Tetrahedron 69 (2013) 10996-11003

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Palladium-catalyzed highly regioselective 2-arylation of 2,*x*-dibromopyridines and its application in the efficient synthesis of a 17β -HSD1 inhibitor

Qizhong Zhou^{a,b,*}, Bin Zhang^a, Liangjun Su^a, Tiansheng Jiang^c, Rener Chen^{a,*}, Tieqi Du^a, Yuyuan Ye^a, Jianfen Shen^a, Guoliang Dai^a, Deman Han^a, Huajiang Jiang^{a,*}

^a Department of Chemistry, Taizhou University, Taizhou 318000, China

^b Department of Chemistry, Fudan University, Shanghai 200433, China

^c College of Natural Sciences and Mathematics, University of Houston, Houston, TX 77204-5008, USA

ARTICLE INFO

Article history: Received 20 August 2013 Received in revised form 30 September 2013 Accepted 14 October 2013 Available online 26 October 2013

ABSTRACT

2,3- and 2,5-Dibromopyridines reacted with arylboronic acids, catalyzed by $Pd(OAc)_2/PPh_3$ in the presence of K₂CO₃ in CH₃CN/MeOH (2:1) at 50 °C for 24 h, to afford 2-arylpyridines in good to high yields, while 2,4-dibromopyridine reacted with arylboronic acid pinacol esters, catalyzed by $Pd(OAc)_2/PPh_3$ in the presence of KOH in CH₃CN at 70 °C for 24 h, to afford 2-arylpyridines in good to high yields. To expand this methodology, a 17β-HSD1 inhibitor was synthesized in good yield.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Pyridines are significant components of many drugs and natural products.^{1–3} 2-Arylpyridines are widely used as substrates for C–H activation.⁴ Substituted 2-arylpyridines are found in a wide range of fluorescent probes,⁵ organic conjugated materials,⁶ metal complexing ligands,⁷ pharmaceuticals,⁸ and natural products.⁹ (Fig. 1). Substituted 2-arylpyridines can be prepared by selective Suzuki coupling from 2,x-dihalopyridines, such as 2,5-,¹⁰ 2,4-,¹¹ or 2,3-dibromopyridines,¹² and arylboronic acids followed by other reactions, but the yields are usually low and high temperature may be required.^{12b} Previously, we have reported the copper-catalyzed highly regioselective 2-aryloxylation of 2,x-dihalopyridines.¹³ Herein, we describe a highly regioselective and efficient palladium-catalyzed arylation of 2,x-dibromopyridines and its application in the efficient synthesis of a 17β-HSD1 inhibitor.

2. Results and discussion

First, a set of experiments was performed using 2,5dibromopyridine and phenylboronic acid as model substrates in the presence of different ligands or bases in different temperatures to explore the optimized reaction conditions (Table 1). In MeOH with PPh₃ as ligand and K_2CO_3 as base, the reaction afforded **3a**, **A**, and **B** in 73%, 4%, and 23% isolated yields, respectively (entry 3),

Fig. 1. The substituted 2-pyridyl motif is found in many important small molecules.

while in MeCN a better selectivity was achieved (entry 4). Encouraged by these results, the reaction was investigated in a mixture of acetonitrile and alcohol. In MeCN/EtOH (2:1) at 50 °C, the three products were obtained in 93%, 2%, and 0% yields, respectively (entry 19), and in MeCN/MeOH (2:1), the yield of **3a** could be further improved to 97% (entry 22). We thus established the optimized

Tetrahedror

^{*} Corresponding authors. Tel.: +86 576 88660177; e-mail addresses: qizhongchou@yahoo.com (Q. Zhou), cre@tzc.edu.cn (R. Chen), jhj@tzc.edu.cn (H. Jiang).

^{0040-4020/\$ –} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.10.065

Table 1

Palladium-catalyzed 2-arylation of 2,5-dibromopyridine with phenylboronic acid: parametric study^{a,b}

Br	B(OH) ₂ I	-d(OAc) ₂ (5 m ligand (10 mc	101%) 1%) Br Ph	~ P	lb .
] *	base (2 e	n) → 1 1 +	¥ ,	"
_N	Br 👳	N ₂ , T, 24	h N Ph	[└] N Br	^U N ^C Ph
1	2		3a	Α	в
Entry	Ligand	Base	Solvent	T (°C)	Yield (%)
					(3a/A/B)
1 ^c	PPh ₃	K ₂ CO ₃	ClCH ₂ CH ₂ Cl	Reflux	30:12:10
2 ^c	PPh ₃	K ₂ CO ₃	THF	Reflux	38:7:36
3 ^c	PPh ₃	K ₂ CO ₃	MeOH	Reflux	73:4:23
4 ^c	PPh₃	K ₂ CO ₃	CH₃CN	Reflux	41:8:0
5 ^c	PPh ₃	K ₂ CO ₃	Toluene	Reflux	43:8:5
6 ^c	PPh ₃	K ₂ CO ₃	DME	Reflux	50:10:24
7 ^c	PPh ₃	K ₂ CO ₃	Dioxane	Reflux	0:0:0
8 ^c	PPh ₃	K ₂ CO ₃	DMAc	110	40:9:18
9 ^c	PPh₃	K ₂ CO ₃	DMSO	110	26:7:8
10 ^c	PPh₃	K ₂ CO ₃	DMF	110	41:13:12
11		K ₂ CO ₃	MeOH	30	54:22:12
12	PPh ₃	K ₂ CO ₃	MeOH	30	67:8:18
13	Sphos	K ₂ CO ₃	MeOH	30	15:5:50
14	Xphos	K ₂ CO ₃	MeOH	30	24:13:10
15	BINAP	K ₂ CO ₃	MeOH	30	53:9:3
16	Xantphos	K ₂ CO ₃	MeOH	30	0:0:0
17	PPh₃	K ₂ CO ₃	CH ₃ CN/EtOH (1:1)	30	75:8:3
18	PPh ₃	K_2CO_3	CH ₃ CN/EtOH (2:1)	40	80:0:0
19	PPh ₃	K ₂ CO ₃	CH ₃ CN/EtOH ^d	50	93:2:0
20 ^e	PPh ₃	K ₂ CO ₃	CH ₃ CN/EtOH ^d	50	85:3:0
21	PPh ₃	K ₂ CO ₃	CH ₃ CN/MeOH ^d	50	91:1:7
22 ^f	PPh ₃	K ₂ CO ₃	CH ₃ CN/MeOH ^d	50	97:2:0
23	PPh ₃	K ₂ CO ₃	CH ₃ CN/n-BuOH ^d	50	85:2:9
24	PPh ₃	K ₂ CO ₃	CH ₃ CN/ <i>i</i> -BuOH ^d	50	65:3:1
25	PPh ₃	KOH	CH ₃ CN/MeOH ^d	50	73:13:12
26	PPh ₃	K ₃ PO ₄	CH ₃ CN/MeOH ^d	50	86:12:0
27	PPh ₃	Cs ₂ CO ₃	CH ₃ CN/MeOH ^d	50	90:5:5

The bold signifies the best reaction condition.

^a Reaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), $Pd(OAc)_2$ (5 mol %), ligand (10 mol %), base (1 mmol), 24 h.

^b Isolated yield.

^c Compounds **1** (0.6 mmol), **2** (0.5 mmol), Pd(OAc)₂ (5 mol %), ligand (10 mol %), base (1 mmol), 24 h.

^d CH₃CN/alcohol (2:1).

^e Compounds 1 (0.5 mmol), 2 (0.6 mmol), Pd(OAc)₂ (2.5 mol %), ligand (5 mol %), base (1 mmol), 24 h.

 f Compounds 1 (0.5 mmol), 2 (0.55 mmol), Pd(OAc)_2 (5 mol %), PPh_3 (10 mol %), K_2CO_3 (1 mmol), 24 h.

conditions for this reaction: $Pd(OAC)_2/PPh_3$ as the catalysis system, K_2CO_3 as the base, $CH_3CN/MeOH$ (2:1) as the solvent and at 50 °C.

With the optimized reaction condition available, the scope of the reaction was then investigated (Table 2). It can be found that phenylboronic acids bearing electron-rich groups generally afforded products (**3a–3e**, **3i–3m**, **3r–3t**) in good to high yields (80–97%). 4-Fluorophenylboronic acid also gave rise to good to high yields (82–90%, **3f** and **3n**). Even 4-methoxyphenylboronic acid reacted with 2,6-dibromopyridine to give a good yield (73%, **3x**). Furthermore, substituted 2,3-dichloropyridines also reacted with phenylboronic acid to give good yields (82–88%, **3u,3v**). In contrast, electron-withdrawing CF₃- or NO₂-substituted phenylboronic acid gave low yields (21–50%, **3g**, **3o,3p**) and 4-pyridylboronic acid did not afford any products (entries 8 and 17). Clearly, the new methodology has the advantages of higher regioselectivity, higher yields, more generality, simpler and cheaper catalyst system.^{10,12}

The reaction of 2,4-dibromopyridine and phenylboronic acid only gave a 68% yield of the product (**3w**). To further improve the yield of the reaction, phenylboronic acid pinacol ester was used as the coupling partner (Table 3).¹⁴ After an extensive investigation of the reaction conditions, we found that with KOH as base, the reaction could produce the required product selectively in 16% yield in MeCN at 30 °C (entry 3). Further screening of the ligands revealed that PPh₃ is still a suitable ligand leading to the highest yield of **3w** (89%) and the best regioselectivity at 70 °C. The yields for the side products C and D were as low as 6% and 2%, respectively (entry 14).

After the optimized reaction condition was established, the reactions of 2,4-dibromopyridine with other phenylboronic acid pinacol esters were investigated and the results are shown in Table 4. Again, the pinacol esters bearing electron-donating groups afforded good to high yields (81–95%, entries 1–8), while the nitrosubstituted substrate only gave the coupling product in 31% yield (entry 9) and 2-cyano-5-pyridylboronic acid pinacol ester did not give rise to the required product.

Why the regioselectivity is so high for the arylation of 2,3-, 2,5-, and 2,4-dibromopyridines? We can explain that the 2-bromo of 2,*x*-dibromopyridines is more reactive than the 4-bromo, 5-bromo, and 3-bromo of 2,*x*-dibromopyridines.^{11a,13,15}

The high regioselectivity of the new method made it possible to conveniently conduct the step-by-step coupling reactions for 2,*x*-dibromopyridines. To demonstrate this, we studied the Suzuki, Sonogashira, Ullmann, and Ullmann-typed coupling reactions of **3w** with different substrates (Scheme 1), which all afforded the coupling products **6–9** in excellent yields.

The method can also be expanded to prepare compound **11**, a 17 β -HSD1 inhibitor (Scheme 2). 2,4-Dibromopyridine reacted with 2-chlorothiophene pinacoboronate under the standard condition to give compound **10** in 82% yield and its coupling with 3-hydroxyphenylboronic acid produced **11** in 90% yield. The total yield (74%) is substantially higher than the route previously reported (12%).^{8b}

3. Conclusion

In summary, we have described a highly regioselective approach to bromo-2-arylpyridines, which involves palladium-catalyzed direct 2-arylation of 2,5-, 2,3-, and 2,4-dibromopyridines in high yields. The practicality of the new method has been demonstrated by using it to synthesize a 17β -HSD1 inhibitor. Step-by-step coupling reaction of other dihalopyridines is being investigated and the results will be reported in due course.

4. Experimental section

4.1. General

Typical procedure for the 2-arylation of 2,5- and 2,3dibromopyridines: 2,5-dibromopyridine (0.12 g, 0.50 mmol), phenylboronic acid (67 mg, 0.55 mmol), K₂CO₃ (0.14 g, 1.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), PPh₃ (26 mg, 10 mol %) were dissolved in CH₃CN/CH₃OH (2:1, 6 mL). The solution was stirred at 50 °C under nitrogen atmosphere for 24 h and then cooled and the solid was filtered off. The filtrate was then concentrated and the resulting crude product was dissolved in CH₂Cl₂ (10 mL). The solution was washed with water (10 mL×3) and brine (10 mL), and dried over sodium sulfate. Upon removal of the solvent with a rotavapor, the resulting residue was subjected to column chromatography (petroleum ether/AcOEt, 400:1) to give the desired product **3a** (114 mg, 97%) as a white solid.

Typical procedure for the 2-arylation of 2,4-dibromopyridine: 2,4-dibromopyridine (0.12 g, 0.50 mmol), phenylboronic acid pinacol ester (0.11 g, 0.55 mmol), KOH (56 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), PPh₃ (52 mg, 20 mol %) were dissolved in CH₃CN (6 mL). The reaction was stirred at 70 °C under nitrogen atmosphere for 24 h and then cooled. The solid was filtrated off and the filtrate was concentrated. The crude product was then dissolved in CH₂Cl₂ (10 mL) and the solution was washed with water (10 mL×3) and brine (10 mL), and dried over sodium sulfate. Upon evaporation, the resulting residue was subjected to column

Table 2

Entry

Scope of Pd-catalyzed 2-arylation of 2,x-dibromopyridines^{a,b}

Yield (%)

1a	2c	Br	3c
1a	2d	Br	3d
1a	2e	Br	3e
1a	2f	Br	3f
1a	2g	Br	3g
1a	2h	Br N	3h
1b	2a		3i
1b	2b	Br N	3j
1b	2c	Br	3k
1b	2d	Br Arr	31

13	1b	2e	Br ————————————————————————————————————	
			N V	3m

Q. Zhou et al. / Tetrahedron 69 (2013) 10996-11003

1	2	Products	
16	2f	Br N-F 3n	
		Br	

Table	2	(continued)
-------	---	------------	---

Entry

14	1b	2f	N -F 3n	82
15	1b	2g	\sim	46
16	16	2i	\sim NO_2 $3p$	21
17	16	2h	Br 3q	0
18	1c	2a	Br	82
19	1d	2a	Br	88
20	1e	2a	$CI \longrightarrow N$	90
21	1f	2a		86
22	1g	2a		96
23	1h	2a	Br	68
24	1i	2e	Br OMe	73
^a Reaction condition: 1 (0.5 mmol) 2 (0.55 mmol) Pd(0Ac) ₀ (5 mol %) PPb ₀ (10 mol %) K-CO ₂ (1 mmol) in CH-CN/CH-OH (2:1, 6 ml) at 50 % under N, for 24 b				

а Reaction condition: 1 (0.5 mmol), 2 (0.55 mmol), Pd(OAc)₂ (5 mol %), PPh₃ (10 mol %), K₂CO₃ (1 mmol) in CH₃CN/CH₃OH (2:1, 6 mL) at 50 °C under N₂ for 24 h. b Isolated vield.

chromatography (petroleum ether/AcOEt, 400:1) to give 3w (104 mg, 89%) as a colorless liquid.

4.1.1. 5-Bromo-2-phenylpyridine (3a). Compound 3a: white solid, mp 74–75 °C; ¹H NMR (CDCl₃, 400 MHz): 8.74 (d, *J*=1.6 Hz, 1H), $7.95-7.97 (m, 2H), 7.87 (dd, J_1=2.4 Hz, J_2=2.8 Hz, 1H), 7.62 (d, J=8.4 Hz, J_2=2.8 Hz, 2H), 7.62 (d, J=8.4 Hz, 2H), 7.64 (d, J=8.4 Hz,$ 1H), 7.43–7.49 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): 156.1, 150.9, 139.7, 138.3, 129.7, 129.2, 127.1, 122.0, 119.6; MS (ESI): 234.1 [M+H]+; HRMS (ESI) [M+H]⁺ calcd for C₁₁H₉BrN: 233.99129, found: 233.99171.

4.1.2. 2-Bromo-5-phenylpyridine (A). Compound A: white solid, mp 76–77 °C; ¹H NMR (CDCl₃, 400 MHz): 8.57 (d, *J*=2.4 Hz, 1H), 7.71 (dd, J₁=2.4 Hz, J₂=2.4 Hz, 1H), 7.39–7.54 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): 148.7, 141.1, 137.2, 136.7, 136.2, 129.5, 128.7, 128.2, 127.2; MS (EI): 233.0 (M⁺); HRMS (EI) calcd for C₁₁H₈BrN: 232.9840, found: 232.9846.

4.1.3. 2,5-Diphenylpyridine (B). Compound B: white solid, mp 173–174 °C; ¹H NMR (CDCl₃, 400 MHz): 8.93 (d, *J*=2.0 Hz, 1H), 8.04 (d, J=7.2 Hz, 2H), 7.91 (dd, J₁=2.0 Hz, J₂=2.0 Hz, 1H), 7.77 (d, J=8.0 Hz, 1H), 7.61 (d, J=7.2 Hz, 2H), 7.37–7.49 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): 156.4, 148.3, 139.2, 137.9, 135.3, 135.1, 129.3,

129.2, 129.0, 128.3, 127.2, 127.1, 120.6; MS (EI): 231.0 (M⁺); HRMS (EI) calcd for C₁₇H₁₃N: 231.1048, found: 231.1053.

4.1.4. 5-Bromo-2-(4-methylphenyl)pyridine (3b). Compound 3b: white solid, mp 109–110 °C; ¹H NMR (CDCl₃, 400 MHz): 8.70 (d, *I*=1.6 Hz, 1H), 7.90–7.86 (m, 3H), 7.57 (d, *I*=8.4 Hz, 1H), 7.26 (d, J=8.0 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 156.1, 150.8, 139.7, 139.4, 135.7, 129.8, 126.9, 121.5, 119.1, 21.5; MS (ESI): 248.0 [M+H]⁺; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₁BrN: 248.0069, found: 248.0067.

4.1.5. 5-Bromo-2-(3-methylphenyl)pyridine (3c). Compound 3c: white solid, mp 40-41 °C; ¹H NMR (CDCl₃, 400 MHz): 8.72 (d, J=2.4 Hz, 1H), 7.70–7.84 (m, 3H), 7.58 (dd, J₁=2.4 Hz, J₂=2.4 Hz, 1H), 7.34 (t, *J*=7.6 Hz, 1H), 7.23 (d, *J*=7.6 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 156.3, 150.7, 139.6, 138.4, 138.3, 130.4, 129.0, 127.7, 124.2, 122.0, 119.5, 21.8; MS (ESI): 248.1 [M+H]⁺; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₁BrN: 248.0069, found: 248.0058.

4.1.6. 5-Bromo-2-(2-methylphenyl)pyridine (3d). Compound 3d: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.75 (d, *J*=2.4 Hz, 1H), 7.85 (dd, J_1 =2.8 Hz, J_2 =2.4 Hz, 1H), 7.24–7.37 (m, 5H), 2.35 (s, 3H); ¹³C

Yield (%)

Table 3

Pd-catalyzed 2-arylation of 2,4-dibromopyridine: parametric study^{a,b}

Entry	Catalyst	Ligand	T/°C	Yield (%) (3w/C/D)
1	Pd(PPh ₃) ₄		30	14:0:0
2	Pd(dba) ₃	PPh ₃	30	25:4:0
3	$Pd(OAc)_2$	PPh ₃	30	16:0:0
4	Pd(dppe) ₂ Cl ₂	PPh_3	30	28:14:7
5	$Pd(TFA)_2$	PPh_3	30	37:13:9
6	$Pd(OAc)_2$	1038-95-5	Reflux	27:18:0
7	$Pd(OAc)_2$	855-38-9	Reflux	44:20:0
8	$Pd(OAc)_2$	37943-90-1	Reflux	65:2:9
9	$Pd(OAc)_2$	5518-53-5	Reflux	56:7:10
10	$Pd(OAc)_2$	18437-78-0	Reflux	40:5:0
11	$Pd(OAc)_2$	13406-29-6	Reflux	56:4:8
12	$Pd(OAc)_2$	1259-35-4	Reflux	0:0:0
13	$Pd(OAc)_2$	PPh ₃	Reflux	88:6:2
14	$Pd(OAc)_2$	PPh ₃	70	89:6:2
15	$Pd(OAc)_2$	PPh ₃	65	77:13:0
16	$Pd(OAc)_2$	PPh_3	60	38:7:0

The bold signifies the best reaction condition.

^a Compounds **1h** (0.5 mmol), **4a** (0.55 mmol), [Pd] (5 mol %), ligand (20 mol %), KOH(1 mmol), CH₃CN, 24 h.

^b Isolated yield. 1038-95-5: Tri-*p*-tolyphosphine; 855-38-9: Tris(4-methoxyphenyl)phosphine; 37943-90-1: diphenyl-2-pyridylphosphine; 5518-53-5: Tri(2furyl) phosphine; 18437-78-0: Tris(*p*-fluorophenyl) phosphine; 13406-29-6: Tris(*p*-trifluoromethylphenyl) phosphine; 1259-35-4: Tris(pentafluorophenyl) phosphine.

$$\begin{split} & \mathsf{NMR}\ (\mathsf{CDCl}_3, 100\ \mathsf{MHz});\ 158.6, 150.3, 139.2, 139.1, 136.0, 131.1, 129.7, \\ & \mathsf{128.9}, 126.2, 125.6, 119.2, 20.5;\ \mathsf{MS}\ (\mathsf{ESI});\ 248.0\ [\mathsf{M}+\mathsf{H}]^+;\ \mathsf{HRMS}\ (\mathsf{ESI}) \\ & [\mathsf{M}+\mathsf{H}]^+\ \mathsf{calcd}\ \mathrm{for}\ \mathsf{C}_{12}\mathsf{H}_{11}\mathsf{BrN};\ 248.0069,\ \mathsf{found};\ 248.0058. \end{split}$$

4.1.7. 5-Bromo-2-(4-methyloxyphenyl)pyridine (**3e**). Compound **3e**: white solid, mp 136–137 °C; ¹H NMR (CDCl₃, 400 MHz): 8.69 (d, J=2.0 Hz, 1H), 7.92 (d, J=8.4 Hz, 2H), 7.82 (dd, J1=2.4 Hz, J2=2.0 Hz, 1H), 7.55 (d, J=8.4 Hz, 1H), 6.98 (d, J=8.8 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 161.1, 155.7, 150.5, 139.7, 130.8, 128.4, 121.2, 118.7, 114.5, 55.7; MS (ESI): 264.0 [M+H]⁺; HRMS (ESI) [M+H]⁺ calcd for C₁₂H₁₁BrNO: 264.0019, found: 264.0012.

4.1.8. 5-Bromo-2-(4-fluorophenyl)pyridine (**3***f*). Compound **3***f*: white solid, mp 73–74 °C; ¹H NMR (CDCl₃, 400 MHz): 8.71 (d, J=2.4 Hz, 1H), 7.92–7.96 (m, 2H), 7.84 (dd, $J_1=2.4$ Hz, $J_2=2.0$ Hz, 1H), 7.55 (d, J=8.4 Hz, 1H), 7.14 (t, J=8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): 164.0 (d, J=247.6 Hz), 155.1, 150.9, 139.6, 134.6 (d, J=3.2 Hz), 128.9 (d, J=9.2 Hz), 121.5, 119.5, 116.1 (d, J=20.9 Hz); MS (ESI): 252.0 [M+H]⁺; HRMS (ESI) [M+H]⁺ calcd for C₁₁H₈BrFN: 251.9819, found: 251.9817.

4.1.9. 5-Bromo-2-(4-trifluoromethylphenyl)pyridine (**3g**). Compound **3g**: white solid, mp 109–110 °C; ¹H NMR (CDCl₃, 400 MHz): 8.76 (d, J=1.6 Hz, 1H), 8.07 (d, J=8.0 Hz, 2H), 7.90 (dd, J_1 =2.0 Hz, J_2 =2.4 Hz, 1H), 7.68 (dd, J_1 =8.4 Hz, J_2 =8.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): 154.5, 151.3, 141.8, 139.8, 131.5 (q, J=33.2 Hz), 127.3, 126.1 (q, J=3.6 Hz), 124.4 (d, J=270.4 Hz), 122.1, 120.6; MS (EI): 303.0 (M⁺); HRMS (EI) calcd for C₁₂H₇BrF₃N: 300.9714, found: 300.9711.

4.1.10. 3-Bromo-2-phenylpyridine (**3i**). Compound **3i**: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.62 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 7.98 (dd, J_1 =1.6 Hz, J_2 =1.6 Hz, 1H), 7.68 (dd, J_1 =1.6 Hz, J_2 =1.2 Hz, 2H), 7.40–7.48 (m, 3H), 7.12 (dd, J_1 =4.8 Hz, J_2 =4.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): 158.3, 148.2, 141.6, 139.6, 129.5, 129.0, 128.2,

Table 4

Scope of Pd-catalyzed 2-arylation of 2,4-dibromopyridine^{a,b}

1	4a	Br	3w	89
2	4b	Br	5a	91
3	4c	Br	5b	86
4	4d	Br	5c	95
5	4e	Br	5d	84
6	4f	Br	5e	93
7	4g	Br	5f	89
8	4h	Br Ph	5g	81
9	4i		5h	31
10	4j		5i	0

^a Compound **1h** (0.5 mmol), compound **4** (0.55 mmol), Pd(OAc)₂ (5 mol %), PPh₃ (20 mol %), KOH(1 mmol), CH₃CN, 24 h.

^b Isolated yield.

123.5, 122.1; MS (EI): 233.0 (M⁺); HRMS (EI) calcd for C₁₁H₈BrN: 232.9840, found: 232.9844.

4.1.11. 3-*Bromo-2-*(4-*methylphenyl*)*pyridine* (**3***j*). Compound **3***j*: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.60 (dd, J_1 =1.2 Hz, J_2 =1.6 Hz, 1H), 7.96 (dd, J_1 =1.6 Hz, J_2 =1.6 Hz, 1H), 7.59 (d, J=8.0 Hz,

Scheme 1. Application of the 4-bromo-2-phenyl-pyridine to the other reactions.

Scheme 2. Application of the 2,4-dibromopyridine to the inhibitor of 17β-HSD1 (11).

2H), 7.26 (d, J=7.6 Hz, 2H), 7.08–7.11 (m, 1H); 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 158.4, 148.2, 141.6, 139.0, 136.8, 129.5, 128.9, 123.3, 120.1, 21.6; MS (EI): 247.0 (M⁺); HRMS (EI) calcd for C₁₂H₁₀BrN: 246.9997, found: 246.9998.

4.1.12. 3-Bromo-2-(3-methylphenyl)pyridine (**3k**). Compound **3k**: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.61 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 7.96 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 7.48 (d, J=6.8 Hz, 2H), 7.34 (t, J=7.6 Hz, 1H), 7.24 (d, J=8.0 Hz, 1H), 7.11 (dd, J_1 =4.8 Hz, J_2 =4.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 158.5, 148.1, 141.5, 139.6, 137.9, 130.1, 129.7, 128.0, 126.6, 123.4, 120.1, 21.7; MS (EI): 247.0 (M⁺); HRMS (EI) calcd for C₁₂H₁₀BrN: 246.9997, found: 247.0001.

4.1.13. 3-*Bromo-2-(2-methylphenyl)pyridine* (**3***I*). Compound **3***I*: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.62 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 7.98 (dd, J_1 =0.8 Hz, J_2 =1.2 Hz, 1H), 7.15–7.35 (m, 5H), 2.14 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 159.8, 148.0, 140.7, 139.9, 135.9, 130.4, 128.9, 128.8, 125.8, 123.7, 121.6, 19.6; MS (EI): 247.0 (M⁺); HRMS (EI) calcd for C₁₂H₁₀BrN: 246.9997, found: 246.9996.

4.1.14. 3-Bromo-2-(4-methoxyphenyl)pyridine (**3m**). Compound **3m**: yellow solid, mp 61–62 °C; ¹H NMR (CDCl₃, 400 MHz): 8.59 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 7.96 (dd, J_1 =1.2 Hz, J_2 =1.6 Hz, 1H), 7.66–7.69 (m, 2H), 7.08 (dd, J_1 =4.8 Hz, J_2 =4.8 Hz, 1H), 6.98 (d, J=8.4 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 160.3, 157.9, 148.1, 141.7, 132.1, 131.0, 123.0, 119.9, 113.6, 55.5; MS (EI): 263.0 (M⁺); HRMS (EI) calcd for C₁₂H₁₀BrNO: 262.9946, found: 262.9950.

4.1.15. 3-Bromo-2-(4-fluorophenyl)pyridine (**3n**). Compound **3n**: white solid, mp 90–91 °C; ¹H NMR (CDCl₃, 400 MHz): 8.61 (dd, $J_1=1.2$ Hz, $J_2=1.2$ Hz, 1H), 7.98 (dd, $J_1=1.2$ Hz, $J_2=1.2$ Hz, 1H), 7.67–7.71 (m, 2H), 7.11–7.17 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): 163.2 (d, J=247.3 Hz), 157.3, 148.3, 141.7, 135.7 (d, J=3.2 Hz), 131.6 (d, J=8.2 Hz), 123.6, 120.0, 115.2 (d, J=22.0 Hz); MS (EI): 251.0 (M⁺); HRMS (EI) calcd for C₁₁H₇BrNF: 250.9746, found: 250.9744.

4.1.16. 3-Bromo-2-(4-trifluoromethylphenyl)pyridine (**30**). Compound **30**: white solid, mp 51–52 °C; ¹H NMR (CDCl₃, 400 MHz): 8.64 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 8.02 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 7.68 (dd, J_1 =8.0 Hz, J_2 =8.4 Hz, 4H), 7.19 (dd, J_1 =4.4 Hz, J_2 =4.4 Hz, 1H), ¹³C NMR (CDCl₃, 100 MHz): 157.0, 148.4, 143.1, 141.9, 131.0 (q, J=32.4 Hz), 130.1, 125.3 (q, J=3.6 Hz), 124.4 (d, J=270.4 Hz), 124.2, 120.0; MS (EI): 301.0 (M⁺); HRMS (EI) calcd for C₁₂H₇BrF₃N: 300.9714, found: 300.9716.

4.1.17. 3-Bromo-2-(4-nitrophenyl)pyridine (**3p**). Compound **3p**: white solid, mp 148–149 $^{\circ}$ C; ¹H NMR (CDCl₃, 400 MHz): 8.67 (d,

J=4.4 Hz, 1H), 8.32 (d, *J*=6.8 Hz, 2H), 8.04 (d, *J*=8.4 Hz, 1H), 7.88 (d, *J*=7.6 Hz, 2H), 7.23–7.27 (m, 1H); 13 C NMR (CDCl₃, 100 MHz): 156.1, 148.7, 148.1, 145.8, 141.9, 130.8, 124.6, 123.5, 120.0, MS (EI): 278 (M⁺); HRMS (EI) calcd for C₁₁H₇BrN₂O₂: 277.9691, found: 277.9690.

4.1.18. 5-Bromo-4-methyl-2-phenylpyridine (**3r**). Compound **3r**: colorless liquid; ¹H NMR (CDCl₃, 400 MHz): 8.68 (s, 1H), 7.93–7.95 (s, 2H), 7.57 (s, 1H), 7.38–7.47 (m, 3H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 156.3, 151.2, 147.7, 138.4, 129.4, 129.0, 127.0, 122.9, 122.3, 22.7; MS (EI): 249.1 (M⁺); HRMS (EI) calcd for $C_{12}H_{10}BrN$: 246.9997, found: 246.9999.

4.1.19. 5-Bromo-3-methyl-2-phenylpyridine (**3s**). Compound **3s**: colorless liquid; ¹H NMR (CDCl₃, 400 MHz): 8.58 (d, J=2.0 Hz, 1H), 7.73 (d, J=2.4 Hz, 1H), 7.39–7.50 (m, 5H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 157.4, 148.1, 140.9, 139.7, 132.9, 129.0, 128.5, 119.1, 20.1; MS (EI): 248.1 (M⁺); HRMS (EI) calcd for C₁₂H₉BrN: 245.9918, found: 245.9921.

4.1.20. 5-*Chloro-3-bromo-2-phenylpyridine* (**3***t*). Compound **3***t*: white solid, mp 60–61 °C; ¹H NMR (CDCl₃, 400 MHz): 8.58 (d, J=1.6 Hz, 1H), 8.00 (d, J=2.0 Hz, 1H), 7.64–7.67 (m, 2H), 7.42–7.48 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): 156.6, 147.1, 140.7, 138.7, 130.7, 129.5, 129.3, 128.3, 119.6; MS (EI): 268.9 (M⁺); HRMS (EI) calcd for C₁₁H₇BrClN: 266.9450, found: 266.9453.

4.1.21. 3,5-Dichloro-2-phenylpyridine (**3u**). Compound **3u**: white solid, mp 50–51 °C; ¹H NMR (CDCl₃, 400 MHz): 8.55 (d, J=2.4 Hz, 1H), 7.80 (d, J=2.0 Hz, 1H), 7.68–7.71 (m, 2H), 7.42–7.48 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): 154.9, 146.7, 137.7, 137.3, 130.7, 130.4, 129.5, 129.4, 128.4; MS (EI): 223.0 (M⁺); HRMS (EI) calcd for C₁₁H₇Cl₂N: 222.9956, found: 222.9954.

4.1.22. 3-*Chloro-5-trifluoromethyl-2-phenylpyridine* (**3v**). Compound **3v**: colorless liquid; ¹H NMR (CDCl₃, 400 MHz): 8.85 (s, 1H), 8.04 (d, J=1.6 Hz, 1H), 7.74–7.77 (m, 2H), 7.48–7.52 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): 160.2, 144.5 (m), 137.2 (d, J=2.2 Hz), 135.6, 130.5, 130.0, 129.7, 128.5, 126.4 (q, J=13.2 Hz), 123.0 (d, J=261.9 Hz); MS (EI): 257.1 (M⁺); HRMS (EI) calcd for C₁₂H₇ClF₃N: 257.0219, found: 257.0214.

4.1.23. 4-Bromo-2-phenylpyridine (**3w**). Compound **3w**: colorless liquid; ¹H NMR (CDCl₃, 400 MHz): 8.48 (d, J=5.2 Hz, 1H), 7.87–7.96 (m, 3H), 7.36–7.48 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): 159.0, 150.5, 138.1, 133.8, 129.9, 129.1, 127.2, 125.5, 124.1; MS (EI): 233.1 (M⁺); HRMS (EI) calcd for C₁₁H₈BrN: 232.9840, found: 232.9843.

4.1.24. 6-Bromo-2-(4-methoxyphenyl)pyridine (**3**x). Compound **3**x: white solid, mp 113–114 °C; ¹H NMR (CDCl₃, 400 MHz): 7.91–7.94 (m, 2H), 7.50–7.59 (m, 2H), 7.31–7.33 (m, 1H), 6.94–6.97 (m, 2H), 3.84 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 161.2, 158.5, 142.3, 139.1, 130.5, 128.6, 125.7, 118.4, 114.4, 55.6; MS (EI): 263.0 (M⁺); HRMS (EI) calcd for $C_{12}H_{10}BrNO$: 262.9946, found: 262.9951.

4.1.25. 2-Bromo-4-phenylpyridine (**C**). Compound **C**: white solid, mp 62–63 °C; ¹H NMR (CDCl₃, 400 MHz): 8.40 (d, *J*=5.2 Hz, 1H), 7.69 (d, *J*=0.8 Hz, 1H), 7.59 (dd, *J*₁=2.0 Hz, *J*₂=1.6 Hz, 2H), 7.44–7.51 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): 151.5, 150.6, 143.2, 137.0, 129.9, 129.5, 127.3, 126.1, 121.1; MS (EI): 233.0 (M⁺); HRMS (EI) calcd for C₁₁H₈BrN: 232.9840, found: 232.9842.

4.1.26. 2,4-Diphenylpyridine (**D**). Compound **D**: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.71 (d, *J*=5.6 Hz, 1H), 8.04 (d, *J*=7.2 Hz, 2H), 7.90 (s, 1H), 7.65–7.90 (m, 2H), 7.39–7.49 (m, 7H); ¹³C NMR (CDCl₃, 100 MHz): 158.3, 150.3, 149.5, 139.7, 138.8, 129.3 (d,

I=9.0 Hz), 129.0, 127.3 (d, *I*=3.1 Hz), 120.5, 119.0; MS (EI): 230.0 (M⁺); HRMS (EI) calcd for C₁₇H₁₃N: 231.1048, found: 231.1045.

4.1.27. 4-Bromo-2-(4-methylphenyl)pyridine (5a). Compound 5a: white solid, mp 60-61 °C; ¹H NMR (CDCl₃, 400 MHz): 8.46 (d, J=5.2 Hz, 1H), 7.84–7.86 (m, 3H), 7.25–7.34 (m, 3H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 159.0, 150.4, 140.0, 135.3, 133.7, 129.8, 127.1, 125.2, 123.8, 21.5; MS (EI): 249.1 (M⁺): HRMS (EI) calcd for C₁₂H₁₀BrN: 246.9997, found: 246.9999.

4.1.28. 4-Bromo-2-(3-methylphenyl)pyridine (5b). Compound 5b: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.48 (d, *J*=5.2 Hz, 1H), 7.87 (d, J=1.6 Hz, 1H), 7.79 (s, 1H), 7.72 (d, J=7.6 Hz, 1H), 7.33-7.37 (m, 2H), 7.24 (d, J=7.6 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 159.2, 150.4, 138.8, 138.1, 133.8, 130.7, 129.0, 127.9, 125.4, 124.4, 124.2, 21.7; MS (EI): 247.1 (M⁺); HRMS (EI) calcd for C₁₂H₁₀BrN: 246.9997, found: 246.9995.

4.1.29. 4-Bromo-2-(2-methylphenyl)pyridine (5c). Compound 5c: colorless liquid; ¹H NMR (CDCl₃, 400 MHz): 8.50 (d, *J*=5.2 Hz, 1H), 7.59 (d, J=1.6 Hz, 1H), 7.25–7.43 (m, 5H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 161.5, 150.0, 139.2, 136.1, 133.2, 131.1, 129.8, 129.1, 127.7, 126.2, 125.2, 20.5; MS (EI): 248.1 (M⁺); HRMS (EI) calcd for C₁₂H₉BrN: 245.9918, found: 245.9920.

4.1.30. 4-Bromo-2-(4-ethylphenyl)pyridine (5d). Compound 5d: colorless liquid; ¹H NMR (CDCl₃, 400 MHz): 8.47 (d, *J*=5.6 Hz, 1H), 7.86–7.89 (m, 3H), 7.25–7.35 (m, 3H), 2.70 (q, J=8.0 Hz, 2H), 1.26 (t, *I*=7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): 159.2, 150.5, 146.3, 135.7, 133.6, 128.7, 127.2, 125.2, 123.8, 28.9, 15.7; MS (EI): 261 (M⁺); HRMS (EI) calcd for C₁₃H₁₂BrN: 261.0153, found: 261.0155.

4.1.31. 4-Bromo-2-(4-methoxyphenyl)pyridine (5e). Compound 5e: yellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.44 (d, J=5.2 Hz, 1H), 7.91 (d, J=8.4 Hz, 2H), 7.82 (s, 1H), 7.30-7.32 (m, 1H), 6.98 (d, J=8.4 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 161.2, 158.7, 150.4, 133.6, 130.8, 128.6, 124.7, 123.3, 114.5, 55.6; MS (EI): 263.1 (M⁺); HRMS (EI) calcd for C₁₂H₁₀BrNO: 262.9946, found: 262.9950.

4.1.32. 4-Bromo-2-(4-phenylphenyl)pyridine (5f). Compound 5f: white solid, mp 105–106 °C; ¹H NMR (CDCl₃, 400 MHz): 8.52 (d, J=4.8 Hz, 1H), 8.04-8.06 (m, 2H), 7.94 (d, J=1.6 Hz, 1H), 7.64-7.73 (m, 4H), 7.38–7.49 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz): 158.7, 150.7, 142.7, 140.6, 137.1, 133.8, 129.1, 128.0, 127.8, 127.7, 127.4, 125.5, 124.0; MS (EI): 309.0 (M⁺); HRMS (EI) calcd for C₁₇H₁₂BrN: 309.0153, found: 309.0151.

4.1.33. 4-Bromo-2-(3-phenylphenyl)pyridine (5g). Compound 5g: colorless liquid; ¹H NMR (CDCl₃, 400 MHz): 8.52 (d, *J*=5.2 Hz, 1H), 8.19 (t, *J*=1.6 Hz, 1H), 7.92–7.95 (m, 2H), 7.66 (d, *J*=7.2 Hz, 3H), 7.24-7.56 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz): 159.1, 150.7, 142.2, 141.1, 138.8, 133.8, 129.6, 129.1, 128.7, 127.8, 127.5, 126.2, 126.1, 125.7, 124.3; MS (EI): 309 (M⁺); HRMS (EI) calcd for C₁₇H₁₂BrN: 309.0148, found: 309.0150.

4.1.34. 4-Bromo-2-(4-nitrophenyl)pyridine (5h). Compound 5h: yellow solid, mp 168–169 °C; ¹H NMR (DMSO-*d*₆, 400 MHz): 8.63 $(d, J=5.2 \text{ Hz}, 1\text{H}), 8.32-8.44 (m, 5\text{H}), 7.76 (d, J=3.6 \text{ Hz}, 1\text{H}); {}^{13}\text{C} \text{ NMR}$ (DMSO-d₆, 100 MHz): 155.2, 151.0, 148.0, 143.2, 133.6, 128.1, 126.9, 124.5, 123.9; MS (EI): 278.0 (M⁺); HRMS (EI) calcd for C₁₁H₇BrN₂O₂: 277.9691, found: 277.9690.

4.1.35. 2-Phenyl-4-(4-methylphenyl)pyridine (6). Compound 6: white solid, mp 95–96 °C; ¹H NMR (CDCl₃, 400 MHz): 8.71 (d, *J*=5.6 Hz, 1H), 8.04 (d, *J*=7.6 Hz, 2H), 7.91 (d, *J*=0.8 Hz, 1H), 7.31–7.59 (m, 6H), 7.26 (d, J=20 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 158.2, 150.1, 149.6, 139.6, 139.5, 135.7, 130.1, 129.3, 129.0, 127.3, 127.2, 120.3, 118.8, 21.5; MS (EI): 245.2 (M⁺); HRMS (EI) calcd for C₁₈H₁₅N: 245.1204, found: 245.1209.

4.1.36. 2-Phenyl-4-(4-methylphenylethynyl)pyridine (7). Compound 7: white solid, mp 121–122 °C; ¹H NMR (CDCl₃, 400 MHz): 8.66 (d, *I*=5.2 Hz, 1H), 8.01 (d, *I*=7.2 Hz, 2H), 7.82 (s, 1H), 7.42–7.50 (m, 5H), 7.31 (d, *I*=4.8 Hz, 1H), 7.18 (d, *I*=8.4 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 157.6, 149.6, 139.9, 138.8, 133.0, 132.1, 129.6 (d), 129.1, 127.2, 124.1, 122.8, 119.3, 94.7, 86.7, 21.9; MS (EI): 269.2 (M⁺); HRMS (EI) calcd for C₂₀H₁₅N: 269.1204, found: 269.1205.

4.1.37. 2-Phenyl-4-(4-methylphenoxy)pyridine (8). Compound 8: vellow liquid; ¹H NMR (CDCl₃, 400 MHz): 8.51 (d, *J*=6.0 Hz, 1H), 7.91 (d, J=7.2 Hz, 2H), 7.36-7.45 (m, 3H), 7.20-7.26 (m, 3H), 7.01 (d, J=8.4 Hz, 2H), 6.74 (dd, $J_1=2.4$ Hz, $J_2=2.8$ Hz), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 166.1, 159.8, 152.1, 151.3, 139.4, 135.2, 130.9, 129.3, 128.9, 127.2, 120.8, 110.7, 109.1, 21.1; MS (EI): 260.2 (M⁺); HRMS (EI) calcd for C₁₈H₁₅NO: 261.1154, found: 261.1156.

4.1.38. 2-Phenyl-4-(p-tolylthio)pyridine (9).¹ Compound 9: white solid, mp 84–85 °C; ¹H NMR (CDCl₃, 400 MHz): 8.40 (d, J=5.6 Hz, 1H), 7.86 (d, J=7.2 Hz, 2H), 7.36–7.47 (m, 6H), 7.26 (d, J=8.0 Hz, 2H), 6.83 (dd, J₁=1.2 Hz, J₂=1.2 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): 157.5, 151.9, 149.4, 140.3, 139.2, 135.5, 131.0, 129.3, 128.9, 127.2, 126.1, 119.3, 117.8, 21.6; MS (EI): 276.1 (M⁺); HRMS (EI) calcd for C₁₈H₁₅NS: 277.0925, found: 277.0930.

4.1.39. 4-Bromo-2-(5-chlorothiophen-2-vl)pvridine (10).¹ Compound 10: yellow solid, mp 69–70 °C; ¹H NMR (CDCl₃, 400 MHz): 8.32 (d, *J*=5.2 Hz, 1H), 7.70 (d, *J*=1.6 Hz, 1H), 7.28–7.31 (m, 2H), 6.91 (d, *J*=4.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): 153.2, 150.5, 142.1, 133.8, 133.6, 127.6, 125.5, 124.6, 121.5; MS (EI): 274.9 (M⁺); HRMS (EI) calcd for C₉H₅BrClNS: 272.9015, found: 272.9014.

4.1.40. 4-(3-Hydroxyphenyl)-2-(5-chlorothiophen-2-yl)pyridine (11).^{8b} Compound 11: yellow solid, mp 190–191 °C; ¹H NMR (CDCl₃, 400 MHz): 9.70 (s, 1H), 8.54 (d, *J*=5.2 Hz, 1H), 8.18 (s, 1H), ¹H NMR 7.91 (d, J=4.4 Hz, 1H), 7.54 (dd, J_1 =1.2 Hz, J_2 =1.2 Hz, 1H), 7.20–7.37 (m, 4H), 6.91–6.93 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): 158.9, 152.4, 150.7, 149.4, 144.6, 139.2, 131.4, 131.0, 129.1, 126.2, 121.1, 118.6, 117.3, 116.3, 114.7; MS (EI): 287.0 (M⁺); HRMS (EI) calcd for C₁₅H₁₀ClNOS: 287.0172, found: 287.0171.

Acknowledgements

This work was supported by the Natural Science Foundation of China (21172166, 21203135, and 21375092), China Postdoctor Foundation (2013M541456), The Science and Technology Plan Project of Zhejiang Province (2011C37055), and Taizhou Science Project (121ZD04).

Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.tet.2013.10.065.

References and notes

- 1. Dong, H.; Latka, R. T.; Driver, T. G. Org. Lett. 2011, 13, 2726–2729.
- 2. Mousseau, J. J.; Bull, J. A.; Charette, A. B. Angew. Chem., Int. Ed. 2010, 49, 1115-1118.
- Yuan, C.; Chang, C.; Siegel, D. J. Org. Chem. 2013, 78, 5647–5668.
 See some recent examples of C–H activation of 2-arylpyridines: (a) Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. **2013**, 135, 1264–1267; (b) Hofmann, N.; Ackermann, L.J. Am. Chem. Soc. **2013**, 135, 5877–5884; (c) Brasse, M.; Campora, J.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2013, 135, 6427–6430; (d) Pan, F.; Lei, Z.; Wang, H.; Li, H.; Sun, J.; Shi, Z. Angew. Chem., Int. Ed. 2013, 52,

2063–2067; (e) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. , Int. Ed. 2013, 52, 2207–2211; (f) Li, X.; Yu, S.; Wang, F.; Wan, B.; Yu, X. Angew. Chem., Int. Ed. 2013, 52, 2577–2580; (g) Aiso, H.; Kochi, T.; Mutsutani, H.; Tanabe, T.; Nishiyama, S.; Kakiuchi, F. J. Org. Chem. 2012, 77, 7718–7724.

- Tang, B.; Yu, F.; Li, P.; Tong, L.; Duan, X.; Xie, T.; Wang, X. J. Am. Chem. Soc. 2009, 131, 3016–3023.
- 6. Durben, S.; Baumgartner, T. Inorg. Chem. 2011, 50, 6823-6836.
- (a) Chi, C.; Chiang, C.; Liu, S.; Yueh, H.; Chen, C.; Chen, C. J. Mater. Chem. 2009, 19, 5561–5571; (b) Whittell, G. R.; Manners, I. Adv. Mater. 2007, 19, 3439–3468; (c) Yamaguchi, Y.; Kobayashi, S.; Miyamura, S.; Okamoto, Y.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. Angew. Chem. 2004, 116, 370–373; Angew. Chem., Int. Ed. 2004, 43, 366–369.
- (a) Sha, F.; Wu, L.; Huang, X. J. Org. Chem. 2012, 77, 3754–3765; (b) Oster, A.; Klein, T.; Werth, R.; Kruchten, P.; Bey, E.; Negri, M.; Marchais-Oberwinkler, S.; Frotscher, M.; Hartmann, R. W. Bioorg. Med. Chem. 2010, 18, 3494–3505; (c) Heim-Riether, A.; Taylor, S. J.; Liang, S.; Donghong, A. G.; Xiong, Z.; Michael, A. E.; Collins, B. K.; Farmer, B. T.; Haverty, K.; Hill-Drzewi, M.; Junker, H.-D.; Margarit, S. M.; Moss, N.; Neumann, T.; Proudfoot, J. R.; Keenan, L. S.; Sekul, R.; Zhang, Q.; Li, J.; Farrow, N. A. Bioorg. Med. Chem. Lett. 2009, 19, 5321–5324; (d) Sun, L.; Yang, Z.; Guo, H.; Pei, W. Chin. J. Org. Chem. 2012, 32, 624–626.
- (a) Aida, W.; Ohtsuki, T.; Li, X.; Ishibashi, M. *Tetrahedron* 2009, 65, 369–373; (b) Kitamura, A.; Tanaka, J.; Ohtani, I. I.; Higa, T. *Tetrahedron* 1999, 55, 2487–2492.
- (a) Hudson, Z. M.; Sun, C.; Helander, M. G.; Amarne, H.; Lu, Z.; Wang, S. Adv. Funct. Mater. 2010, 20, 3426–3439; (b) So, K. H.; Kim, R.; Park, H.;

Kan, I.; Thangaraju, K.; Park, Y. S.; Kim, J. J.; Kwon, S.; Kim, Y. *Dyes Pigm.* **2011**, *92*, 603–609; (c) Rao, Y.; Amarne, H.; Zhao, S.; McCormick, T. M.; Martić, S.; Sun, Y.; Wang, R.; Wang, S. *J. Am. Chem. Soc.* **2008**, *130*, 12898–12900; (d) Ismail, M. A.; Arafa, R. K.; Brun, R.; Wenzler, T.; Miao, Y.; Wilson, W. D.; Generaux, C.; Bridges, A.; Hall, J. E.; Boykin, D. W. *J. Med. Chem.* **2006**, *49*, 5324–5332; (e) Handy, S. T.; Wilson, T.; Muth, A. *J. Org. Chem.* **2007**, *72*, 8496–8500; (f) Wong, K.; Hwu, T.; Balaiah, A.; Chao, T.; Fang, F.; Lee, C.; Peng, Y. *Org. Lett.* **2006**, *8*, 1415–1418; (g) Burzicki, G.; Voisin-Chiret, A. S.; Sopková-de Oliveira Santos, J.; Rault, S. *Tetrahedron* **2009**, *65*, 5413–5417.

- (a) Sicre, C.; Alonso-Gómez, J.; Cid, M. M. *Tetrahedron* **2006**, *62*, 11063–11072;
 (b) Blackaby, W. P.; Atack, J. R.; Bromidge, F.; Castro, J. L.; Goodacre, S. C.; Hallett, D. J.; Lewis, R. T.; Marshall, G. R.; Pike, A.; Smith, A. J.; Street, L. J.; Tattersall, D. F. D.; Walford, K. A. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 1175–1179.
- (a) Ding, M.; He, F.; Poss, M. A.; Rigat, K. L.; Wang, Y.; Roberts, S. B.; Qiu, D.; Fridell, R. A.; Gao, M.; Gentlesa, R. G. Org. Biomol. Chem. 2011, 9, 6654–6662; (b) Dong, C.; Liu, T.; Hu, Q. Synlett 2009, 1081–1086.
- Zhou, Q.; Zhang, B.; Du, T.; Gu, H.; Ye, Y.; Jiang, H.; Chen, R. *Tetrahedron* 2013, 69, 327–333.
- Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.; Goddard, W. A., Ill; Ritter, T. J. Am. Chem. Soc. 2010, 132, 3793–3807.
- Garcia, Y.; Schoenebeck, F.; Legault, C. Y.; Merlic, C. A.; Houk, K. N. J. Am. Chem. Soc. 2009, 131, 6632–6639.