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Abstract: Zn(OTf)2
. 6H2O was used to promote Friedel–Crafts acylation of

aromatics. The work describes the high activity and efficiency of Zn(OTf)2
. 6H2O

in acylation of aromatics, and the catalyst has surpassed most metal triflates in dispen-

sing when dried at high temperature under vacuum before use.

Keywords: Friedel–Crafts acylation, high activity, Zn(OTf)2
. 6H2O

Despite of their broad utility in organic chemistry, the Friedel–Crafts

acylation reaction often needed stoichiometric or even excess of a convention-

al Lewis acid (LA) such as AlCl3.[1] The formation of a strong coordinate

oxygen–metal bond was the key.[2] Thus, the products (ketones) must be

obtained after aqueous workup because of the complex of LA with the

ketones (Scheme 1).

Although FeCl3
[3] allowed the development of a catalytic cycle, drastic

conditions were often needed and led to side reactions. Stoichiometric zinc
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power[4] was described as a useful reagent for Friedel–Crafts acylation under

microwave irradiation. Because of thier importance in organic chemistry,

Friedel–Crafts reactions were well studied using other catalysts.[5] In recent

years, Kobayashi et al. found anhydrous rare-earth metal triflates[6] could

catalyze the Friedel–Crafts acylation reaction, even using a catalytic amount,

with good to excellent yields; later other metal triflates,[7] such as Hf(OTf)4,

Ga(OTf)3, Sb(OTf)3, and Sn(OTf)2, also demonstrated high catalytic activity

in the Friedel–Crafts acylation reaction. However, it is worth noting that

these metal triflates needed activation by drying for a few hours at high temp-

erature under vacuum immediately before use. The same anhydrous condition

was needed when aluminium[8] or ferric[9] hydrogensulfate was used as the

catalyst. Next, bismuth(III) derivatives[10] were found to be excellent

catalysts in the Friedel–Crafts acylation reaction. Among these derivatives,

Bi(OTf)3
. 4H2O received attention for its surprising catalytic activity in this

reaction. Even the inactive fluorobenzene could react with acylation reagents

and a catalytic amount of Bi(OTf)3
. 4H2O at high temperature with good yield.

However, we found that hexaaqua zinc triflate [Zn(OTf)2
. 6H2O] was an

efficient catalyst for title reaction. Although anhydrous Zn(OTf)2–catalyzed

benzoylation and acetylation of anisole in ionic liquid was reported,[11] our

experiment had many advantages such as simple operation, moderate

reaction condition, and good yields without drying the catalyst at high temp-

erature under vacuum before use.

Because zinc triflate is a strong and water-tolerant LA, it can be useful

even in practical and industrial applications. In addition, zinc metal was

available easily and more cheaply than many other metals. The preparation

of Zn(OTf)2
. 6H2O[12] was easier and simpler than other metal triflates. In

continuation of our interest in the Friedel–Crafts reaction,[13] we herein

describe a simple and practical method for Friedel–Crafts acylation

reaction using Zn(OTf)2
. 6H2O.

First, we tested the acylation reaction of furan and thiophenes with several

acylation reagents in the presence of Zn(OTf)2
. 6H2O and the results are sum-

marized in Table 1.

As can be seen in Table 1, the reaction of furan or thiophenes with

acylation reagents proceeded smoothly in the presence of Zn(OTf)2
. 6H2O,

but the reactions of thiophenes were a little quicker than those of furan, and

thus the yields of acylated thiophenes were higher under the same conditions.

In addition, it was obvious that aliphatic acyl chloride reacted with the sub-

strates quicker than aroyl chloride.

It was interesting that the substituent of halogen on the thiophene ring did

not affect the yields. For example, 2-chlorothiophene and 2-bromothiophene

Scheme 1.
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were excellent substrates, which reacted with acetyl chloride quickly and

afforded good yields in 4h. In a contrast, 89% of 5-bromoacetylthiophene

was obtained when 5 mol% of anhydrous Yb(OTf)3 was used as the catalyst

under the same reaction condition (entry 11).

Another five-component heteroaromatic, N-methyl pyrrole, was

desirable. We next tested the Friedel–Crafts acylation reaction under

different conditions (Table 2). Nitromethane was the best solvent of this

reaction. The acylation of N-methyl pyrrole was much easier than other

hetero aromatics (including furan and thiophene), and high yield of

desirable acetylated and benzoylated products were obtained in 4h. A long-

chain alkyl acyl chloride, named octadecanoyl chloride (n-C17H35COCl),

was used in the reaction and 78% yield of acylated product was obtained in

nitromethane after 12 h at 508C.

Unfortunately, nicotinoyl chloride (pyridin-3-yl-COCl) afforded less than

10% yield of product. In this case, an insoluble white solid was obtained,

which was determined as a hydrochloric compound of pyridines (Scheme 2).

The effects of the solvents were obvious; the best was nitromethane and

the worst was carbon tetrachloride (Table 2, entry 11).

In the acylation of anisoles (Table 3), the reaction was slower than those

of electron-rich hetero aromatics. Acylated product 7 was dominant, and other

isomers were detected in very small parts.

Table 1. Friedel–Crafts acylation reaction of furan and thiophenes catalyzed by

Zn(OTf)2
. 6H2O

Entry Y X R1 R2 Time (h) Product Yield (%)a

1 O OCOCH3 CH3 H 4 3a 75

2 O Cl CH3 H 4 3a 85

3 O Cl CH3CH2CH2 H 4 3b 86

4 O Cl p-CH3C6H4 H 8 3c 78

5 S OCOCH3 CH3 H 4 3d 84

6 S Cl CH3 H 4 3d 89

7 S Cl CH3CH2 H 4 3e 89

8 S Cl p-CH3C6H4 H 8 3f 82

9 S Cl CH3 Cl 4 3g 87

10 S Cl CH3 Br 4 3h 88

11 S Cl CH3 Br 4 3h 88b

aBazed on aromatics 1.5 mol of acylation reagent was used.
bYb(OTf)3 (5 mol%) was used as the catalyst.
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In conclusion, we have found that Zn(OTf)2
. 6H2O was a excellent

catalyst of the Friedel–Crafts acylation reaction. The work described a

facile, simple operation, suitable in large-scale approaches for preparation

of aromatic ketones with good yields. The strongest point was the ability to

use it without drying at high temperature under vacuum before use.

EXPERIMENTAL

Mass spectra (ESI) were tested on a Thermo Finnagan LCQ Advantage

instrument. 1H NMR and 13C NMR spectra were recorded on a Varian

Table 2. Catalytic acylation of N-methyl pyrrole in the presence of Zn(OTf)2
. 6H2O

Entry Acylation reagent Time (h) Product Yield (%)a

1 Acetic anhydride 4 5a 87

2 Acetyl chloride 4 5a 92

3 Benzoyl chloride 8 5b 86

4 2-Phenyl acetyl chloride 4 5c 89

5 Octadecanoyl chloride

(n-C17H35COCl)

12 5d 78b

6 Nicotinoyl chloride

(pyridin-3-yl-COCl)

24 5e ,10

7 Acetic anhydride 4 5a 83c

8 Acetic anhydride 4 5a 78d

9 Acetic anhydride 4 5a 65e

10 Acetic anhydride 4 5a 61f

11 Acetic anhydride 4 5a 46g

aBazed on aromatics. 1.5 mol of acylation reagent was used.
bAt 508C for 12 h.
cIn acetonitrile.
dIn chloroform.
eIn dichloromethane.
fIn nitrobenzene.
gIn carbon tetrachloride.

Scheme 2.
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400-MHz instrument using CDCl3 as the solvent with TMS as an internal

standard. IR spectra were recorded on a Avatar-370 infrared spectropho-

tometer. Melting points were determined on a digital melting-point

apparatus WRS-1B and are uncorrected. Zn(OTf)2
. 6H2O was prepared

according to the literature.[12]

General Procedure for Friedel–Crafts Acyaltion of Aromatics

To a solution of aromatic reagent (4 mmol) and acyaltion reagent (6 mmol) in

nitronmethane (5 ml), Zn(OTf)2
. 6H2O (0.4 mmol) was added successfully.

The mixture was stirred at room temperature for the given time, and it

slowly turned green or purple. After completion, it was treated with

saturated aqueous NaHCO3 (10 ml) and extracted with chloroform

(20 ml � 2). The combined organic solution was dried over anhydrous

MgSO4 and filtered. After it was concentrated in vacuum and purified by pre-

parative thin-layer chromatography (TLC), the corresponding product was

obtained. The regioselectivity also could be determined by the NMR analysis.

Data

2-Acetylfuran (3a)

Oil: 1H NMR (400 MHz, CDCl3) d 7.59 (dd, J ¼ 1.7, 0.7 Hz, 1H), 7.19 (dd,

J ¼ 3.5, 0.7 Hz, 1H), 6.54 (dd, J ¼ 3.5, 1.7 Hz, 1H), 2.49 (s, 3H); IR

(cm21) (neat) 1678.

Table 3. Catalytic benzoylation and acetylation of anisoles

Entry R4 R5 X Time/h Product Yielda/%

1 o-CH3 CH3 OCOCH3 8 7a 71

2 o-CH3 CH3 Cl 8 7a 78

3 o-CH3 ph Cl 8 7b 72

4 m-CH3 CH3 Cl 8 7c 76

5 m-CH3 ph Cl 8 7d 70

aBased on anisole. 1.5 mol of acylation reagent was used.
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2-Butyrylfuran (3b)

Oil: 1H NMR (400 MHz, CDCl3) d 7.58 (dd, J ¼ 1.8, 0.7 Hz, 1H), 7.19 (dd,

J ¼ 3.7, 0.7 Hz, 1H), 6.54 (dd, J ¼ 3.7, 1.8 Hz, 1H), 2.80 (m, 2H), 1.75

(m, 2H), 0.99 (m, 3H); IR (cm21) (neat) 1675.

p-Methylbenzoylfuran (3c)

Oil: 1H NMR (400 MHz, CDCl3) d 7.90 (d, J ¼ 7.6 Hz, 2H), 7.69 (dd,

J ¼ 1.7, 0.7 Hz, 1H), 7.28 (d, J ¼ 7.6 Hz, 2H), 7.21 (dd, J ¼ 3.4, 0.7 Hz,

1H), 6.59 (dd, J ¼ 3.4, 1.7 Hz, 1H), 2.44 (s, 3H); IR (cm21) (neat) 1655.

2-Acetylthiophene (3d)

Oil: 1H NMR (400 MHz, CDCl3) d 7.71 (dd, J ¼ 4.0, 1.0 Hz, 1H), 7.64 (dd,

J ¼ 5.0, 1.0 Hz, 1H), 7.14 (dd, J ¼ 5.0, 4.0 Hz, 1H), 2.57 (s, 3H); IR

(cm21) (neat) 1662.

2-Propionylthiophene (3e)

Oil: 1H NMR (400 MHz, CDCl3) d 7.72 (dd, J ¼ 3.8, 1.0 Hz, 1H), 7.62 (dd,

J ¼ 4.8, 1.0 Hz, 1H), 7.12 (dd, J ¼ 4.8, 3.8 Hz, 1H), 2.94 (m, 2H), 1.23

(t, J ¼ 7.2 Hz, 3H); IR (cm21) (neat) 1668.

2-p-Methylbenzoylthiophene (3f)

Red solid: mp 70–728C (lit.[14] 728C); 1H NMR (400 MHz, CDCl3) d 7.79

(d, J ¼ 8 Hz, 2H), 7.69 (dd, J ¼ 4.2, 1.0 Hz, 1H), 7.64 (dd, J ¼ 5.0, 1.0 Hz,

1H), 7.29 (d, J ¼ 8 Hz, 2H), 7.14 (dd, J ¼ 5.0, 4.2 Hz, 1H), 2.44 (s, 3H); IR

(cm21) (neat) 1634.

5-Chloro-2-acetylthiophene (3g)

Yellow solid: mp 45–468C (lit. [15] 45.5–468C); 1H NMR (CDCl3) d 7.41

(d, J ¼ 4.6 Hz, 1H), 7.01 (d, J ¼ 4.6 Hz, 1H), 2.46 (s, 3H); IR (cm21) 1655.

5-Bromo-2-acetylthiophene (3h)

Yellow solid: mp 92–948C (lit.[15] 94.5–958C); 1H NMR (CDCl3) d 7.43

(d, J ¼ 4.8 Hz, 1H), 7.10 (d, J ¼ 4.8 Hz, 1H), 2.50 (s, 3H); IR (cm21) 1650.

F. He et al.260
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N-Methyl-2-acetylpyrrole (5a)

Oil: 1H NMR (400 MHz, CDCl3) d 6.94 (dd, J ¼ 4.0, 1.6 Hz, 1H), 6.79

(t, J ¼ 2.4 Hz, 1H), 6.11 (dd, J ¼ 4.0, 2.4 Hz, 1H), 3.93 (s, 3H), 2.43

(s, 3H); IR (cm21) (neat) 1645.

N-Methyl-2-benzoylpyrrole (5b)

Oil: 1H NMR (400 MHz, CDCl3) d 7.79–7.82 (m, 2H), 7.26–7.55 (m, 3H),

6.92 (dd, J ¼ 3.8, 1.6 Hz, 1H), 6.74 (t, J ¼ 2.4 Hz, 1H), 6.16 (dd, J ¼ 3.8,

2.4 Hz, 1H), 4.03 (s, 3H); IR (cm21) (neat) 1650.

N-Methyl-2-(a-phenyl)acetylpyrrole (5c)

Oil: 1H NMR (400 MHz, CDCl3) d 7.22–7.34 (m, 5H), 7.09 (dd, J ¼ 3.8,

1.7 Hz, 1H), 6.82 (t, J ¼ 2.4 Hz, 1H), 6.14 (dd, J ¼ 3.8, 2.4 Hz, 1H), 4.07

(s, 2H), 3.91 (s, 3H); IR (cm21) (neat) 1646.

N-Methyl-2- octadecanoylpyrrole (5d)

Solid: mp 58–618C. 1H NMR (400 MHz, CDCl3) d 6.95 (dd, J ¼ 4.0, 2.0 Hz,

1H), 6.79 (t, J ¼ 2.0 Hz, 1H), 6.12 (dd, J ¼ 4.0, 2.0 Hz, 1H), 3.91 (s, 3H), 2.75

(t, J ¼ 7.6 Hz, 2H), 1.66–1.70 (m, 2H), 0.88–1.31 (m, 31H); (ESI) MS 348.2

(M þ 1)þ; IR (cm21) (neat) 1666.

3-Methyl-4-methoxylacetophenone (7a)

Oil: 1H NMR (400 MHz, CDCl3) d 7.76–7.81 (m, 2H), 6.83 (d, J ¼ 8.4 Hz,

1H), 3.88 (s, 3H), 2.55 (s, 3H), 2.24 (s, 3H); IR (cm21) (neat) 1649.

3-Methyl-4-methoxylbenzoylphenone (7b)

Solid: mp 75–788C (lit.[16] 79.5–80.58C). 1H NMR (400 MHz, CDCl3) d

7.79–7.83 (m, 2H), 7.75–7.80 (m, 2H), 7.26–7.55 (m, 3H), 6.81

(d, J ¼ 8.4 Hz, 1H), 3.88 (s, 3H), 2.32 (s, 3H); IR (cm21) (neat) 1643.

2-Methyl-4-methoxylacetophenone (7c)

Oil: 1H NMR (400 MHz, CDCl3) d 7.70–7.72 (m, 1H), 6.69–6.74 (m, 2H),

3.80 (s, 3H), 2.54 (s, 3H), 2.50 (s, 3H); IR (cm21) (neat) 1647.

2-Methyl-4-methoxylbenzoylphenone (7d)

Solid: mp 72–74 8C (lit.[17] bp 219–2218C/23 mmHg). 1H NMR (400 MHz,

CDCl3) d 7.74–7.78 (m, 2H), 7.51–7.53 (m, 1H), 7.39–7.44 (m, 2H), 7.32

High Activity of Zn(OTf)2 . 6H2O 261
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(d, J ¼ 8.4 Hz, 1H), 6.79–6.81 (m, 1H), 6.70–6.73 (m, 1H), 3.82 (s, 3H), 2.41

(s, 3H); IR (cm21) (neat) 1651.
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