Tetrahedron Letters 53 (2012) 2493-2495

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Reagent-controlled stereoselective synthesis of (±)-gallo- and (±)-epigallo-catechin gallates

Hiroshi Tanaka*, Ayaka Chino, Takashi Takahashi*

Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1-H-101 Ookayama, Meguro, Tokyo 152-8552, Japan

ARTICLE INFO

Article history: Received 16 January 2012 Revised 11 February 2012 Accepted 14 February 2012 Available online 21 February 2012

Keywords: Flavonols Epoxide Enone Sulfoxide Trifluoroacetic acid

Introduction

(–)-Epigallocatechin gallate (EGCG **1**, Scheme 1) is an antioxidative phytochemical and the most abundant catechin found in green tea leaves. EGCG **1** is associated with various biological activities¹ and, for example, targeting the 67-kDa laminin receptor (67LR) mediating anti-cancer and anti-allergic actions.² The highly oxygenated aromatic moieties make EGCG unstable under basic, acidic, and oxidative conditions. In addition, EGCG easily undergoes epimerization at the C2 position when heated, or under acidic or basic conditions to provide gallocatechin gallate (GCG **2**) composed of a *trans*-2,3-disubstituted benzopyran. Therefore green tea contains a considerable amount of GCG in comparison with EGCG. Chemical synthesis of ample amounts of pure, wellcharacterized EGCG and GCG could strongly assist the elucidation of the biological activity and the mechanism of actions of these important phytochemicals.

Most of the established methods for the synthesis of EGCG and GCG derivatives are based on independent synthesis of *cis*- and *trans*-flavan-3-ol derivatives, followed by acylation of the alcohol with gallic acid. The syntheses of the flavan-3-ols are largely divided into two approaches. One is based on cycloetherification by a C2–O1 bond formation, which mainly provided thermody-namically most stable *trans*-flavanols.³ Preparation of the *cis*-flavanols needs the inversion of stereochemistry at the C3 position.

ABSTRACT

Synthesis of (\pm) -gallocatechin and (\pm) -epigallocatechin gallates by electrophilic cycloarylation is reported. The precursors for cyclization were prepared by reagent-controlled stereo-selective opening of epoxide with phenol. Activation of the *S*-oxidized *S*,*O*-acetal enabled electrophilic cycloarylation to stereoselectively provide the acylated catechins.

© 2012 Elsevier Ltd. All rights reserved.

The other approach is based on cycloarylation by C4–Ar bond formation, which allows the preparation of both *trans*- and *cis*flavanols from the corresponding acyclic precursors.⁴ Suzuki and co-workers reported on the synthesis of *trans*- and *cis*-flavanols by intramolecular nucleophilic substitution with phenyl metal species.⁵ On the other hand, we have recently reported on a unique method for the synthesis of EGCG involving reductive etherification of the α -acyloxyketones under acidic conditions to directly provide 3-O-acylated *cis*-flavanols.⁶ The acyl moiety acts as a stereo-directing group for the synthesis of the 3-O-acyl *cis*-flavanol and stabilized the cyclized products under acidic conditions. However this C2–O1 bond formation approach cannot be used for the synthesis of GCG and their derivatives. Herein we report on a reagent-controlled stereoselective synthesis of racemic EGCG and GCG based on C4–Ar bond formation.

Strategy for the synthesis of EGCG **1** and GCG **2** involves an intramolecular electrophilic cycloarylation of acetal **3** and a reagent-controlled *anti*- and *syn*-opening of epoxide **6** (Scheme 1). The key 1,3-oxathiolane 3-oxide intermediates, the *S*-oxidized *S*,O-acetals **3** and **4**, undergo electrophilic cycloarylation via oxonium cation **9**. The remaining alkyloxy substituent at the benzylic position can be subsequently reduced under acidic conditions. The bromide on the A ring moderates reactivity of the aromatic moiety and prevents self-condensation of the cyclized product.⁷ The precursors **3** and **4** could be prepared by reagent-controlled *syn*- and *anti*-epoxide opening of epoxide **6** with bromophenol **5**, followed by acylation of the resulting alcohol with gallic acid **7**. The epoxide **6** is prepared from the corresponding olefin **8**. The *S*-oxidized *S*,O-acetals tolerate epoxidation conditions and could

^{*} Corresponding authors. Tel.: +81 3 5734 2471; fax: +81 3 5734 2884 (H.T.); tel.: +81 3 5734 2120; fax: +81 3 5734 2884 (T.T.).

E-mail addresses: thiroshi@apc.titech.ac.jp (H. Tanaka), ttak@apc.titech.ac.jp (T. Takahashi).

^{0040-4039/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2012.02.065

Scheme 1. Strategy for the synthesis of EGCG 1 and GCG 2.

generate the intermediate oxonium ion under sufficiently mild acidic condition that do not leave to cleavage the benzyl phenyl ether.⁸ Noteworthy, this strategy to EGCG **1** or GCG **2** involves only four diverse steps from epoxide **6**: regio- and stereo-selective opening of epoxide **6** with phenol **5**, esterification of the resulting alcohol with appropriately protected gallic acid, cycloarylation, and deprotection.

Preparation of bromohydrin **13** is shown in Scheme 2. Oxidation of the allyl alcohol **10**^{3d} with MnO₂ provided aldehyde **11** in 91%. The aldehyde **11** was converted to the cyclic *S*,*O*-acetal **12** in 85% yield by treatment with 2-mercaptoethanol in the presence of HBr.⁹ The oxidation of the *S*,*O*-acetal **12** with *m*CPBA at 0 °C provided the oxidized *S*,*O*-acetal **8** in 98% as a mixture of two diastereomers (5:3). Treatment of the stereoisomeric **8** with NBS in the presence of H₂O resulted in the disappearance of the substrates and the yield of bromohydrin **13** in 38% yield as a single diastereomer with a significant amount of enone **11**. Relative stereochemistry of the bromohydrin **13** was not determined. Dynamic kinetic or kinetic resolution of the oxidized *S*,*O*-acetal via epoxidation might be involved during the reaction.

Anti- and syn-opening of the epoxide **6** was examined (Scheme 3). The bromohydrin **13** was converted into epoxide **6** under basic conditions, which was used for the next reaction without further purification due to its instability. According to the reported method,⁴ treatment of epoxide **6** with phenol **5**¹⁰ under basic conditions at 45 °C for 5 days provided the *trans*-opening product **17** in 68% yield by a conventional S_N2 reaction via **15**. On the other hand, heating the mixture of epoxide **6** and phenol **5** at 45 °C without

Scheme 2. Preparation of bromohydrine 13.

Scheme 3. Anti- and syn-epoxide opening of 6.

the presence of base provided the *cis*-opening product **16** in 64% yield based on **13**. The mechanism of the reaction might involve activation of epoxide **14** with the proton of incoming phenol **5**, followed by the attack of the phenol to the benzylic position at the same face of the epoxide.¹¹ The relative stereochemistry between the C2 and C3 stereogenic centers of each product was determined by analysis of the corresponding cyclized products.

Scheme 4. Synthesis of rac-EGCG ((±)-(1)) and rac-GCG ((±)-(2)).

Synthesis of rac-EGCG ((±)-(1)) and rac-GCG ((±)-(2)) is shown in Scheme 4. Acylation of the resulting alcohols 17 and 16 with the tri-O-benzylgallic acid 7 in the presence of N,N'-diisopropyl carbodiimide (DIC) provided esters 4 and 3 in 82% and 91% yields, respectively. We next examined the cyclization of 4 and 3. Treatment of 4 with a large excess of trifluoroacetic anhydride (TFAA) in a solution of Et₃SiH and CH₂Cl₂ (1:10) at -78 °C for 2 h, followed by additional stirring at room temperature for 3 days successfully provided the protected GCG 18 as a single diastereomer. Based on the coupling constant between H2 and H3 ($J_{H2-H3} = 6.3$ Hz), the relative stereochemistry between the C2 and C3 positions was assigned to be trans. Attempts to use trifluoroacetic acid instead of TFAA did not lead to the cyclized products, indicated that O-acylation of the sulfoxide could be an initial reaction leading to cyclization. Likewise, treating 3 with 50 equiv. of TFAA in a solution of Et₃SiH and CH₂Cl₂ (1:10) at -78 °C for 30 min, followed by additional stirring at room temperature for 27 h, provided the protected EGCG 19 as a single diastereomer. To our delight, these results indicated that epimerization at the C2 position did not occur during the required reaction conditions. The relative stereochemistry of the cyclized products depended only on that of the precursors. Deprotection of the protected GCG 18 and EGCG 19 was achieved by hydrogenolysis using a continuous flow hydrogen reactor H-Cube with a CatCart[®] (70 mm) containing 20% Pd(OH)₂/C at 20 atm at 50 °C provided the racemic GCG 2 and EGCG 1 in 45% and 47% yields, respectively.12

In conclusion, we have described the synthesis of the racemic GCG **2** and EGCG **1** by reagent-controlled *anti*- and *syn*-epoxide opening and electrophilic cycloarylation. The epoxide **6** selectively undergoes *anti*- and *syn*-epoxide opening with phenol **5** with base and without base, respectively. The key *S*-oxidized *S*,*O*-acetals **3** and **4** (1,3-oxathiolane 3-oxides) can generate oxonium cation **9** by treatment with a mixture of Et₃SiH and TFAA and undergo electrophilic cycloarylation without cleavage and epimerization of the benzylic ethers. This method requires only four diverse steps from epoxide **6** to the acylated catechins **1** and **2** and would be effective for the synthesis of various acylated catechin derivatives composed of a 2,3-*cis*- or *trans*-substituted chroman skeleton.

Acknowledgment

This work was supported by Grant-in-Aid for Scientific Research (S) (Grant-in-aid No. 22228002) from the Ministry of Education, Culture, Sports, Science, and Technology.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2012.02.065.

References and notes

- (a) Yamamoto, T.; Juneja, L. R.; Chu, D.-C.; Kim, M. Chemistry and Applications of Green Tea; CRC: Boca Raton, 1997; (b) Stuart, E. C.; Scandlyn, M. J.; Rosengren, R. J. Life Sci. 2006, 79, 2329.
- Tachibana, H.; Koga, K.; Fujimura, Y.; Yamada, K. Nat. Struct. Mol. Biol. 2004, 11, 380.
- (a) Rensburg, H.; Heerden, P. S.; Ferreira, D. J. Chem. Soc. Perkin Trans. 1 1997, 3415; (b) Nay, B.; Arnaudinaud, V.; Peyrat, J. F.; Nuhrich, A.; Deffieux, G.; Merillon, J. M.; Vercauteren, J. Eur. J. Org. Chem. 2000, 1279; (c) Zaveri, N. T. Org. Lett. 2001, 3, 843; (d) Li, L.; Chan, T. H. Org. Lett. 2001, 3, 739; (e) Jew, S.-S.; Lim, D.-Y.; Bae, S.-Y.; Kim, H.-A.; Kim, J.-H.; Lee, J.; Park, H.-G. Tetrahedron: Asymmetry 2002, 13, 715; (f) Anderson, J. C.; Headley, C.; Stapleton, P. D.; Taylor, P. W. Tetrahedron 2005, 61, 7703; (g) Wan, S. B.; Dou, Q. P.; Chan, T. H. Tetrahedron 2006, 62, 5897; (h) Furuta, T.; Hirooka, Y.; Abe, A.; Sugata, Y.; Ueda, M.; Murakami, K.; Suzuki, T.; Tanaka, K.; Kan, T. Bioorg. Med. Chem. Lett. 2007, 17, 3095.
- Liu, Y.; Li, Z.; Lin, G.; Xiang, Z.; Xiang, J.; Zhao, M.; Chen, J.; Yang, Z. Z. J. Org. Chem. 2008, 73, 4625.
- (a) Ohmori, K.; Takeda, M.; Higuchi, T.; Shono, T.; Suzuki, K. Chem. Lett. 2009, 38, 934; (b) Higuchi, T.; Ohmori, K.; Suzuki, K. Chem. Lett. 2009, 38, 1006; (c) Ohmori, K.; Yano, T.; Suzuki Org, K. Biomol. Chem. 2010, 8, 2693.
- (a) Tanaka, H.; Kitade, M.; Ohno, Y.; Tanaka, H.; Takahashi, T. Synlett 2006, 2827; (b) Kitade, M.; Tanaka, H. T. Takahashi *Heterocycles* 2007, 73, 183; (c) Tanaka, H.; Miyoshi, H.; Chuang, Y.-C.; Ando, Y.; Takahashi Angew, T. Chem. Int. Ed. 2007, 46, 5934; (d) Tanaka, H.; Yamanouchi, M.; Miyoshi, H.; Hirotsu, K.; Tachibana, H.; Takahashi, T. Chem. Asian J. 2010, 5, 2231.
- 7. Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem. Soc. 1989, 111,
- 6881.
- 8. Ohmori, K.; Ushimaru, K.; Suzuki, K. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12002.
- 9. Kamal, A.; Chouhan, G.; Ahmed, K. *Tetrahedron Lett.* **2002**, 43, 6947. 10. Tadross, P. M.; Gilmore, C. D.; Bugga, P.; Virgil, S. C.; Stoltz, B. M. *Org. Lett.*
- Tadross, P. M.; Gilmore, C. D.; Bugga, P.; Virgil, S. C.; Stoltz, B. M. Org. Lett. 2010, 12, 1224.
 Pineschi, M.; Bertolini, F.; Haak, R. M.; Crotti, P.; Macchia, F. Chem. Commun.
- 2005, 1426.
- H-Cube[®] is made by ThalesNano; Richard, V. J.; Norbert, V.; Lajos, G.; Laszlo, U.; Daniel, S.; Ferenc, D. J. Comb. Chem. **2006**, *8*, 110.