCl₃ ionic liquid is 67 mol.%.

## Effects of cation of [Cation]F and [Cation]Cl/AlCl₃ ionic liquids 15

The studies on fluoride ion catalyzed probase method for  $\alpha$ -deprotonation of ester 16

conducted by Teng and Kondo revealed the cation in generated onium amide base 1 would affect the yield and selectivity of product. ^{39, 43} Thus, the effects of cation in 2 fluoride and Lewis acid-type ionic liquids were investigated and the cation in these two 3 kinds of ionic liquids were kept the same to ensure the unambiguous result analysis. In 4 this part of work, three types of cation including N, N-disubstituted imidazolium, N-5 substituted pyridine and quaternary ammonium were selected for this catalytic system 6 and the results were shown in Fig. 1. 7



8

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.

Fig. 1. Effects of cation of [Cation]F and [Cation]Cl/AlCl₃ ionic liquids on catalytic performance 9 at the reaction condition of 0.1 mol/L trioxane, methyl acetate and BSA (n_{trioxane}: n_{methyl acetate}: n_{BSA} 10 = 1:1:1) in 20 mL CH₂Cl₂, 5 mol.% of [Cation]F and [Cation]Cl/AlCl₃ (with 67 mol.% AlCl₃) 11 12 ionic liquids, 25°C, 3 h. The full names of cation abbreviated in the figure are as follows: [EMIM] 13 (1-Ethyl-3-methylimidazolium), [PMIM] (1-Propyl-3-methylimidazolium), [BMIM] (1-Butyl-3methylimidazolium), [HMIM] (1-Hexyl-3-methylimidazolium), [EPY] (N-ethylpyridinium), 14 [BPY] (*N*-butylpyridinium), [HPY] (*N*-hexylpyridinium), [OPY] (*N*-octylpyridinium), [N2,2,2,2] 15 16 (Tetraethyl ammonium), [N3,3,3,3] (Tetrapropyl ammonium), [N4,4,4,4] (Tetrabutyl ammonium), 17 [N8,8,8,8] (Tetraoctyl ammonium) As it can be seen that the cation of [Cation]F and [Cation]Cl/AlCl₃ ionic liquids 18 19 has significant influence on the yield and selectivity of MA. And it also reveals a very

## Green Chemistry

**Green Chemistry Accepted Manuscript** 

View Article Online

methyl acetate increase first to the maximum value and then decrease with the extension 1 of substituted alkyl chain length. The catalytic performance of these cation series on 2 MA production follow the order of N-substituted pyridine < N, N-disubstituted 3 imidazolium < quaternary ammonium. Among the cation tested, the [N3,3,3,3] 4 exhibited the highest performance with the 60.2% yield and 94.6% selectivity towards 5 MA. However, the conversion of trioxane is not affected by the cation, indicating the 6 trioxane decomposition is determined by the anion of [Cation]Cl/AlCl₃ that exhibits 7 strong Lewis acidity. 8

It has been confirmed the activation and breakage of Si-O bond in BSA undergoes 9 with the catalysis of [Cation]F, generating the acetamide anion which interacts with the 10 cation to form onium amide base. Although the catalytic activity of [Cation]F derives 11 from the fluoride ion, the steric hindrance and molecular voidage of cation will increase 12 with the extension of substituted alkyl chain length, ⁴⁴⁻⁴⁶ which will enhance the 13 capacity of BSA molecules in ionic liquid clusters and promote the interaction with 14 catalytic centers. As a result, the transformation of BSA into onium amide base can be 15 accelerated, contributing to the  $\alpha$ -deprotonation and enol silvl etherification of methyl 16 acetate. However, the further extension of alkyl chain length will increase the steric 17 18 hindrance of onium amide base, leading to the inhibition of  $\alpha$ -deprotonation of methyl acetate to enolate for the followed aldol reaction between the enolate of methyl acetate 19 and formaldehyde. This explanation is consistent with the experimental fact that the 20 yield of 1-methoxy-1-trimethylsilyloxyethene produced from the enol silyl 21 etherification of methyl acetate is affected by the steric hindrance of cation in [Cation]F 22

## Green Chemistry

View Article Online

ionic liquid (Table S2, ESI). So it can be concluded that the cation with suitable steric
hindrance can not only conduce to the generation of onium amide base from BSA, but
also promote the enol silyl etherification of methyl acetate.

# 4 Effects of metal ion in [N3,3,3,3]Cl/MCl_x ionic liquid

It has been believed that when [Cation]Cl ionic liquid was mixed with metal 5 chloride, the [Cation]Cl/MCl_x shows Lewis acidity, however, the strength will be 6 affected by the metal ion. ⁴⁰ Herein, series of  $[N3,3,3,3]Cl/MCl_x$  (M = Cu⁺, Fe³⁺, Zn²⁺ 7 and  $Al^{3+}$ ) ionic liquid with 67 mol.% metal chloride was used in combination with 8 [N3,3,3,3]F for catalytic synthesis of MA from methyl acetate and trioxane, and the 9 results were shown in Fig. 2. Also, the decomposition of trioxane to formaldehyde 10 catalyzed by these four ionic liquids without methyl acetate were conducted and the 11 results were summarized in Table S3 (ESI). The catalytic performance of these ionic 12 liquid series on both trioxane decomposition and MA production can be ranked as 13  $[N_{3,3,3,3}]Cl/CuCl < [N_{3,3,3,3}]Cl/FeCl_{3} < [N_{3,3,3,3}]Cl/ZnCl_{2} < [N_{3,3,3,3,3}]Cl/AlCl_{3}.$ 14 In addition, the catalytic activity of these ionic liquids on synthesis of MA from 1-15 methoxy-1-trimethylsilyloxyethene, which is the enolate of methyl acetate, and 16 17 trioxane follows the same trend, which is shown in Table S4 (ESI).

100

80

60

40

20

0

[N3,3,3,3]CV/CuCl

Yield or Selectivity of MA /%



[N3,3,3,3]CI/AICI3

View Article Online DOI: 10.1039/D0GC03133J



Lewis acid-type [N3,3,3,3]Cl/MCl_ ionic liquid

[N3,3,3,3]CIFeCI3

Fig. 2. Effects of metal ion in [N3,3,3,3]Cl/MClx on catalytic performance at the reaction condition of 0.1 mol/L trioxane, methyl acetate and BSA in 20 mL CH₂Cl₂, 5 mol.% of [N3,3,3,3]F and [N3,3,3,3]Cl/MCl_x with 67 mol.% MCl_x, 25°C, 3 h.

To interpret this observed experimental phenomenon, the pyridine probing FT-IR 5 6 characterization was conducted to measure the acid properties of these ionic liquid series and the results were presented in Fig. 3. It can be found that [N3,3,3,3]Cl/AlCl₃ 7 and [N3,3,3,3]Cl/CuCl have both Brønsted and Lewis acid sites, however, 8 [N3,3,3,3]Cl/FeCl₃ and [N3,3,3,3]Cl/ZnCl₂ have only Lewis acid sites. By comparing 9 the Lewis acid site densities of these four ionic liquids, it follows the order of 10  $[N3,3,3,3]Cl/CuCl < [N3,3,3,3]Cl/FeCl_3 < [N3,3,3,3]Cl/ZnCl_2 < [N3,3,3,3]Cl/AlCl_3,$ 11 12 which agrees with the trend of catalytic performance. Although the Brønsted acid sites in [N3,3,3,3]Cl/AlCl₃ and [N3,3,3,3]Cl/CuCl ionic liquids are also effective for the 13 decomposition of trioxane into formaldehyde, it has no catalytic activity on 14 condensation of 1-methoxy-1-trimethylsilyloxyethene with formaldehyde to produce 15 MA. Similar results were also obtained in the aldol condensation between methyl 16 acetate and benzaldehyde. ⁴⁰ Thus, it can be concluded that the Lewis acid-type 17

1 2

3

4

6

## Green Chemistry

- [N3,3,3,3]Cl/MCl_x ionic liquid can catalyze not only the decomposition of trioxane into  $\frac{DOI:10.1039}{DOGC03133J}$ 1
- formaldehyde, but also the condensation between the enolate of methyl acetate (1-2
- methoxy-1-trimethylsilyloxyethene) and formaldehyde to produce MA. And the metal 3
- ion in  $[N3.3.3.3]Cl/MCl_x$  will affect the Lewis acid site density, which is required for 4
- this catalytic system. 5



7 Fig. 3. Pyridine probing FT-IR spectra of [N3,3,3,3]Cl/MCl_x ionic liquid with 67 mol.% of MCl_x  $(M = Cu^+, Fe^{3+}, Zn^{2+} and Al^{3+})$ 8

## Effects of anion species in [N3,3,3,3]Cl/AlCl₃ ionic liquid 9

10 As reported by Kou that the anion species existing in [Bmim]Cl/AlCl₃ ionic liquid and the Lewis acid strength would be affected by the molar fraction of  $AlCl_3$ , changing 11 from AlCl₄⁻ to Al₂Cl₇⁻ with the molar fraction increasing from 50% to 67%. ⁴⁷ To 12 investigate the effects of anion species on catalytic activity, the [N3,3,3,3]Cl/AlCl₃ 13 ionic liquid with 50 mol.%, 55 mol.%, 60 mol.% and 67 mol.% of AlCl₃ were prepared 14 for catalytic synthesis of MA from methyl acetate and trioxane. It can be seen from Fig. 15 4 that both of the trioxane decomposition and MA production can be promoted by 16 increasing the molar fraction of AlCl₃ from 50% to 67%, revealing the anion species of 17

## View Article Online DOI: 10.1039/D0GC03133J



# **Fig. 4.** Effects of molar fraction of AlCl₃ in [N3,3,3,3]Cl/AlCl₃ on catalytic performance at the reaction condition of 0.1 mol/L trioxane, methyl acetate and BSA in 20 mL CH₂Cl₂, 5 mol.% of [N3,3,3,3]F and [N3,3,3,3]Cl/AlCl₃, 25°C, 3 h.

Then the pyridine probing FT-IR characterization for these [N3,3,3,3]Cl/AlCl₃ 6 7 ionic liquids with different molar fraction of AlCl₃ were performed and the results were presented in **Fig. 5**. It unravels that with the increasing molar fraction of  $AlCl_3$ , the peak 8 for the coordination of pyridine at the position of Lewis acid sites shifts to higher 9 10 wavenumber, suggesting their interaction becomes more intense at higher molar fraction, namely the Lewis acidity of Al₂Cl₇⁻ is much stronger than that of AlCl₄⁻. 11 it can be considered that the predominant anion species in 12 Therefore, [N3,3,3,3]Cl/AlCl₃ affected by the molar fraction of AlCl₃ has significant effects on 13 both trioxane decomposition and MA production, owing to the change in strength of 14 Lewis acidity. And the anion species of Al₂Cl₇, which exhibits stronger Lewis acidity, 15 shows higher catalytic performance. Similar phenomenon can be observed by 16 comparing the reported results of silvl enol ether with boron enol ether reaction system. 17

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.

1

2 3

4

5

# $Al_2Cl_7$ shows much higher activity than that of $AlCl_4$ .

33-36

1

2



## 3 Fig. 5. Pyridine probing FT-IR spectra of [N3,3,3,3]Cl/AlCl₃ with different molar fraction of AlCl₃

## 4 **Reaction pathways**

As mentioned above, the trioxane should be decomposed into formaldehyde 5 monomer before proceeding condensation with the enolate of methyl acetate to form 6 MA. When the reaction was conducted with the catalysis of [Cation]F, no formaldehyde 7 and MA were detected, but the 1-methoxy-1-trimethylsilyloxyethene as enolate of 8 methyl acetate and N-trimethylsilyl acetamide were recorded on GC-MS (MS 9 information are provided in ESI). Only [Cation]F was used in combination with 10 [Cation]Cl/MCl_x, the formaldehyde and MA generated. Actually, the [Cation]Cl/MCl_x 11 12 with Lewis acidity is also effective for trioxane decomposition except for protonic acid (Table S3). In addition, the reaction between 1-methoxy-1-trimethylsilyloxyethene and 13 trioxane with catalysis of  $[N_{3,3,3,3}]Cl/MCl_x$  in the medium of  $CH_2Cl_2$  can also gave 14 the product of MA with almost 100% selectivity after 2.5 h (Table S4). The GC-MS 15 analysis for the components in the terminal reaction mixture showed the reaction 16

provided in ESI). 4

1

2

5

6 7

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.



methyl acetate and trioxane in mild liquid-phase

On the basis of these above experimental findings and confirmed substrates, the 8 reaction pathway for MA production in this mild liquid-phase catalytic system was 9 proposed as Scheme 1. The probase of BSA is firstly transformed into the strong onium 10 amide base with catalysis of [Cation]F, followed by the  $\alpha$ -deprotonation of methyl 11 acetate to onium enolate and generation of N-trimethylsilyl acetamide. ^{39, 43} The highly 12 active onium enolate will transform to 1-methoxy-1-trimethylsilyloxyethene through 13 the interaction with trimethylsilyl group, during which the [Cation]F can be recycled. 14 Meanwhile, the trioxane is decomposed into three units of formaldehyde with catalysis 15 of [Cation]Cl/MCl_x. Then the [Cation]Cl/MCl_x catalyzed condensation between the 16 generated formaldehyde and 1-methoxy-1-trimethylsilyloxyethene, which is also called 17 as Mukaiyama reaction, proceeds to produce MA and trimethylsilanol. While the 18 generated trimethylsilanol will undergo transesterification with methyl acetate and 19

methyl acrylate, leading to the consumption of reactant and decrease in selectivity of 1 MA. Among all these steps, the trioxane decomposition, onium amide base generation 2 and methyl acetate deprotonation are significantly crucial for the formation of MA in 3 this mild liquid-phase reaction system as we considered. 4

**Kinetic studies** 5

With the understanding of cation and anion effects on catalytic performance of 6 [Cation]F and [Cation]Cl/MCl_x-type ionic liquids, the kinetic studies on this whole 7 transformative process was conducted. As described in Scheme 1, the main reaction 8 networks include generation of onium base, enolization of methyl acetate to 1-methoxy-9 1-trimethylsilyloxyethene, decomposition of trioxane into formaldehyde monomer, and 10 condensation between 1-methoxy-1-trimethylsilyloxyethene and formaldehyde to MA. 11 To simplify the kinetic investigation, the trioxane decomposition into formaldehyde 12 without methyl acetate was carried out separately. It has reached a general agreement 13 that the trioxane observes a two-step decomposition mechanism on either Brønsted or 14 Lewis acid sites, namely the C-O activation caused ring opening and formation of a 15 linear trioxymethylene intermediate, followed by further decomposition into three 16 formaldehyde units. ^{33, 48} Fig. 6a shows the concentration evolution of trioxane during 17 decomposition reaction without methyl acetate at 20-35°C, which fits the first-order 18 model well in the region of acceptable deviation less than 5%, and the corresponding 19 rate constants are summarized in **Table 2**. The pre-exponential factor and activation 20 barrier of trioxane decomposition can be calculated as  $1.80 \times 10^5$  min⁻¹ and  $41.2 \pm 0.3$ 21 kJ mol⁻¹ from the Arrhenius plot, as shown in Fig. 6b. Compared with the activation 22

barrier of 120.1 kJ mol⁻¹ obtained in concentrated hydrochloric solution, ⁴⁹ it can be 1

- 3 for the trioxane decomposition into formaldehyde, which will provide supplementary
- reference in the research field of trioxane decomposition. 4



Fig. 6. Concentration evolution of trioxane (a) and Arrhenius plot (b) for kinetic investigation of trioxane decomposition at the reaction condition of 0.1 mol/L trioxane in 20 mL CH₂Cl₂ and 5 mol.% of [N3,3,3,3]Cl/AlCl₃ with 67 mol.% AlCl₃

Table 2 Rate constants of trioxane decomposition at 20-	-35°C
---------------------------------------------------------	-------

T /ºC	Kinetic equation	Rate constant $(k_1) \times 10^3 / (\min^{-1})$
20	$\ln \left( C_{\text{Trioxane, initial}} / C_{\text{Trioxane, }t} \right) = (8.13 \pm 0.05) \times 10^{-3} t$	$8.13 \pm 0.05$
25	ln ( $C_{\text{Trioxane, initial}}/C_{\text{Trioxane, }t}$ ) = (10.80 ± 0.05) ×10 ⁻³ t	$10.80\pm0.06$
30	ln ( $C_{\text{Trioxane, initial}}/C_{\text{Trioxane, }t}$ ) = (14.21 ± 0.10) ×10 ⁻³ t	$14.21 \pm 0.10$
35	ln ( $C_{\text{Trioxane, initial}}/C_{\text{Trioxane, }t}$ ) = (18.53 ± 0.19) ×10 ⁻³ t	$18.53 \pm 0.19$

5

6

7

8

9



1 2

3

Published on 08 October 2020. Downloaded on 10/11/2020 2:32:48 AM.

Scheme 2. Proposed elemental steps for direct synthesis of MA from methyl acetate and trioxane with catalysis of [N3,3,3,3]F and [N3,3,3,3]Cl/AlCl₃ in the presence of BSA

4 Based on the kinetic studies on trioxane decomposition and the reaction pathways illustrated in Scheme 1, the elemental steps including trioxane decomposition (1-1), 5 onium amide base generation (1-2), methyl acetate enolization (1-3 and 1-4), aldol 6 condensation (1-5) and transesterification (1-6 and 1-7) were proposed in Scheme 2. In 7 addition, the steps of onium amide base generation, methyl acetate enolization and 8 transesterification were considered as reversible. Compared with the much slower 9 condensation between 1-methoxy-1-trimethylsilyloxyethene and formaldehyde, both of 10 onium amide base generation and methyl acetate enolization steps, which are also 11

- View Article Online involved in highly active intermediates of **D**, **E** and **G**, are regarded as fast equilibrium. 1
- So the equilibrium equations can be expressed as (3)-(5) according to the steady state 2
- 3 theory.

4

6

7

8

9

10

11

12

14

$$C_{\rm D}C_{\rm E} = K_2 C_{\rm C} \tag{3}$$

$$5 C_{\rm G}C_{\rm H} = K_3 C_{\rm D} C_{\rm F} (4)$$

$$C_{\rm I} = K_4 C_{\rm E} C_{\rm G} \tag{5}$$

So the concentration of intermediate I can be expressed by equation (6).

$$C_{\rm I} = \frac{K_2 K_3 K_4 C_{\rm C} C_{\rm F}}{C_{\rm H}} \tag{6}$$

Then the governing series of design equations can be obtained from (7) to (16).

$$\frac{\mathrm{d}C_{\mathrm{A}}}{\mathrm{d}t} = -k_1 C_{\mathrm{A}} \tag{7}$$

$$\frac{dC_{\rm B}}{dt} = 3k_1 C_{\rm A} - \frac{k_5 K_2 K_3 K_4 C_{\rm B} C_{\rm C} C_{\rm F}}{C_{\rm H}}$$
(8)

$$\frac{\mathrm{d}C_{\mathrm{C}}}{\mathrm{d}t} = -\frac{k_5 K_2 K_3 K_4 C_{\mathrm{B}} C_{\mathrm{C}} C_{\mathrm{F}}}{C_{\mathrm{H}}} \tag{9}$$

13 
$$\frac{\mathrm{d}C_{\mathrm{F}}}{\mathrm{d}t} = -\frac{k_{5}K_{2}K_{3}K_{4}C_{\mathrm{B}}C_{\mathrm{C}}C_{\mathrm{F}}}{C_{\mathrm{H}}} - k_{6}C_{\mathrm{F}}C_{\mathrm{K}} + k_{-6}C_{\mathrm{L}}C_{\mathrm{M}}$$
(10)

$$\frac{\mathrm{d}C_{\mathrm{H}}}{\mathrm{d}t} = \frac{k_5 K_2 K_3 K_4 C_{\mathrm{B}} C_{\mathrm{C}} C_{\mathrm{F}}}{C_{\mathrm{H}}} \tag{11}$$

15 
$$\frac{dC_J}{dt} = \frac{k_5 K_2 K_3 K_4 C_B C_C C_F}{C_H} - k_7 C_J C_K + k_{-7} C_M C_N$$
(12)

16 
$$\frac{dC_{\rm K}}{dt} = \frac{k_5 K_2 K_3 K_4 C_{\rm B} C_{\rm C} C_{\rm F}}{C_{\rm H}} - k_6 C_{\rm F} C_{\rm K} + k_{-6} C_{\rm L} C_{\rm M} - k_7 C_{\rm J} C_{\rm K} + k_{-7} C_{\rm M} C_{\rm N} (13)$$

17 
$$\frac{dC_{\rm L}}{dt} = k_6 C_{\rm F} C_{\rm K} - k_{-6} C_{\rm L} C_{\rm M}$$
(14)

18 
$$\frac{dC_M}{dt} = k_6 C_F C_K - k_{-6} C_L C_M + k_7 C_J C_K - k_{-7} C_M C_N$$
(15)

1

$$\frac{dC_{\rm N}}{dt} = k_7 C_{\rm J} C_{\rm K} - k_{-7} C_{\rm M} C_{\rm N}$$
(16)

9





Fig. 7. Concentration evolution of methyl acetate (a) and MA (b) over reaction time at the reaction
 condition of 0.1 mol/L trioxane, methyl acetate and BSA in 20 mL CH₂Cl₂, 5 mol.% of
 [N3,3,3,3]F and [N3,3,3,3]Cl/AlCl₃, 20-35°C.

It can be seen from **Fig. 7** that the concentrations of methyl acetate at 20-35°C decrease rapidly in 140 min and then the tendency becomes slower. For the concentration of MA, it increase fast before 140 min at 20°C and 25°C, and then the trend becomes stable. However, it appears a peak value and then decrease over reaction time at 30°C and 35°C, due to the transesterification with trimethylsilanol. According to the equilibrium and rate constants presented in **Table 3**, it can be concluded that the generation of onium amide base and deprotonation of methyl acetate are both

View Article Online

endothermic, while the formation of 1-methoxy-1-trimethylsilyloxyethene is 1 exothermic. In addition, the transesterification of methyl acetate with trimethylsilanol 2 is easier than that of MA due to the electron donor effect of C=C bonds in MA. By 3 comparing the experimentally detected concentrations with the calculated data from 4 kinetic model, the deviation is less than acceptable 5%, suggesting the established 5 model and obtained parameters should be believable at the temperatures from 20°C to 6 35°C and reaction time before 180 min. 7

0
0

		1		
Temperature /ºC Parameter	20	25	30	35
$k_1 \times 10^3 / (\min^{-1})$	$8.13\pm0.05$	$10.80\pm0.06$	$14.21\pm0.10$	$18.53\pm0.19$
$K_2 \times 10^2$	$8.39\pm0.08$	$8.82 \pm 0.11$	$9.26\pm0.10$	$9.71\pm0.09$
$K_3$	$0.54 \pm 0.01$	$0.55\pm0.01$	$0.57\pm0.02$	$0.59\pm0.01$
$K_4$	$1.80\pm0.02$	$1.65\pm0.01$	$1.52 \pm 0.01$	$1.40\pm0.01$
$k_5 \times 10^2 / (L \text{ mol}^{-1} \text{ min}^{-1})$	$5.16\pm0.06$	$6.60\pm0.09$	$8.36 \pm 0.13$	$10.52 \pm 0.11$
$k_6 \times 10^3 / (L \text{ mol}^{-1} \text{ min}^{-1})$	$4.40\pm0.05$	$6.80\pm0.10$	$10.35\pm0.18$	$15.57\pm0.31$
$k_{-6} \times 10^3 / (L \text{ mol}^{-1} \text{ min}^{-1})$	$5.87\pm0.08$	$8.65\pm0.10$	$12.59 \pm 0.19$	$18.10 \pm 0.31$
$k_7 \times 10^3 / (L \text{ mol}^{-1} \text{ min}^{-1})$	$3.29\pm0.04$	$5.21\pm0.07$	8.13 ± 0.15	$12.49\pm0.19$
$k_{-7} \times 10^3 / (L \text{ mol}^{-1} \text{ min}^{-1})$	$5.06 \pm 0.09$	$7.66 \pm 0.11$	$11.43 \pm 0.21$	$16.84\pm0.32$

Table 3 The obtained kinetic parameters at 20-35°C

Green Chemistry Accepted Manuscript

With these rate and equilibrium constants at different temperatures in hand, the 9 activation barriers and enthalpies of related reaction steps can be calculated from 10 Arrhenius and Van't Hoff plots, which are shown in **Fig. 8** and **Table 4**. It reveals that 11 the thermal effects of these equilibrium reactions are relatively small due to the low 12 enthalpy, which is also consistent with the fact of room-temperature reaction. 13 14 Compared with the trioxane decomposition and condensation steps, the transesterification of methyl acetate and MA with trimethylsilanol show higher 15 activation barrier. With these kinetic and thermodynamic informatics, this novel ionic 16 24

liquid catalyzed mild liquid-phase system for direct synthesis of MA from methyl 1

acetate and trioxane can be understood in more details. Besides, it will be regarded as

- a reference for the new catalyst design and catalytic system development in this 3
- research area. 4

2

5 6

7



Fig. 8. Arrhenius (a) and Van't Hoff (b) plot for calculation of activation barrier and enthalpy

Reaction step	Pre-exponential factor	Activation barrier /(kJ mol-	Enthalpy /(kJ mol-
		1)	1)
A→B	1.80×10 ⁵ min ⁻¹	$41.2\pm0.3$	-
$C \leftrightarrow D + E$	1.68	-	$7.3\pm0.2$
$D + F \leftrightarrow G + H$	3.01	-	$4.2 \pm 0.4$
$E + G \leftrightarrow I$	1.02×10-2	-	$-12.6 \pm 0.3$
$B + I \rightarrow J + K$	1.15×10 ⁵ L mol min ⁻¹	$35.6\pm0.6$	-
$F + K \rightarrow L + M$	8.22×10 ⁸ L mol min ⁻¹	$63.2 \pm 1.1$	-
$L + M \rightarrow F + K$	6.42×107 L mol min-1	$56.3 \pm 0.8$	-
$J + K \rightarrow M + N$	2.56×109 L mol min-1	$66.7\pm0.7$	-
$M + N {\rightarrow} J + K$	2.62×10 ⁸ L mol min ⁻¹	$60.1\pm0.9$	-

# Table 4 Activation barrier, pre-exponential factor and enthalpy of related reaction steps

### **Recycling test of ionic liquids** 8

After the reaction, the mixture of [N3,3,3,3]F and [N3,3,3,3]Cl/AlCl₃ catalysts can 9 be separated and recovered through high reduced pressure distillation method, owing 10 to the special property of ultralow vapour pressure of ionic liquids. Then the catalyst 11

View Article Online

mixture was recycled for synthesis reaction and the catalytic activity can still remain 1 80% of the fresh one after ten times' reuse, which is shown in **Fig. 9**. And the generated 2 silicon compounds of N-trimethylsilyl acetamide and trimethylsilanol can be reused for 3 synthesis of BSA, ⁵⁰ despite it has not been conducted in this work. Compared with the 4 *in-situ* generated ionic liquid catalyzed liquid-phase system, ³³⁻³⁶ the catalyst and 5 activation reagent of methyl acetate, namely the probase BSA, can be recycled, 6 although the yield of MA achieved in this work is lower. 7



Fig. 9. Recycling test of [N3,3,3,3]F and [N3,3,3,3]Cl/AlCl₃ ionic liquids at the reaction condition 9 10 of 0.1 mol/L trioxane, methyl acetate and BSA in 20 mL CH₂Cl₂, 5 mol.% of [N3,3,3,3]F and [N3,3,3,3]Cl/AlCl₃, 25°C. 11

## Conclusion 12

8

In this work, an ionic liquid catalyzed mild liquid-phase system was developed for 13 direct synthesis of MA from methyl acetate and trioxane, during which the 14 15 decomposition of trioxane into formaldehyde and deprotonation of methyl acetate proceeded with catalysis of [Cation]F and [Cation]Cl/MCl ( $M = Cu^+$ , Fe³⁺, Zn²⁺ and 16 Al³⁺) ionic liquid, respectively. Both of cation and anion of ionic liquid have significant 17 effects on yield and selectivity of MA, resulting from the steric hindrance, Lewis acid 18

26

## Green Chemistry

site density and strength. The side reactions of transesterification between methyl 1 acetate (or MA) with generated trimethylsilanol will decrease the yield and selectivity 2 of MA. As a result, up to 60.2% yield with 94.6% selectivity toward MA was achieved 3 by using [N3,3,3,3]F and [N3,3,3,3]Cl/AlCl₃ with 67 mol.% AlCl₃ in the presence of 4 BSA at 25°C. The kinetic studies revealed the activation barrier of trioxane 5 decomposition  $(41.2 \pm 0.3 \text{ kJ mol}^{-1})$  was higher than that of condensation between 1-6 methoxy-1-trimethylsilyloxyethene and formaldehyde (35.6 kJ mol⁻¹), indicating the 7 production of MA was determined by formaldehyde generation. 8

Acknowledgements 9

For this study, we need to thank the financial support of Key Research Program of 10 Frontier Sciences, CAS (No. QYZDB-SSW-SLH022), National Natural Science 11 Foundation of China (No. 21878293, 21676270), Innovation Academy for Green 12 Manufacture, Chinese Academy of Sciences (No. IAGM-2019-A14) and the K. C. 13 Wong Education Foundation (No. GJTD-2018-04). 14

**Notes and References** 15

1 X. Miao, C. Fischmeister, P. H. Dixneuf, C. Bruneau, J. -L. Dubois and J. -L. 16 Couturier, Green Chem., 2012,14, 2179. 17

18 2 A. Rybak and M. A. R. Meier, Green Chem., 2007, 9, 1356.

3 K. M. Meek, T. R. Eaton, N. A. Rorrer, D. G. Brandner, L. P. Manker, E. M. Karp, 19

- M. J. Biddy, A. D. Bratis, G. T. Beckham and A. K. Naskar, *Green Chem.*, 2018, 20 **20**, 5299. 21
- 4 Z. Zhai, B. G. Andrew and A. T. Bell, J. Catal., 2013, 308, 25. 22

1	^{View Article Online} 5 L. L. Zhou, L. Wang, S. J. Zhang, R. Y. Yan and Y. Y. Diao, J. Catal., 2013, 329, 329,
2	431.
3	6 B. Y. Jo, S. S. Kum and S. H. Moon, Appl. Catal. A: Gen., 2010, 378, 76.
4	7 M. Haecker, S. Wrabetz, J. Kronert, LI. Csepei, R. Naumann d'Alnoncourt, Y. V.
5	Kolen'ko, F. Girgsdies, R. Schlol and A. Trunschke, J. Catal., 2012, 285, 48.
6	8 R. Wilczynski and J. J. Juliette, Kirk-Othmer Encyclopedia of Chemical Technology,
7	Hoboken Inc., 2006, 227.
8	9 A. L. Zhu, T. Jiang, D. Wang, B. X. Han, L. Liu, J. Huang, J. C. Zhang and D. H.
9	Sun, Green Chem., 2005, 7, 514.
10	10 H. L. Fan, Y. Y. Yang, J. L. Song, G. D. Ding, C. Y. Wu, G. Y. Yang and B. X.
11	Han, Green Chem., 2014, 16, 600.
12	11 R. Mestres, Green Chem., 2004, 6, 583.
13	12 P. N. Davey, S. A. Forsyth, H. Q. N. Gunaratne, C. Hardacre, A. McKeown, S. E. J.
14	McMath, D. W. Rooney and K. R. Seddon, Green Chem., 2005, 7, 224.
15	13 Y. Traa, Chem. Commun., 2010, 46, 2175.
16	14 M. Ai, Appl. Catal. A Gen., 1990, 63, 365.
17	15 M. Ai, J. Catal., 1988, <b>112</b> , 194.
18	16 M. Ai, J. Catal., 1987, 107, 201.
19	17 X. Z. Feng, B. Sun, Y. Yao, Q. Su, W. J. Ji and CT. Au, J. Catal., 2014, 314, 132.
20	18 X. P. Guo, D. Yang, C. C. Zuo, Z. J. Peng, C. S. Li and S. J. Zhang, Ind. Eng. Chem.
21	<i>Res.</i> , 2017, <b>56</b> , 5860.
22	19 D. Yang, C. Sararuk., H. Wang, S. J Zhang, Z. X. Li and C. S. Li, Ind. Eng. Chem.
	28

28

	View Article Online
1	<i>Res.</i> , 2018, <b>57</b> , 93.
2	20 D. Yang, G. Wang, H. Wu, X. P. Guo, S. J. Zhang, Z. X. Li and C. S. Li, Catal.
3	<i>Today</i> , 2018, <b>316</b> , 122.
4	21 H. Zhao, C. C. Zuo, D. Yang, C. S. Li and S. J. Zhang, Ind. Eng. Chem. Res., 2016,
5	<b>55</b> , 12693.
6	22 C. C. Zuo, T. T. Ge, G. Wang, X. P. Guo, C. S. Li and S. J. Zhang, Chem. Eng.
7	<i>Technol.</i> , 2018, <b>41</b> , 1331.
8	23 G. L. Zhang, H. H. Zhang, D. Yang, C. S. Li, Z. J. Peng and S. J. Zhang, Catal. Sci.
9	<i>Technol.</i> , 2016, <b>6</b> , 6417.
10	24 S. F. Jiang, C. S. Li, H. N. Chen, D. Yang and S. J. Zhang, Ind. Eng. Chem. Res.,
11	2017, <b>56</b> , 9322.
12	25 C. C. Zuo, T. T. Ge, X. P. Guo, C. S. Li and S. J. Zhang, Micropor. Mesopor. Mat.,
13	2018, <b>256</b> , 58.
14	26 C. C. Zuo, C. S. Li, T. T. Ge, X. P. Guo and S. J. Zhang, Can. J. Chem. Eng., 2017,
15	<b>95</b> , 2104.
16	27 T. He, Y. X. Qu and J. D. Wang, Catal. Lett., 2019, 149, 373.
17	28 T. He, Y. X. Qu and J. D. Wang, Ind. Eng. Chem. Res., 2018, 57, 2773.
18	29 J. B. Yan, C. L. Zhang, C. L. Ning, Y. Tang, Y. Zhang, L. L. Chen, S. Gao, Z. L.
19	Wang and W. X. Zhang, J. Ind. Eng. Chem., 2015, 25, 344.
20	30 Q. Bao, T. T. Bu, J. B. Yan, C. L. Zhang, C. L. Ning, Y. Zhang, M. M. Hao, W. X.
21	Zhang and Z. L. Wang, Catal. Lett., 2017, 147, 540.
22	31 Q. Bao, H. Qi, C. L. Zhang, C. L. Ning, Y. Zhang, Y. Jiang, Y. F. Wu, W. Y. Gui
	29

1	and Z. L. Wang, <i>Catal. Lett.</i> , 2018, <b>148</b> , 3402.
2	32 Q. Bao, W. C. Zhu, J. B. Yan, C. L. Zhang, C. L. Ning, Y. Zhang, M. M. Hao and
3	Z. L. Wang, RSC Adv., 2017, 7, 52304.
4	33 G. Wang, Z. X. Li, C. S. Li and H. Wang, Chem. Eng. J., 2017, 319, 297.
5	34 G. Wang, Z. X. Li, C. S. Li and S. J. Zhang, Green Energ. Environ., 2019, 4, 293.
6	35 G. Wang, H. Wang, C. S. Li, C. C. Zuo, Z. X. Li and S. J. Zhang, J. Ind. Eng. Chem.,
7	2017, <b>55</b> , 173.
8	36 G. Wang, C. Sararuk, Z. X. Li, C. S. Li, H. Wang and S. J. Zhang, AIChE J., 2018,
9	<b>64</b> , 1359.
10	37 G. Wang, Z. X. Li, C. S. Li and S. J. Zhang, Chem. Eng. J., 2019, 359, 863.
11	38 G. Wang, Z. X. Li, C. S. Li and S. J. Zhang, J. Catal., 2018, 368, 228.
12	39 B. Teng, W. C. Chen, S. Dong, C. W. Kee, D. A. Gandaman, L. L. Zong and C. H.
13	Tan, J. Am. Chem. Soc., 2016, 138, 9935.
14	40 G. Wang, Y. M. Xu, S. J. Zhang, Z. X. Li and C. S. Li, Green Chem., 2017, 19,
15	4838.
16	41 G. Wang, H. Yin, S. F. Yuan and Z. R. Chen, J. Anal. Appl. Pyrolysis, 2015, 116,
17	27.
18	42 G. Wang, H. Yin, S. F. Yuan and Z. R. Chen, J. Anal. Appl. Pyrolysis, 2017, 124,
19	89.
20	43 K. Inamoto, H. Okawa, H. Taneda, M. Sato, Y. Hirono, M. Yonemoto, S. Kikkawa
21	and Y. Kondo, Chem. Commun., 2012, 48, 9771.
22	44 A. Skrzypczak and P. Neta, J. Phys. Chem. A, 2003, 107, 7800.
	30

- 45 J. D. Holbrey, W. M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre and 1
- 2 R. D. Rogers, Chem. Commun., 2003, 476.
- 46 G. Wang and G. M. Cai, Chem. Eng. Sci., 2021, 229, 116089. 3
- 47 Y. L. Yang and Y. Kou, Chem. Commun., 2004, 226. 4
- 48 T. J. Goncalves, U. Arnold, P. N. Plessow and F. Studt, ACS Catal., 2017, 7, 3615. 5
- 49 L. K. Brice and L. P. Lindsay, J. Am. Chem. Soc., 1960, 82, 3538. 6
- 50 J. F. Klebe, H. Finkbeiner, D. M. White, J. Am. Chem. Soc., 1966, 88, 3390. 7