Discovery of Orally Available 8-Aza-5-thia Prostaglandin E_1 Analogs as Highly Selective EP4 Agonists

Tohru Kambe,* Toru Maruyama, Masayuki Nakano, Yoshiyuki Yamaura, Tomoyuki Shono, Akiteru Seki, Kiyoto Sakata, Takayuki Maruyama, Hisao Nakai, and Masaaki Toda

Minase Research Institute, Ono Pharmaceutical Co., Ltd.; Shimamoto, Mishima, Osaka 618–8585, Japan. Received August 29, 2011; accepted September 27, 2011; published online October 4, 2011

Analogs 8-aza-16-aryl prostaglandin E_1 (PGE₁) and 8-aza-5-thia-16-arylPGE₁ were synthesized and evaluated with respect to their subtype receptor affinity and EP4 agonist activity for the purposes of identifying subtype-selective EP4 agonists that demonstrate oral efficacy. Using an inhibition assay of lipopolysaccharide (LPS)induced tumor necrosis factor (TNF)- α production in rats, representative compounds were evaluated for their pharmacokinetic profiles and *in vivo* efficacy. Structure-activity relationships (SARs) were characterized and presented. Of the compounds tested, several demonstrated better oral exposure and/or *in vivo* efficacy compared with the previously reported analog 2a.

Key words prostaglandin; agonist; EP4-receptor; tumor necrosis factor- α

Prostanoids, which consist of prostaglandins (PGs) and thromboxanes (TXs), are derived from arachidonic acid *via* oxidative metabolism induced by cyclooxygenases. Once prostanoids are produced, they act on G-protein-coupled receptors in the tissues they were synthesized. Each of these receptors has been cloned, expressed, and characterized. Coleman *et al.* proposed that there are receptors specific for PGE, PGF, PGI, PGD, and TX, which were classified into EP, FP, IP, DP and TP receptors, respectively.¹⁾ They further classified the EP receptors into four subtypes (EP1, EP2, EP3 and EP4), all of which respond to PGE₂ in different ways. Characterization of these receptors at the molecular level has resulted in renewed interest in this field. As such, a number of ligands selective for each of these EP subtype receptors have been studied as potential therapeutics.

Stimulation of the EP4 receptor with PGE₂ leads to an increase in intracellular cyclic adenosine monophosphate (cAMP) levels, which has been suggested to be coordinated with the cytoprotective effects of PGE₂, such as protection of organs and/or tissue from damage. Highly potent EP4 subtype-selective receptor agonists have been suggested to have therapeutic potential without side effects, such as uterine contractions, which are considered to be mediated by the EP3 subtype. Previously, we discovered 5-thiaPGE₁ 1 (Fig. 1), a highly potent EP4 subtype selective agonist, which suppresses the lipopolysaccharide (LPS)-induced production of tumor necrosis factor (TNF)- α following its intravenous (i.v.) infusion.²⁾ However, **1** demonstrated a poor pharmacokinetic (PK) profile (*i.e.* bioavailability <1%), which was estimated to be mainly due to its metabolic instability and/or low membrane permeability (i.e. Caco-2 permeability of 1: $<10^{-7}$ cm/s). Thus, the development of a structurally novel and orally available EP4 subtype-selective agonist has been

warranted to serve as an orally available drug candidate. Several research groups have been investigating γ -lactam PGE analogs for the purpose of improving their chemical and metabolic stability.³⁻⁶⁾ In a previous report,⁷⁾ we identified γ lactam PGE analogs 2a and 3a (Fig. 1), as novel chemical leads for a class of chemically and metabolically stable EP4 receptor agonists, which have a ω -chain moiety 16-(3methoxymethyl)phenyl, based on previously reported data on cyclopentane PGE analogs.^{2,7)} To further optimize these compounds and potentially identify an orally available EP4 subtype selective agonist, we wanted to focus on chemically modifying the 16-phenyl moiety of 2a and 3a. Thus, an investigation on the optimal ω -chain moiety of the new γ -lactam scaffolds was conducted. Herein, we report on the discovery of more optimized EP4 receptor agonists, 3b, c and 3k, derived from the chemical leads 2a and 3a. The structure-activity relationships (SARs) of these novel analogs are presented.

Chemistry The synthesis of compounds 2a and 3a was reported in our previous paper.⁷⁾ The synthesis of test compounds listed in Table 1 is outlined in Charts 1a—e and 2a, b. Compounds 2b—j, 3b, 3d—i and 3j were synthesized as described in Chart 1a. 1-*N*-Alkyl 5-hydroxymethylpyrrolidin-2-ones 4a, b⁷⁾ were oxidized with a sulfur trioxide-pyridine complex in dimethyl sulfoxide (DMSO) and the presence of diisopropylethylamine to yield the corresponding aldehydes 5a, b, respectively. Horner–Emmons olefination of 5a, b using an optional phosphonate of 10a—j yielded 6a—c and 7a—h, respectively. A stereoselective reduction of these compounds with (*R*)-Me-CBS and borane-tetrahydrofuran (THF) complex yielded 8a—i and 9a—h, respectively. Alkaline hydrolysis of 8a—i and 9a—h resulted in 2b—j, 3b, 3d—i and 3j, respectively.

Fig. 1. The Reported Structures of Potent and Selective EP4 Agonists

* To whom correspondence should be addressed. e-mail: kanbe@ono.co.jp

Reagents: a) SO₃-Py, *i*-Pr₂NEt, DMSO, AcOEt; b) **10a**—**j**, NaH, THF; c) (*R*)-Me-CBS, BH₃-THF, THF; and d) aq. NaOH, MeOH, DME. Chart 1a. Synthesis of **2b**—**j**, **3b**, **3d**—**i** and **3j**

Reagents: a) N,O-dimethylhydroxylamine hydrochloride, EDC-HCl, Et₃N, CH₃CN; and b) dimethyl methylphosphonate, n-BuLi, toluene.

Chart 1b. Preparation of 10a-c, 10e, 10h, i and 10j

Phosphonates **10a**—I were prepared as outlined in Charts 1b—e. As shown in Chart 1b, commercially available phenylacetic acids were converted into corresponding Weinreb amides **18a**—c, **18e**, **18h**, **i** and **18j**, respectively, *via* peptide synthesis. They were then converted into phosphonates **10a**—c, **10e**, **10h**, **i** and **10j**, respectively, using a conventional procedure.

As shown in Chart 1c, phosphonates **10d** and **10k** were prepared from their corresponding phenylacetic acids using the same procedures described above. Esterification of a commercially available (*m*-bromophenyl)acetic acid followed by a treatment with alkenyl(tributyl)tin in the presence of *tetrakis*-triphenylphosphine palladium yielded methyl (*m*-alkenylphenyl)acetates **19a**, **b**. A catalytic hydrogenation of these compounds yielded methyl (*m*-alkylphenyl)acetates **20a**, **b**, respectively. Alkaline hydrolysis of **20a**, **b**, similar to that described above, resulted in **10d** and **10k**, respectively.

Phosphonates **10f**, **g** were prepared as shown in Chart 1d. Monosubstitution of the commercially available 1,3-bis(bromophenyl)benzene with sodium 2,2,2-trifluoroethoxide, followed by a palladium-catalyzed carbonyl insertion reaction in the presence of potassium carbonate and methanol yielded **21**, which was then converted into phosphonate **10f**, based on the same procedure described above. Monosubstitution of

1524

Reagents: a) MeI, K_2CO_3 , DMF, 86%; b) alkenyl(tributyl)tin, Pd(PPh_3)_4, toluene; c) H₂, Pd–C, MeOH; d) aq. NaOH, MeOH; e) *N*,*O*-dimethylhydroxylamine hydrochloride, EDC-HCl, Et₃N, CH₃CN; and f) dimethyl methylphosphonate, *n*-BuLi, toluene.

Chart 1c. Preparation of 10d and k

Chart 1d. Preparation of **10f** and **10g**

Reagents: a) 3,4-dihydro-2*H*-pyran, *p*-TsOH, CH₂Cl₂, 95%; b) *n*-BuLi, ethyl chloroformate, THF; c) *p*-TsOH, EtOH, 72%; d) (COCl)₂, DMSO, *i*-Pr₂NEt, CH₂Cl₂; e) MeMgBr, THF, 24%; f) (COCl)₂, DMSO, *i*-Pr₂NEt, CH₂Cl₂, 65%; g) NaH, DMF, 25%; h) aq NaOH, EtOH; i) *N*,*O*-dimethylhydroxylamine hydrochloride, EDC-HCl, Et₃N, CH₃CN; and j) dimethyl methylphosphonate, *n*-BuLi, toluene.

Chart 1e. Preparation of 101

1,3-bis(bromomethyl)benzene with potassium acetate, followed by a palladium-catalyzed carbonyl insertion reaction in the presence of potassium carbonate and methanol yielded **22**. A palladium-catalyzed vinylation of **22** with ethylvinyl ether in the presence of palladium diacetate and 1,10phenanthroline yielded **23**.⁸⁾ Simmons–Smith reaction of **23** with diiodomethane and diethylzinc yeilded **24**. Based on the same procedure described above, **24** was converted into **10**g.

Phosphonate 10I was prepared as shown in Chart 1e. *O*-Protection of the commercially available 4-butyn-1-ol as a tetrahydropyranyl ether, followed by ethoxycarbonylation with ethyl chloroformate in the presence of *n*-butyllithium yielded 25. An acidic deprotection 25 yielded 26. Swern oxidation of 26, followed by methylation of the produced aldehyde with a methyl Grignard reagent yielded 27, and a re-

peated Swern oxidation of **27** resulted in a methyl ketone **28**. Treatment of **28** with sodium hydride in *N*,*N*-dimethyl-formamide yielded (5-methyl)furan-2-yl acetic acid **29**,⁹⁾ which was then converted into **101**, similarly as described above.

The synthesis of 3c and k is described in Chart 2a. Alcoholysis followed by an *S*-alkylation of 1-*N*-alkyl 5-*tert*-butyl-dimethylsilyloxymethylpyrrolidin-2-one 11 with an iodide 17, as described in Chart 2b, yielded 12, and deprotection of 12 with tetra-butylammonium fluoride (TBAF) yielded 13. Oxidation of 13 produced an aldehyde 14, which was easier to extract with an organic solvent, as it is more hydrophobic than the above mentioned corresponding methyl and ethyl esters 5a, b. A Horner–Emmons olefination of 14 with phosphonates 10k, l yielded enones 15a, b, respectively, and

Reagents: a) **17**, KO'Bu, *n*-butanol, THF; b) TBAF, THF, 80% in 2 steps; c) SO₃-Py, *i*-Pr₂NEt, DMSO, AcOEt; d) **10k**, **l**, NaH, THF; e) (*R*)-Me-CBS, BH₃-THF, THF; and f) aq NaOH, MeOH, DME.

Chart 2a. Synthesis of 3c and k

Reagents: g) SOCl₂, n-butanol, 100%; and h) NaI, CH₃CN, 100%.

Chart 2b. Preparation of 17

stereoselective reduction of enones 15a, b with (*R*)-Me-CBS and borane–THF complex resulted in the desired diastereoisomers 16a, b, respectively. Alkaline hydrolysis of 16a, b yielded carboxylic acids 3c and 3k, respectively.

Results and Discussion

The compounds listed in Table 1 were evaluated for their binding affinity for mouse EP receptor subtypes. The agonist activities of these compounds on each of the EP4 receptor subtype were also evaluated.

Results are summarized in Table 1. Design and synthesis of 16-(2-methyl)phenyl, 16-(3-methyl)phenyl and 16-(4-methyl)phenyl analogs resulted in **2b**—**d**, respectively, with good to excellent EP4 subtype selectivity. Among the tested isomers, *meta*-isomer **2c** demonstrated the most potent receptor affinity and agonist activity for EP4 subtype, while 5-thia analog **3b** demonstrated equipotent receptor affinity and agonist activity with **2c**. *para*-Isomer **2d** demonstrated a 41-fold less potent EP4 affinity in comparison to **2c**, while *ortho*-isomer **2b** demonstrated a 94-fold less potent affinity. As a result, *ortho-* and *para*-substitution of the 16-phenyl moiety appears to be deleterious in EP4 receptor affinity. Based on these findings, more analogs, specifically **2e**, **f**, which possess a 16-(3-substituted)phenyl moiety, were synthesized and evaluated. Both analogs exhibited very potent

affinity and subtype-selectivity for EP4 receptor, however there was a significant reduction in their agonist activity for their very potent receptor affinity. Meanwhile, 16-(3alkyl)phenyl 5-thia analogs 3c, d demonstrated very potent activity in both receptor affinity and agonist activity. A reduction in the agonist activity of 3c, d was much lower compared with 5-methylene analogs 2e, f, respectively. Furthermore, 5-thia analogs 3b-d appeared to have more potent agonist activities than 5-methylene analogs 2c and 2e, f, respectively, while their EP4 receptor affinity did not differ between the two series of analogs. Similar SARs were also observed between 2g, h and 3e, f. Thus, an introduction of a 5-thia moiety appears to be effective in preventing a reduction in agonist activity due to presumed potential increase in the lipophilicity and/or bulkiness of the meta-substituent, as illustrated by the SARs of 2c, 2e—h and 3b—f.

Interestingly, 5-thia-16-(3-fluoro)phenyl and 5-thia-16-(3chloro)phenyl analogs **3h**, **i**, and 5-methylene analogs **2i**, **j** demonstrated completely opposite SARs, respectively, as shown in Table 1. The reason why the 5-thia-16-(3-fluoro)phenyl analog **3h** exhibited reduced agonist activity relative to the corresponding 5-methylene analog **2i** is still not clear while the decreased agonist activity of 5-thia-16-(3-chloro)phenyl analog **3i** relative to that of the corresponding 5-methylene analog **2j** seemed to be due to the decreased EP4 receptor affinity of **3i** relative to **2j**. Thus, 16-(3-fluoro)phenyl analogs **2i** and **3h** may have different SARs from 16-(3alkyl)phenyl analogs.

The synthesis and evaluation of an 16-(3-cyclopropyloxymethyl)phenyl 5-thia analog **3g** resulted in the equipotency and subtype-selectivity that were similar to its structurally-related compounds **3a** and **3f**. The effects of replacing the terminal 16-phenyl moiety in the more optimized 5-thia

Table 1. Activity Profiles of 8-AzaPGE₁ Analogs

Compound	O V V V CO ₂ H		Binding assay (K_i , nM)				Functional assay
	Y	Ar OH Ar	mEP1	mEP2	mEP3	mEP4	(ЕС ₅₀ , пм) mEP4
2a 3a	$_{\rm S}^{\rm CH_2}$	OMe	$> 10^4$ $> 10^4$	$> 10^4$ 8500	$>10^4$ $>10^4$	10 8.0	24 24
2b	CH_2	н,с	$> 10^{4}$	$> 10^{4}$	$> 10^{4}$	170	NT
2c 3b	${ m CH_2 \atop S}$	CH ₃	$> 10^4$ $> 10^4$	$>10^4$ $>10^4$	$>10^4$ 5800	1.8 1.8	44 29
2d	CH_2	СН,	$> 10^{4}$	$> 10^{4}$	1100	73	830
2e 3c	$\overset{\rm CH_2}{\rm S}$	CH3	$> 10^4$ $> 10^4$	>10 ⁴ 3100	$>10^4$ 560	0.8 0.7	2500 9.7
2f 3d	$\overset{\rm CH_2}{\rm S}$	CH3	$> 10^4$ $> 10^4$	$>10^4$ 2000	$>10^4$ 500	1.0 0.7	480 48
2g 3e	${ m CH_2 \atop S}$	CF3	$> 10^4$ $> 10^4$	$>10^4$ 7500	$>10^4$ 920	1.1 1.0	350 27
2h 3f	CH_2 S	0^CF3	$> 10^4$ $> 10^4$	$>10^4$ $>10^4$	$> 10^4$ $> 10^4$	6.0 5.3	110 49
3g	S	~~~~~	$> 10^{4}$	4400	$> 10^{4}$	2.3	35
2i 3h	$\overset{\rm CH_2}{\rm S}$	F	$> 10^4$ $> 10^4$	$> 10^4$ $> 10^4$	1500 431	2.0 0.84	79 480
2j 3i	$\overset{\rm CH_2}{\rm S}$) C) a	$> 10^4$ $> 10^4$	$>10^4$ 6900	$510 > 10^4$	1.6 9.0	74 144
3j	S	` ∑ S	$> 10^{4}$	$> 10^{4}$	550	3.6	11
3k	S	CH3	$> 10^{4}$	$> 10^{4}$	140	1.5	3.3

NT=not tested.

Table 2. Metabolic Stability in Liver Microsomes and Pharmacokinetic Profiles of the Representative Analogs

Compound	Stability in liver microsomes		Pharmacokinetic parameter				
	% remaining in RLM ^{a)}	% remaining in HLM ^{b)}	$C_{\rm max}$ (µg/ml)	$AUC_{p.o.}$ (μ g/h/ml)	CL _{tot} (ml/h/kg)	BA (%)	$c \log P$
2a	NT	72 ^c)	41	160	35	$1.2^{e_{j}}$	1.7
3b	100	93 ^{<i>d</i>})	117	343	32	11^{f}	2.2
3c	84	91 ^{<i>d</i>})	205	717	26	12^{f}	2.8
3k	85	93 ^{<i>d</i>})	2.7	11	33	2.8 ^{g)}	1.4

a) RLM: rat liver microsomes. b) HLM: human liver microsomes. c) Liver microsomes, 1 mg/ml, incubation time, 60 min. d) Liver microsomes, 0.5 mg/ml, incubation time, 15 min. e) 1 mg/kg, i.v., 25 mg/kg, p.o. f) 1 mg/kg, i.v., 10 mg/kg, p.o. g) 0.75 mg/kg, i.v., 0.75 mg/kg, p.o. NT=not tested.

analogs with five-membered heterocyclic rings, such as thiophene and furan, on their activity profiles were also investigated. Replacement of the 16-phenyl moiety with 16-(thiophen-2-yl) and 16-(5-methylfuran-2-yl) moieties in these 5-thia analogs yielded 3j and k, respectively. Both analogs demonstrated very potent EP4 receptor affinity with good agonist activity. In particular, 3k exhibited the most potent agonist activity of all tested analogs.

Of the compounds tested, analogs **3b** and **3c** demonstrated

improved PK profiles ($C_{\rm max}$ and AUC) and bioavailability compared with **2a** (Table 2). The membrane permeability of **3b**, **c** may, in part, improve their lipophilicity, and thereby their PK profiles and bioavailability. Conversely, the poor PK profile of **3k** may be a result of its relatively lower $C_{\rm max}$ and oral exposure (AUC), which may be due to its poor membrane permeability, as it has greater hydrophilicity. Furthermore, given that **3b**, **c** and **3k** were metabolically stable in rat liver microsomes (RLM) and human liver microsomes

Compound	Functional assay	% inhibition of TNF- α production						
	rЕР4 (EC ₅₀ , nм)	Dose (µg/kg, <i>p.o.</i>)	10	30	100	300	1000	
2a	15					34	69	
3b	5.7			29	64	81		
3c	3.0			18	63	82		
3k	0.69		25	51	79			

Table 3. Agonist Activity of 2a, 3b, c and 3k in Rat CHO Cells and Inhibition of LPS-Induced TNF-α Production in Rats

(HLM), these analogs may have been cleared through other metabolic pathways, such as b-oxidation, conjugation or excretion. Since our objective was to discover an orally available EP4 subtype selective agonist, we evaluated the biological properties of the developed compounds in an *in vivo* inhibition assay for LPS-induced TNF- α production in rats (Table 3). Additionally, prior to assessing the *in vivo* efficacy of EP4 subtype-selective agonists **2a**, **3b**, **c**, and **3k**, their pharmacokinetic profiles and intracellular cAMP production were evaluated in rat Chinese hamster ovary (CHO) cells expressing EP4-receptors. The results from these experiments are summarized in Table 3.

Lastly, **2a** demonstrated an ED₅₀ at *ca*. 1000 μ g/kg *per os* (*p.o.*), while **3b**, **c**, and **3k** demonstrated relatively higher *in vivo* potencies. Thus, an introduction of a sulfur atom in the 5-position, followed by chemical modification of the 16-phenyl moiety, resulted in enhanced *in vivo* efficacy. In particular, analog **3k** demonstrated a more potent *in vivo* efficacy (ED₅₀: 30 μ g/kg, *p.o.*) compared with **2a** and **3b**, **c**. The significantly more potent functional activity of **3k** compared with other analogs was considered to be one of the plausible reasons of its higher *in vivo* efficacy.

Conclusion

In conclusion, a series of 8-aza-16-arylPGE₁ and 8-aza-5thia-16-arylPGE₁ analogs were synthesized and investigated for their subtype receptor affinity and EP4 agonist activity. 16-(*meta*-Alkyl)phenyl analogs demonstrated excellent EP4 subtype-selectivity *via* binding assays. The discovery of **3b**, **c** and **3k**, which showed more improved bioavailability and/or *in vivo* efficacy compared with **2a**, was presented. Additionally, we found interesting SARs between two series of analogs, 5-methylene and 5-thia.

Based on our findings, the newly discovered subtypeselective EP4 agonists could have potential therapeutic benefits for the treatment of diseases, such as rheumatoid arthritis, inflammatory bowel disease, Crohn's disease and psoriasis, in which plasma TNF- α level are higher than normal.

Experimental

Analytical samples were homogeneous as confirmed by TLC, and afforded spectroscopic results consistent with the assigned structures. Proton nuclear magnetic resonance spectra (¹H-NMR) were taken on a Varian Mercury 300 spectrometer, Varian GEMINI-200 or VXR-200s spectrometer using deuterated chloroform (CDCl₃) and deuterated methanol (CD₃OD) as the solvent. Fast atom bombardment (FAB-MS, HR-MS) and electron ionization (EI) mass spectra were obtained on a JEOL JMS-DX303HF spectrometer. Atmospheric pressure chemical ionization (APCI) mass spectra (IR) were measured in a Perkin-Elmer FT-IR 1760X spectrometer. Melting points and results of elemental analyses were uncorrected. Column chromatography was carried out on silica gel [Merck Silica Gel 60 (0.063–0.200 μ m), Wako gel C-200, or Fuji Silysia FL60D]. Thin layer chromatography was

performed on silica gel (Merck TLC or HPTLC plates, Silica Gel 60 F_{254}). The following abbreviations for solvents and reagents are used; diethyl ether (Et₂O), *N*,*N*-dimethylformamide (DMF), dimethylsulfoxide (DMSO), ethanol (EtOH), ethyl acetate (EtOAc), methanol (MeOH), tetrahydrofuran (THF), methanol (MeOH), dichloromethane (CH₂Cl₂), chloroform (CHCl₃), dimethoxyethane (DME), acetonitrile (CH₃CN), sulfur trioxide/pyridine complex (SO₃-Py), 4-(dimethylamino)pyridine (DMAP), tetrabutylammonium fluoride (TBAF).

N-Methoxy-*N***-methyl-2-(2-methylphenyl)acetamide (18a)** To a stirred solution of *N*,*O*-dimethyl hydroxylamine hydrochloride (3.90 g, 40.0 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (6.64 g, 34.6 mmol) and triethylamine (5.6 ml, 40.0 mmol) in CH₃CN (15 ml) was added a solution of (2-methylphenyl)acetic acid (4.00 g, 26.6 mmol) in CH₃CN (17 ml) at room temperature under argon atmosphere. After being stirred for 1 h, the reaction was quenched with water. The reaction mixture was diluted with EtOAc, washed with $2 \times$ HCl, water, then brine, and dried over MgSO₄. The organic solvent was removed by evaporation to give a Weinreb amide **18a** as a colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ : 7.24—7.07 (m, 4H), 3.77 (s, 2H), 3.61 (s, 3H), 3.21 (s, 3H), 2.31 (s, 3H).

3-(2-Methylphenyl)-2-oxopropanephosphonate (10a) To a stirred solution of dimethyl methylphosphonate (4.0 ml, 37.3 mmol) in toluene (80 ml) was added dropwise a solution of *n*-BuLi (1.57 M in hexane, 37.3 mmol) at $-78 \,^{\circ}\text{C}$ under argon atmosphere, and stirring was continued for 1 h at the same temperature. To the reaction mixture was added a solution of **18a** (26.6 mmol) in toluene (50 ml), and stirring was continued for additional 2 h at the same temperature. The reaction was quenched with acetic acid. The reaction mixture was allowed to warm up to room temperature with stirring. The reaction mixture was diluted with EtOAc, washed with water, then brine, and dried over MgSO₄. The solvent was removed by evaporation and the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc, 3/2—0/1) to give a phosphonate **10a** as a pale yellow oil (4.19 g, 61% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.23—7.10 (m, 4H), 3.92 (s, 2H), 3.81 (s, 3H), 3.77 (s, 3H), 3.11 (d, *J*=22.8 Hz, 2H), 2.25 (s, 3H).

Ethyl 7-[(2*R*)-2-{(1*E*,3*S*)-3-Hydroxy-4-[2-methylphenyl]-1-buten-1yl}-5-oxo-1-pyrrolidinyl]heptanoate (8a) To a stirred solution of the alcohol 4a (400 mg, 1.47 mmol) in EtOAc (3.5 ml) and diisopropylethylamine (1.5 ml, 8.84 mmol) was added a solution of SO₃-Py (704 mg, 4.42 mmol) in DMSO (2.5 ml) at 0 °C under argon atmosphere. After being stirred at the same temperature for 20 min, the reaction was quenched with 1 N HCl. The reaction mixture was exracted with EtOAc three times, washed with saturated aqueous NaHCO₃, brine, and dried over MgSO₄. The organic solvent was removed by evaporation to yield an aldehyde 5a as a pale yellow oil.

To a stirred solution of dimethyl 3-[(3-methylphenyl]-2-oxopropanephosphonate **10a** (264 mg, 1.03 mmol) in THF (10 ml) was added sodium hydride (63% in mineral oil, 35.0 mg, 0.884 mmol) in several portions at 0 °C under argon atmosphere. After being stirred at ambient temperature for 90 min, to this stirred suspension was added a solution of the above-described aldehyde **5a** in THF (1 ml) at 0 °C and stirring was continued for 2 h. The reaction mixture was quenched with acetic acid. The resulting solution was diluted with EtOAc, washed with water, then brine, and dried over MgSO₄. The solvent was removed by evaporation to give an enone **6a** as a pale yellow oil.

To a stirred solution of **6a** in THF (4.0 ml) was added a solution of (*R*)-2methyl-CBS-oxazaborolidine (1.0 M in toluene, 0.184 ml, 0.184 mmol) at room temperature under argon atmosphere. To this reaction mixture was added dropwise a solution of borane-THF complex (1.0 M in THF, 0.44 ml, 0.442 mmol) in 5 min. The resulting solution was stirred for 1 h, then treated with MeOH (0.3 ml) and stirring was continued for 5 min. The reaction mixture was diluted with EtOAc, washed with 1 N HCl, water, saturated NaHCO₃, brine, and dried over Na₂SO₄. The solvent was removed by evaporation, and the resulting residue was purified by column chromatography on silica gel (CHCl₃/MeOH, 70/1) to give an alcohol **8a** as a yellow viscous oil (183 mg, 62%). ¹H-NMR (300 MHz, CDCl₃) *5*: 7.30—7.05 (m, 4H), 5.75 (dd, *J*=15.3, 6.0 Hz, 1H), 5.50 (dd, *J*=15.3, 8.6 Hz, 1H), 4.40 (m, 1H), 4.11 (q, *J*=7.2 Hz, 2H), 4.03 (m, 1H), 3.45 (m, 1H), 2.86 (d, *J*=6.9 Hz, 2H), 2.71 (m, 1H), 2.44—2.10 (m, 6H), 2.34 (s, 3H), 1.90—1.18 (m, 12H).

7-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(2-methylphenyl)but-1-enyl]-5-oxopyrrolidin-1-yl}heptanoic Acid (2b) A solution of 8a (130 mg, 0.324 mmol) in EtOH (0.3 ml), DME (0.1 ml) and 2 N NaOH (0.39 ml) was stirred at ambient temperature for 10 h. After neutralization with 2 N HCl (0.4 ml) under cooling, the reaction mixture was extracted with EtOAc three times, and the organic layer was washed with brine, dried over Na₂SO₄. The organic solvent was removed by evaporation. The resulting residue was purified by column chromatography on silica gel (CHCl₃/MeOH, 50/1—20/1) to afford 2b as a colorless oil (99 mg, 82%). IR (film): 2934, 2361, 1718, 1655, 1492, 1459, 1421, 1262, 1106, 1030, 974, 912, 746 cm⁻¹; ¹H-NMR (200 MHz, CDCl₃) δ: 7.28—7.00 (m, 4H), 5.76 (dd,** *J***=15.2, 6.0Hz, 1H), 5.49 (ddd,** *J***=15.2, 8.4, 0.6 Hz, 1H), 4.42 (m, 1H), 4.04 (m, 1H), 3.46 (m, 1H), 2.87 (d,** *J***=7.0 Hz, 2H), 2.72 (m, 1H), 2.50—2.04 (m, 6H), 2.34 (s, 3H), 1.85—1.10 (m, 9H); MS (APCI)** *m/z***: 372 (M−H)[−]; HR-MS-FAB (***m/z***): [M−H][−] Calcd for C₂₂H₃₀NO₄, 372.2175; Found: 372.2180.**

N-Methoxy-*N*-methyl-2-(3-methylphenyl)acetamide (18b) Compound 18b was prepared from (3-methylphenyl)acetic acid according to the same procedure as described of 18a from (2-methylphenyl)acetic acid as a pale yellow oil. ¹H-NMR (300 MHz, CDCl₃) δ : 7.21 (m, 1H), 7.11—7.04 (m, 3H), 3.73 (s, 2H), 3.61 (s, 3H), 3.19 (s, 3H), 2.33 (s, 3H).

3-(3-Methylphenyl)-2-oxopropanephosphonate (10b) Compound **10b** was prepared from **18b** according to the same procedure as described of **10a** from **18a** as a pale yellow oil (yield 74% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.23 (m, 1H), 7.10—7.00 (m, 3H), 3.85 (s, 2H), 3.80 (s, 3H), 3.77 (s, 3H), 3.10 (d, *J*=22.5 Hz, 2H), 2.34 (s, 3H).

Ethyl 7-{(2R)-2-[(1E,3S)-3-Hydroxy-4-(3-methylphenyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}heptanoate (8b) Compound 8b was prepared from 5a using 10b instead of 10a according to the same procedure as described of 8a from 5a as a pale yellow oil (yield 56% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.25 (m, 1H), 7.07—6.98 (m, 3H), 5.73 (dd, J=15.3, 5.7 Hz, 1H), 5.50 (dd, J=15.3, 8.4 Hz, 1H), 4.40—4.38 (m, 1H), 4.11 (q, J=7.2 Hz, 2H), 4.15—3.99 (m, 2H), 3.52—3.42 (m, 1H), 2.81—2.68 (m, 3H), 2.34 (s, 3H), 2.34 (s, 3H), 2.40—2.10 (m, 6H), 1.80—1.20 (m, 8H), 1.25 (t, J=7.2 Hz, 3H).

7-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-methylphenyl)-1-buten-1-yl]-5oxo-1-pyrrolidinyl}heptanoate (2c)** Compound 2c was prepared from 8b according to the same procedure as described of 2b from 8a as a pale yellow oil (yield 99%). IR (KBr): 3389, 2932, 2860, 1713, 1644, 1463, 1422, 1378, 1264, 1101, 1037, 974, 885, 784, 749, 702, 666 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.22—7.17 (m, 1H), 7.07—6.98 (m, 3H), 5.74 (dd, *J*=15.3, 5.7 Hz, 1H), 5.50 (ddd, *J*=15.3, 8.4, 1.2 Hz, 1H), 4.41 (m, 1H), 4.03 (m, 1H), 3.47 (m, 1H), 2.90—2.70 (m, 3H), 2.40—2.10 (m, 6H), 2.33 (s, 3H), 1.76—1.22 (m, 9H); MS (APCI) *m/z*: 372 (M-H)⁻; HR-MS-FAB (*m/z*): [M-H]⁻ Calcd for C₂₂H₃₀NO₄, 372.2175; Found: 372.2180.

Methyl 4-{(2-{(2R)-2-[(1E)-4-(3-Methylphenyl)-3-oxo-1-buten-1-yl]-5oxo-1-pyrrolidinyl}ethyl)thio}butanoate (9a) Compound 9a was prepared from 5b using 10b instead of 10a according to the same procedure as described of 8a from 5a as a pale yellow oil (227 mg, 49% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.30—7.00 (m, 4H), 5.77 (dd, J=15.6, 6.0 Hz, 1H), 5.52 (ddd, J=15.6, 8.4, 0.9 Hz, 1H), 4.40 (m, 1H), 4.12 (m, 1H), 3.67 (s, 3H), 3.62 (m, 1H), 3.00—2.20 (m, 12H), 2.34 (s, 3H), 2.00—1.60 (m, 3H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-methylphenyl)but-1-enyl]-5oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3b)** Compound 3b was prepared from 9a according to the same procedure as described of 2b from 8a as a pale yellow oil (yield 99%). IR (KBr): 3362, 2922, 1726, 1660, 1487, 1447, 1419, 1361, 1232, 1161, 1100, 1036, 975, 909, 884, 855 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) &: 7.21 (m, 1H), 7.07—6.98 (m, 3H), 5.78 (dd, J=15.3, 5.4 Hz, 1H), 5.52 (ddd, J=15.3, 8.7, 1.2 Hz, 1H), 4.43 (m, 1H), 4.11 (m, 1H), 3.62 (m, 1H), 2.95 (m, 1H), 2.83—2.20 (m, 11H), 2.34 (S, 3H), 2.00—1.80 (m, 2H), 1.70 (m, 1H); MS (APCI) *m/z*: 390 (M-H)⁻; HR-MS-FAB (*m/z*): [M-H]⁻ Calcd for C₂₁H₂₈NO₄S, 390.1739; Found: 390.1736.

N-Methoxy-N-methyl-2-(4-methylphenyl)acetamide (18c) Compound **18c** was prepared from (4-methylphenyl)acetic acid according to the same procedure as described of **18a** from (2-methylphenyl)acetic acid as a pale yellow oil. ¹H-NMR (300 MHz, CDCl₃) δ : 7.18 (d, *J*=8.2 Hz, 2H), 7.12 (d, *J*=8.2 Hz, 2H), 3.74 (s, 2H), 3.61 (s, 3H), 3.18 (s, 3H), 2.36 (s, 3H).

3-(4-Methylphenyl)-2-oxopropanephosphonate (10c) Compound 10c

was prepared from **18c** according to the same procedure as described of **10a** from **18a** as a pale yellow oil (yield 70% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.18—7.08 (m, 4H), 3.84 (s, 2H), 3.82 (s, 3H), 3.75 (s, 3H), 3.10 (d, *J*=22.5 Hz, 2H), 2.34 (s, 3H).

Ethyl 7-{(2*R*)-2-[(1*E*,3*S*)-3-Hydroxy-4-(4-methylphenyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}heptanoate (8c) Compound 8c was prepared from 5a using 10c instead of 10a according to the same procedure as described of 8a from 5a as a pale yellow oil (yield 52% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.12 (d, J=8.2 Hz, 2H), 7.08 (d, J=8.2 Hz, 2H), 5.72 (dd, J=15.4, 6.0 Hz, 1H), 5.47 (dd, J=15.4, 8.5 Hz, 1H), 4.38 (m, 1H), 4.13 (q, J=7.1 Hz, 2H), 4.04 (m, 1H), 3.46 (m, 1H), 2.80 (d, J=6.9 Hz, 2H), 2.70 (m, 1H), 2.40, -2.32 (m, 2H), 2.33 (s, 3H), 2.27 (t, J=7.4 Hz, 2H), 2.12 (m, 1H),1.71 (m, 1H), 1.67—1.58 (m, 2H), 1.49—1.20 (m, 6H), 1.23 (t, J=7.1 Hz, 3H).

7-{(2*R***)-2-((1***E***,3***S***)-3-Hydroxy-4-(4-methylphenyl)-1-buten-1-yl]-5oxo-1-pyrrolidinyl}heptanoate (2d)** Compound 2d was prepared from 8b according to the same procedure as described of **2b** from **8a** as a white powder (yield 83%). IR (KBr): 3223, 2935, 2862, 1723, 1660, 1513, 1459, 1422, 1378, 1328, 1264, 1241, 1190, 1151, 1111, 1034, 1007, 983, 912, 854, 811, 765, 726, 710, 570, 557, 485 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.12 (d, J=8.2 Hz, 2H), 7.07 (d, J=8.2 Hz, 2H), 5.73 (dd, J=15.38, 4.8 Hz, 1H), 5.47 (dd, J=15.4, 8.8 Hz, 1H), 4.38 (m, 1H), 4.03 (m, 1H), 3.46 (m, 1H), 2.81 (d, J=6.9 Hz, 2H), 2.72 (m, 1H), 2.40—2.27 (m, 4H), 2.34 (s, 3H), 2.21 (m, 1H), 1.72 (m, 1H), 1.67—1.58 (m, 2H), 1.50—1.18 (m, 6H); MS (APCI) *m/z*: 372 (M−H)⁻; HR-MS-FAB (*m/z*): [M−H]⁻ Calcd for C₂₇H₄₀NQ₄, 372.2175; Found: 372.2160.

(3-Vinylphenyl)acetate (19a) To a stirred solution of (3-bromophenyl)acetic acid (10.0 g, 46.5 mmol) and potassium carbonate (19.3 g, 140 mmol) in DMF (200 ml) was added methyl iodide (8.7 ml, 140 mmol) at room temperature under argon atmosphere. After being stirred at room temperature for 12 h, the reaction mixture was diluted with EtOAc (50 ml) and hexane (100 ml), washed with H₂O twice, brine, and dried over MgSO₄. The organic solvent was removed by evaporation and the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc, 5/1) to give an ester as a colorless oil (9.14 g, 86%). ¹H-NMR (300 MHz, CDCl₃) δ : 7.49— 7.37 (m, 2H), 7.21—7.17 (m, 2H), 3.74 (s, 3H), 3.60 (s, 2H).

To a stirred solution of above-described ester (5.0 g, 21.8 mmol) in toluene (40 ml) were added vinyltributyltin (6.7 ml, 22.9 mmol) and tetrakis(triphenylphosphine)palladium (504 mg, 0.44 mmol) at under argon atmosphere. After being stirred at 110 °C for 2 h, the reaction mixture was cooled to room temperature. The resulting mixture was filtered through a pad of Celite, and the filtrate was evaporated and purified by column chromatography on silica gel (hexane/EtOAc, 20/1—5/1) to afford **19a** as a colorless oil (3.17 g, 82%). ¹H-NMR (300 MHz, CDCl₃) δ : 7.35—7.24 (m, 3H), 7.18 (m, 1H), 6.70 (dd, *J*=17.6, 11.0 Hz, 1H), 5.76 (dd, *J*=17.6, 0.8 Hz, 1H), 5.25 (dd, *J*=11.0, 0.8 Hz, 1H), 3.72 (s, 3H), 3.63 (s, 2H).

(3-Ethylphenyl)acetate (20a) A solution of 19a (1.0 g, 5.67 mmol) in MeOH (10 ml) was vigorously stirred under hydrogen atmosphere in the presence of palladium on carbon (100 mg) for 1 h. The catalyst was removed by filtration. The filtrate was evaporated and purified by column chromatography on silica gel (hexane/EtOAc, 4/1) to afford 20a as a colorless oil (890 mg, 88%). ¹H-NMR (300 MHz, CDCl₃) δ : 7.24 (m, 1H), 7.14—7.07 (m, 3H), 3.71 (s, 3H), 3.61 (s, 2H), 2.65 (q, *J*=7.7 Hz, 2H), 1.24 (t, *J*=7.7 Hz, 3H).

3-(3-Ethylphenyl)-2-oxopropanephosphonate (10k) A solution of **20a** (890 mg, 5.0 mmol) in MeOH (4.0 ml) and $2 \times \text{NaOH}$ (3.0 ml, 6.0 mmol) was stirred at room temperature for 1 h. After neutralization with $2 \times \text{HCl}$ under cooling, the reaction mixture was extracted with EtOAc three times, and the organic layer was washed with brine, dried over MgSO₄. The organic solvent was removed by evaporation to afford a carboxylic acid as a white powder (855 mg, 100%). ¹H-NMR (300 MHz, CDCl₃) δ : 7.23 (m, 1H), 7.16—7.08 (m, 3H), 3.62 (s, 2H), 2.64 (q, *J*=7.7 Hz, 2H), 1.23 (t, *J*=7.7 Hz, 3H).

Compound **10k** was prepared from above-described carboxylic acid according to the same procedure as described of **10a** from (2-methylphenyl)acetic acid as a colorless oil (yield 70% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.25 (m, 1H), 7.12 (m, 1H), 7.06—7.00 (m, 2H), 3.86 (s, 2H), 3.82 (s, 3H), 3.77 (s, 3H), 3.12 (d, *J*=22.5 Hz, 2H), 2.74 (q, *J*=7.4 Hz, 2H), 1.23 (t, *J*=7.4 Hz, 3H).

Ethyl 7-{(2*R*)-2-[(1*E*,3*S*)-3-Hydroxy-4-(3-ethylphenyl)-1-buten-1-yl]-5oxo-1-pyrrolidinyl}heptanoate (8d) Compound 8d was prepared from 5a using 10k instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (yield 55% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ: 7.22 (m, 1H), 7.11 (m, 1H), 7.07–7.00 (m, 2H), 5.74 (dd, J=15.4, 5.8 Hz, 1H), 5.51 (ddd, J=15.4, 8.5, 1.1 Hz, 1H), 4.42 (m, 1H), 4.12 (q, J=7.1 Hz, 2H), 4.05 (m, 1H), 3.49 (m, 1H), 2.90–2.78 (m, 2H), 2.72 (m, 1H), 2.62 (q, J=7.7 Hz, 2H), 2.42–2.32 (m, 2H), 2.25 (t, J=7.4 Hz, 2H), 2.24 (m, 1H), 1.73 (m, 1H), 1.71–1.66 (m, 2H), 1.50–1.20 (m, 6H), 1.26 (t, J=7.7 Hz, 3H), 1.25 (t, J=7.1 Hz, 3H).

7-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-ethylphenyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}heptanoate (2e) Compound 2e was prepared from 8d according to the same procedure as described of 2b** from **8a** as a colorless oil(75 mg, yield 98%). IR (KBr): 2932, 1659, 1461, 1374, 1264, 1103, 1033, 974, 895, 796, 735, 704, 666, 578 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.24 (t, *J*=7.3 Hz, 1H), 7.11—6.97 (m, 3H), 5.74 (dd, *J*=15.1, 5.9 Hz, 1H), 5.50 (dd, *J*=15.1, 8.3, 1.0 Hz, 1H), 4.42 (m, 1H), 4.04 (m, 1H), 3.45 (m, 1H), 2.84—2.80 (m, 2H), 2.75 (m, 1H), 2.63 (q, *J*=7.8 Hz, 2H), 2.43—2.32 (m, 2H), 2.35 (t, *J*=7.3 Hz, 2H), 2.21 (m, 1H), 1.71 (m, 1H), 1.68—1.57 (m, 2H), 1.54—1.20 (m, 6H), 1.24 (t, *J*=7.8 Hz, 3H); MS (APCI) *m/z*: 386 (M/H)⁻; HR-MS-FAB (*m/z*): [M+H]⁺ Calcd for C₂₃H₃₄NO₄, 388.2488; Found: 388.2470.

3-(3-Propylphenyl)-2-oxopropanephosphonate (10d) Compound **10d** was prepared in the same procedure as described of **10k** from (3-bro-mophenyl)acetic acid as a colorless oil (2.96 g, yield 59% in 5 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.29—7.01 (m, 4H), 3.86 (s, 2H), 3.82 (s, 3H), 3.76 (s, 3H), 3.10 (d, *J*=22.8 Hz, 2H), 2.57 (t, *J*=8.0 Hz, 2H), 1.76—1.50 (m, 2H), 0.93 (t, *J*=7.0 Hz, 3H).

Ethyl 7-{(2*R*)-2-[(1*E*,3*S*)-3-Hydroxy-4-(3-propylphenyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}heptanoate (8e) Compound 8e was prepared from 5a using 10d instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (255 mg, yield 48% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.26—7.19 (m, 1H), 7.08—6.99 (m, 3H), 5.75 (dd, *J*=15.4, 5.6 Hz, 1H), 5.48 (ddd, *J*=15.4, 8.0, 1.2 Hz, 1H), 4.50—4.30 (m, 1H), 4.11 (q, *J*=7.2 Hz, 2H), 4.13—4.00 (m, 1H), 3.55—3.40 (m, 1H), 2.90—2.10 (m, 8H), 1.80—1.20 (m, 13H), 1.25 (t, *J*=7.2 Hz, 3H), 0.94 (t, *J*=7.2 Hz, 3H).

7-{(2*R***)-2-[(***IE***,3***S***)-3-Hydroxy-4-(3-propylphenyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}heptanoate (2f)** Compound 2f was prepared from 8e according to the same procedure as described of 2b from 8a as a colorless oil (47 mg, yield 96%). IR (film): 3389, 2931, 2862, 1728, 1660, 1632, 1487, 1463, 1422, 1376, 1263, 1103, 1034, 973, 903 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.25—7.19 (m, 1H), 7.08—7.00 (m, 3H), 5.75 (dd, *J*=15.3, 5.7 Hz, 1H), 5.51 (ddd, *J*=15.3, 8.4, 0.9 Hz, 1H), 4.41 (m, 1H), 4.05 (m, 1H), 3.48 (m, 1H), 2.90—2.70 (m, 3H), 2.57 (t, *J*=7.2 Hz, 2H), 2.50—2.10 (m, 5H), 1.80—1.20 (m, 11H), 0.94 (t, *J*=7.2 Hz, 3H); MS (APCI) *m/z*: 400 (M–H)⁻; HR-MS-FAB (*m/z*): [M+H]⁺ Calcd for C₂₄H₃₆NO₄, 402.2644; Found: 402.2633.

Methyl 4-{(2-{(2R)-2-[(1E)-4-(3-Propylphenyl)-3-oxo-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}ethyl)thio}butanoate (9b) Compound 9b was prepared from 5b using 10d instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (155 mg, 49% in 3 steps). ¹H-NMR (200 MHz, CDCl₃) δ : 7.30—7.20 (m, 1H), 7.10—7.00 (m, 3H), 5.77 (dd, J=15.4, 5.6 Hz, 1H), 5.52 (dd, J=15.4, 9.4 Hz, 1H), 4.50—4.35 (m, 1H), 4.20—4.00 (m, 1H), 3.80—3.55 (m, 1H), 3.67 (s, 3H), 3.05—2.85 (m, 1H), 2.85—2.75 (m, 2H), 2.75—2.10 (m, 11H), 2.00—1.80 (m, 3H), 1.80—1.50 (m, 3H), 0.94 (t, J=6.8 Hz, 3H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-propylphenyl)but-1-enyl]-5-oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3d)** Compound 3d was prepared from **9b** according to the same procedure as described of **2b** from **8a** as a pale yellow oil (yield 99%). IR (film): 3387, 2927, 2870, 1726, 1660, 1445, 1419, 1384, 1235, 1103, 1032, 975, 909, 784, 705, 667 cm⁻¹; ¹H-NMR (200 MHz, CDCl₃) δ : 7.30–7.20 (m, 1H), 7.10–7.00 (m, 3H), 5.78 (dd, *J*=15.4, 5.4 Hz, 1H), 5.52 (dd, *J*=15.4, 8.4 Hz, 1H), 4.50–4.40 (m, 1H), 4.20–4.05 (m, 1H), 3.75–3.55 (m, 1H), 3.20–2.10 (m, 14H), 2.00– 1.80 (m, 2H), 1.80–1.55 (m, 3H), 0.94 (t, *J*=7.2 Hz, 3H); MS (APCI) *m/z*: 418 (M–H)⁻; HR-MS-FAB (*m/z*): [M–H]⁻ Calcd for C₂₃H₃₂NO₄S, 418.2052; Found: 418.2049.

N-Methoxy-*N*-methyl-2-[3-(trifluoromethyl)phenyl]acetamide (18e) Compound 18e was prepared from 3-(trifluoromethyl)phenylacetic acid according to the same procedure as described of 18a from (2-methylphenyl)acetic acid as a yellow oil.

3-[3-(Trifluoromethyl)phenyl]-2-oxopropanephosphonate (10e) Compound **10e** was prepared from **18e** according to the same procedure as described of **10a** from **18a** as a colorless oil (yield 57% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.60—7.40 (m, 4H), 3.99 (s, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 3.14 (d, *J*=22.8 Hz, 2H).

Ethyl 7-[(2*R*)-2-{(1*E*,3*S*)-3-Hydroxy-4-[3-(trifluoromethyl)phenyl]-1buten-1-yl]}-5-oxo-1-pyrrolidinyl]heptanoate (8f) Compound 8f was prepared from 5a using 10e instead of 10a according to the same procedure as described of **8a** from **5a** as a pale yellow oil (yield 52% in 3 steps). ¹H-NMR (300 MHz, $CDCl_3$) δ : 7.65—7.30 (m, 4H), 5.73 (dd, J=15.6, 5.6 Hz, 1H), 5.51 (ddd, J=15.6, 8.0, 1.2 Hz, 1H), 4.45 (m, 1H), 4.11 (q, J=7.4 Hz, 2H), 4.04 (m, 1H), 3.44 (m, 1H), 2.91 (d, J=6.6 Hz, 2H), 2.72 (m, 1H), 2.44—1.86 (m, 6H), 1.80—1.04 (m, 9H), 1.24 (t, J=7.4 Hz, 3H).

7-((2*R***)-2-{(1***E***,3***S***)-3-Hydroxy-4-[3-(trifluoromethyl)phenyl]-1-buten-1-yl}-5-oxo-1-pyrrolidinyl)heptanoate (2g) Compound 2g was prepared from 8f according to the same procedure as described of 2b** from **8a** as a white powder (yield 83%). IR (film): 2932, 1652, 1453, 1330, 1162, 1122, 1074, 1036, 975, 907, 800, 752, 705, 664 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.60—7.35 (m, 4H), 5.73 (dd, *J*=15.3, 5.9 Hz, 1H), 5.50 (ddd, *J*=15.3, 8.3, 0.9 Hz, 1H), 4.46 (m, 1H), 4.03 (m, 1H), 4.00—3.00 (m, 2H), 3.46 (m, 1H), 2.91 (d, *J*=6.3 Hz, 2H), 2.71 (m, 1H), 2.48—2.06 (m, 5H), 1.76—1.12 (m, 9H); MS (APCI) *m*/z: 426 (M–H)⁻; HR-MS-FAB (*m*/z): [M+H]⁺ Calcd for C₂₂H₂₀F₃NO₄, 428.2049; Found: 428.2057.

Methyl 4-{(2-{(2*R*)-2-[(1*E*)-4-(3-Trifluoromethylphenyl)-3-oxo-1buten-1-yl]-5-oxo-1-pyrrolidinyl}ethyl)thio}butanoate (9c) Compound 9c was prepared from 5b using 10e instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (90 mg, 30% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.59—7.39 (m, 4H), 5.77 (dd, J=15.3, 5.4 Hz, 1H), 5.53 (dd, J=15.3, 8.6 Hz, 1H), 4.51—4.40 (m, 1H), 4.18—4.08 (m, 1H), 3.70—3.58 (m, 4H), 3.05—2.88 (m, 3H), 2.70—2.19 (m, 10H), 1.94—1.84 (m, 2H), 1.78—1.60 (m, 1H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-trifluoromethylphenyl)but-1enyl]-5-oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3e)** Compound **3e** was prepared from **9c** according to the same procedure as described of **2b** from **8a** as a pale yellow oil (67 mg, 100%). IR (film): 3388, 2925, 1724, 1660, 1450, 1421, 1330, 1163, 1122, 1074, 1035, 976, 800, 754, 705 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.59—7.38 (m, 4H), 5.82—5.71 (m, 1H), 5.60—5.41 (m, 1H), 4.57—4.40 (m, 1H), 4.20—4.06 (m, 1H), 3.70—3.59 (m, 1H), 3.15—2.81 (m, 3H), 2.80—2.01 (m, 10H), 1.99—1.80 (m, 2H), 1.79—1.60 (m, 1H); MS (APCI) *m*/z: 444 (M–H)⁻; HR-MS-FAB (*m*/z): [M–H]⁻ Calcd for C₂₁H₂₅F₃NO₄S, 444.1456; Found: 444.1476

{3-[(2,2,2-Trifluoroethoxy)methyl]phenyl}acetate (21) To a stirred suspension of sodium hydride (63% in mineral oil, 770 mg, 20.2 mmol) in THF (40 ml) was added trifluoroethanol (1.46 ml, 20.2 mmol) at 0 °C under argon atmosphere. After being stirred for 10 min, to this resulting solution was added a solution of 1,3-bis(bromomethyl)benzene (5.28 g, 20.2 mmol) in THF (10 ml). After being stirred for additional 4 h, the reaction mixture was poured into ice-cold aqueous NH4Cl, extracted with EtOAc, washed with H₂O, brine, and dried over MgSO₄. The organic solvent was removed by evaporation to give an ether. To a stirred solution of the above-described ether in THF (30 ml) and MeOH (15 ml) were added potassium carbonate (5.0 g, 36.0 mmol) and bis(triphenylphosphine)palladium dichloride (280 mg, 0.40 mmol) under argon atmosphere, and the reaction vessel was replaced with CO gas repeatedly. After being stirred at room temperature for 3 h, the resulting mixture was diluted with EtOAc and filtered through a pad of Celite. The filtrate was evaporated and purified by column chromatography on silica gel (hexane/EtOAc, 9/1) to afford 21 as a brown oil (3.28 g, 63%).

3-[3-(2,2,2-Trifluoroethoxymethyl)phenyl]-2-oxopropanephosphonate (10f) Compound 10f was prepared from 21 according to the same procedure as described of 10d from 20a as a colorless oil (2.28 g, yield 52% in 3 steps). ¹H-NMR (200 MHz, CDCl₃) δ : 7.40—7.12 (m, 4H), 4.66 (s, 2H), 3.92 (s, 2H), 3.83 (q, *J*=8.8 Hz, 2H), 3.82 (s, 3H). 3.76 (s, 3H), 3.17 (d, *J*=22.8 Hz, 2H).

Ethyl 7-[(2*R*)-2-{(1*E*,3*S*)-3-Hydroxy-4-[3-(2,2,2-trifluoroethoxymethyl)phenyl]-1-buten-1-yl]}-5-oxo-1-pyrrolidinyl]heptanoate (8g) Compound 8g was prepared from 5a using 10f instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (61 mg, yield 17% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.40—7.10 (m, 4H), 5.74 (dd, *J*=15.4, 5.6 Hz, 1H), 5.51 (dd, *J*=15.4, 8.4 Hz, 1H), 4.66 (s, 2H), 4.50—4.35 (m, 1H), 4.11 (q, *J*=7.2 Hz, 2H), 4.15—3.95 (m, 1H), 3.85 (q, *J*=8.8 Hz, 2H), 3.60—3.40 (m, 1H), 3.00—2.65 (m, 3H), 2.45—2.10 (m, 3H), 2.28 (t, *J*=7.4 Hz, 2H), 2.28 (t, *J*=7.4 Hz, 2H), 1.85—1.15 (m, 10H), 1.25 (t, *J*=7.2 Hz, 3H).

7-((2*R***)-2-{(1***E***,3***S***)-3-Hydroxy-4-[3-(2,2,2-trifluoroethoxymethyl)phenyl]-1-buten-1-yl}-5-oxo-1-pyrrolidinyl)heptanoate (2h)** Compound 2h was prepared from 8g according to the same procedure as described of 2b from 8a as a pale yellow oil (36 mg, 100%). IR (film): 3389, 2933, 2862, 1720, 1656, 1460, 1422, 1375, 1279, 1159, 1111, 1034, 968, 913, 793, 732, 705, 667 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ: 7.40—7.10 (m, 4H), 5.75 (dd, *J*=15.6, 5.6 Hz, 1H), 5.52 (dd, *J*=15.6, 8.4 Hz, 1H), 4.67 (s, 2H), 4.50—4.35 (m, 1H), 4.10—3.98 (m, 1H), 3.86 (q, *J*=8.8 Hz, 2H), 3.603.35 (m, 1H), 3.00—1.80 (m, 6H), 2.33 (t, J=7.0 Hz, 2H), 1.80—1.55 (m, 3H), 1.55—1.10 (m, 6H); MS (APCI) m/z: 470 (M–H)⁻; HR-MS-FAB (m/z): [M+H]⁺ Calcd for C₂₄H₃₃F₃NO₅, 472.2311; Found: 472.2313.

Methyl 4-{(2-{(2R)-2-[(1E)-4-(3-(2,2,2-Trifluoroethoxymethyl) phenyl)-3-oxo-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}ethyl)thio}butanoate (9d) Compound 9d was prepared from 5b using 10f instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (112 mg, 41% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.38—7.15 (m, 4H), 5.77 (dd, J=15, 5.0 Hz, 1H), 5.53 (dd, J=15, 8.0 Hz, 1H), 4.68 (s, 2H), 4.48—4.39 (m, 1H), 4.16—4.07 (m, 1H), 3.84 (q, J=9.0 Hz, 2H), 3.68 (s, 3H), 3.68—3.56 (m, 1H), 3.03—2.92 (m, 1H), 2.92—2.80 (m, 2H), 2.69—2.48 (m, 4H), 2.48—2.33 (m, 4H), 2.33—2.16 (m, 1H), 1.95—1.85 (m, 3H), 1.79—1.63 (m, 1H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-(2,2,2-trifluoroethoxymethyl)phenyl)but-1-enyl]-5-oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3f)** Compound 3d was prepared from 9c according to the same procedure as described of 2b from 8a as a pale yellow oil (75 mg, 96%). IR (film): 3389, 2926, 1725, 1660, 1420, 1279, 1160, 969, 756, 705 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.38—7.14 (m, 4H), 5.77 (dd, *J*=15, 6.0 Hz, 1H), 5.53 (dd, *J*=15, 8.8 Hz, 1H), 4.65 (s, 2H), 4.50—4.40 (m, 1H), 4.18—4.08 (m, 1H), 3.86 (q, *J*=9.0 Hz, 2H), 3.68—3.55 (m, 1H), 3.08—2.94 (m, 1H), 2.94—2.79 (m, 2H), 2.68—2.32 (m, 8H), 2.32—2.17 (m, 1H), 1.98—1.82 (m, 2H), 1.78—1.63 (m, 1H).; MS (APCI) *m/z*: 488 (M-H)⁻; HR-MS-FAB (*m/z*): [M-H]⁻ Calcd for C₂₃H₂₉F₃NO₅S, 488.1719; Found: 488.1719.

[3-(Hydroxymethyl)phenyl]acetate (22) To a stirred solution of 1,3bis(bromomethyl)benzene (5.28 g, 20.0 mmol) in DMF (40 ml) was added potassium acetate (1.96 g, 20.0 mmol) at room temperature under argon atmosphere After being stirred at 60 °C for 3 h, the resulting solution was cooled to ambient temperature, and diluted with EtOAc/hexane, washed with water, dried over MgSO4. The organic solvent was removed by evaporation to afford a monobromide as brown oil. To a stirred solution of above-described monobromide in MeOH (15 ml) and THF (30 ml) were added potassium carbonate (5.00 g, 36.2 mmol) and bis(triphenylphosphine)palladium dichloride (280 mg, 0.40 mmol) under argon atmosphere, and the reaction vessel was replaced with CO gas repeatedly. After being stirred at room temperature for 6 h, the resulting mixture was evaporated and purified by column chromatography on silica gel (hexane/EtOAc, 2/1-1/1) to afford 22 as a dark brown oil (1.68 g, 48% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.40-7.21 (m, 4H), 4.72 (d, J=6.0 Hz, 2H), 3.71 (s, 3H), 3.62 (s, 2H), 1.68 $(t, J=6.0 \, \text{Hz}, 1 \text{H})$

{3-[(Vinyloxy)methyl]phenyl}acetate (23) To a stirred solution of 22 (1.68 g, 9.30 mmol), ethyl vinyl ether (20 ml), 1,10-phenanthroline (85 mg, 0.47 mmol) in CH₂Cl₂ (5 ml) was added palladium acetate (106 mg, 0.47 mmol) at room temperature under argon atmosphere. After being stirred for 2 d, the resulting mixture was evaporated and purified by column chromatography on silica gel (hexane/EtOAc, 9/1) to afford 23 as a pale yellow oil (1.35 g, 70%). ¹H-NMR (200 MHz, CDCl₃) δ : 7.42—7.21 (m, 4H), 6.56 (dd, *J*=22.5, 9.0 Hz, 1H), 4.76 (s, 2H), 4.30 (dd, *J*=22.5, 3.0 Hz, 1H), 4.09 (dd, *J*=9.0, 3.0 Hz, 1H), 3.70 (s, 3H), 3.62 (s, 2H).

{3-[(Cyclopropyloxy)methyl]phenyl}acetate (24) To a stirred solution of 23 (1.35 g, 6.60 mmol) in diethyl ether (30 ml) were successively added a solution of diethylzinc (1.0 M in hexane, 13.0 ml, 13.0 mmol) and a solution of diiodomethane (3.75 g, 14 mmol) in diethyl ether (10 ml) at room temperature under argon atmosphere. Stirring was continued at 35 °C for 8 h and the reaction mixture was poured into 1 N HCl, extracted with diethyl ether, washed with brine and dried over Na₂SO₄. The solvent was removed by evaporation and the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc, 15/1-10/1) to give 24 as a colorless oil (830 mg, 57%). ¹H-NMR (300 MHz, CDCl_3) δ : 7.35-7.15 (m, 4H), 4.55 (s, 2H), 3.70 (s, 3 H), 3.62 (s, 2 H), 3.40-3.33 (m, 1 H), 0.76-0.66 (m, 2 H), 0.55-0.45 (m, 2H).

3-[3-(Cyclopropoxymethyl)phenyl]-2-oxopropanephosphonate (10g) Compound 10g was prepared from 24 according to the same procedure as described of 10d from 20a as a colorless oil (668 mg, yield 57% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.35—7.12 (m, 4H), 4.53 (s, 2H), 3.89 (s, 2H), 3.81 (s, 3H), 3.77 (s, 3H), 3.42—3.30 (m, 1H), 3.10 (d, *J*=22.8 Hz, 2H), 0.71—0.59 (m, 2H), 0.55—0.45 (m, 2H).

Methyl 4-[(2-{(2*R*)-2-[(1*E*,3*S*)-3-Hydroxy-4-{3-[(2,2,2-trifluoroethoxy)methyl]phenyl}-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}ethyl)thio]butanoate (9f) Compound 9f was prepared from 5b using 10g instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (105 mg, yield 42% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.36—7.11 (m, 4H), 5.77 (dd, *J*=15.6, 6.0 Hz, 1H), 5.52 (d, *J*=15.6, 8.0 Hz, 1H), 4.55 (s, 2H), 4.48—4.38 (m, 1H), 4.15—4.08 (m, 1H), 3.68 (s, 3H), 3.67—3.57 (m, 1H), 3.40—3.32 (m, 1H), 3.02—2.92 (m, 1H), 2.92—2.78 (m, 2H), 2.69—2.48 (m, 4H), 2.48—2.33 (m, 4H), 2.32—2.17 (m, 1H), 1.95—1.85 (m, 3H), 1.78—1.63 (m, 1H), 0.69—0.62 (m, 2H), 0.55—0.47 (m, 2H).

4-{[2-((2*R***)-2-{(1***E***,3***S***)-3-Hydroxy-4-[3-(cyclopropoxymethyl)phenyl]but-1-enyl}-5-oxopyrrolidin-1-yl)ethyl]sulfanyl}butanoic Acid (3g)** Compound **3g** was prepared from **9f** according to the same procedure as described of **2b** from **8a** as a colorless viscous oil (73 mg, 100%). IR (film): 3389, 2924, 1726, 1660, 1419, 1345, 1210, 1122, 1037, 975, 791, 703 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.37—7.11 (m, 4H), 5.80 (dd, *J*=15, 5 Hz, 1H), 5.55 (dd, *J*=15, 8.0 Hz, 1H), 4.56 (s, 2H), 4.50—4.40 (m, 1H), 4.17— 4.08 (m, 1H), 3.63—3.51 (m, 1H), 3.42—3.36 (m, 1H), 3.11—3.00 (m, 1H), 2.89 (dd, *J*=14, 6.0 Hz, 1H), 2.80 (dd, *J*=14, 8.0 Hz, 1H), 2.72—2.32 (m, 8H), 2.31—2.17 (m, 1H), 1.98—1.83 (m, 2H), 1.79—1.65 (m, 1H), 0.71— 0.49 (m, 4H); MS (APCI) *m*/*z*: 446 (M−H)⁻; HR-MS-FAB (*m*/*z*): [M+H]⁺ Calcd for C₂₄H₁₄NO₅S, 448.2158; Found: 448.2143.

N-Methoxy-N-methyl-2-(3-fluorophenyl]acetamide (18h) Compound **18h** was prepared from (3-fluorophenyl)acetic acid according to the same procedure as described of **18a** from (2-methylphenyl)acetic acid as a pale yellow oil. ¹H-NMR (300 MHz, CDCl₃) δ : 7.28 (m, 1H), 7.08—6.91 (m, 3H), 3.76 (s, 2H), 3.63 (s, 3H), 3.20 (s, 3H).

3-(3-Fluorophenyl)-2-oxopropanephosphonate (10h) Compound **10h** was prepared from **18h** according to the same procedure as described of **10a** from **18a** as a colorless oil (yield 78% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.30 (m, 1H), 7.01–6.92 (m, 3H), 3.91 (s, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 3.12 (d, *J*=22.8 Hz, 2H).

Ethyl 7-[(2*R*)-2-(1*E*,3*S*)-3-Hydroxy-4-(3-fluorophenyl]-1-buten-1-yl]}-5-oxo-1-pyrrolidinyl]heptanoate (8h) Compound 8h was prepared from 5a using 10h instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (225 mg, yield 53% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.32—7.22 (m, 1H), 6.99—6.91 (m, 3H), 5.72 (dd, J=15.3, 5.7 Hz, 1H), 5.51 (ddd, J=15.3, 8.7, 1.2 Hz, 1H), 4.46—4.34 (m, 1H), 4.11 (q, J=7.2 Hz, 2H), 4.06—3.99 (m, 1H), 3.51—3.41 (m, 1H), 2.85 (d, J=6.6 Hz, 2H), 2.75—2.65 (m, 1H), 2.40—2.10 (m, 5H), 1.70—1.20 (m, 7H), 1.25 (t, J=7.2 Hz, 3H).

7-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-fluorophenyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}heptanoate (2i) Compound 2i was prepared from 8h according to the same procedure as described of 2b from 8a as a pale yellow oil (50 mg, 87%). IR (KBr): 3383, 2934, 2862, 1714, 1659, 1588, 1488, 1448, 1422, 1375, 1249, 1141, 1102, 1035, 975, 942, 888, 786, 754, 692, 666 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) \delta: 7.32—7.23 (m, 1H), 6.99—6.90 (m, 3H), 5.72 (dd,** *J***=15.3, 6.0 Hz, 1H), 5.50 (ddd,** *J***=15.3, 8.4, 1.2 Hz, 1H), 4.42 (m, 1H), 4.03 (m, 1H), 3.46 (m, 1H), 2.85 (d,** *J***=6.0 Hz, 2H), 2.70 (m, 1H), 2.40—2.10 (m, 6H), 1.75—1.20 (m, 9H).; MS (APCI)** *m/z***: 376 (M–H)⁻; HR-MS-FAB (***m/z***): [M–H]⁻ Calcd for C₂₁H₂₇FNO₄, 376.1924; Found: 376.1933.**

Methyl 4-{(2-{(2R)-2-[(1E)-4-(3-Fluorophenyl)-3-oxo-1-buten-1-yl]-5oxo-1-pyrrolidinyl}ethyl)thio}butanoate (9f) Compound 9f was prepared from 5b using 10h instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (77 mg, 47% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.29 (m, 1H), 7.03—6.92 (m, 3H), 5.76 (dd, J=15.4, 5.5 Hz, 1H), 5.51 (dd, J=15.4, 8.5 Hz, 1H), 4.42 (m, 1H), 4.15 (m, 1H), 3.64 (s, 3H), 3.61 (m, 1H), 2.96 (m, 1H), 2.84 (d, J=6.6 Hz, 2H), 2.70—2.52 (m, 4H), 2.47—2.34 (m, 4H), 2.23 (m, 1H), 1.96—1.84 (m, 2H), 1.72 (m, 1H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-fluorophenyl)but-1-enyl]-5oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3h)** Compound 3h was prepared from 9f according to the same procedure as described of 2b from **8a** as a pale yellow oil (56 mg, 92%). IR (film): 3393, 2925, 1725, 1659, 1587, 1488, 1448, 1420, 1248, 1141, 1034, 976, 942, 886, 787, 753, 693 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.27 (m, 1H), 7.00–6.89 (m, 3H), 5.75 (dd, *J*=15.4, 5.5 Hz, 1H), 5.50 (dd, *J*=15.4, 8.5 Hz, 1H), 4.42 (m, 1H), 4.11 (m, 1H), 3.62 (m, 1H), 2.92 (m, 1H), 2.84 (d, *J*=6.9 Hz, 2H), 2.67–2.51 (m, 4H), 2.50–2.41 (m, 2H), 2.38 (t, *J*=7.1 Hz, 2H), 2.22 (m, 1H), 1.94–1.83 (m, 2H), 1.66 (m, 1H); MS (APCI) *m/z*: 394 (M–H)⁻; HR-MS-FAB (*m*/*z*): $[M-H]^-$ Calcd for C₂₀H₂₅FNO₄S, 394.1488; Found: 394.1495.

N-Methoxy-*N*-methyl-2-(3-chlorophenyl]acetamide (18i) Compound 18i was prepared from (3-chlorophenyl)acetic acid according to the same procedure as described of 18a from (2-methylphenyl)acetic acid as a pale yellow oil.

3-(3-Chlorophenyl)-2-oxopropanephosphonate (10i) Compound **10i** was prepared from **18i** according to the same procedure as described of **10a** from **18a** as a colorless oil (yield 83% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.30—7.11 (m, 4H), 3.89 (s, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 3.12 (d, J=22.8 Hz, 2H).

Ethyl 7-[(2*R***)-2-(1***E***,3***S***)-3-Hydroxy-4-(3-chlorophenyl]-1-buten-1-yl]}-5-oxo-1-pyrrolidinyl]heptanoate (8i) Compound 8i was prepared from 5a using 10i instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (56 mg, yield 18% in 3 steps). ¹H-NMR (200 MHz, CDCl₃) δ: 7.40—7.20 (m, 3H), 7.20—7.05 (m, 1H), 5.71 (dd,** *J***=15.4, 5.8 Hz, 1H), 5.49 (dd,** *J***=15.4, 8.4 Hz, 1H), 4.50—4.30 (m, 1H), 4.12 (q,** *J***=7.2 Hz, 2H), 4.15—3.95 (m, 1H), 3.60—3.40 (m, 1H), 2.83 (d,** *J***=6.0 Hz, 2H), 2.83—2.63 (m, 1H), 2.42—2.05 (m, 5H), 1.90—1.10 (m, 10H), 1.25 (t,** *J***=7.2 Hz, 3H).**

7-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-chlorophenyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}heptanoate (2j)** Compound 2i was prepared from 8i according to the same procedure as described of 2b from 8a as a pale yellow oil (35 mg, 87%). IR (film): 3377, 2932, 2860, 1721, 1658, 1422, 1263, 1081, 1034, 975, 910, 784, 732, 704, 685 cm⁻¹; ¹H-NMR (200 MHz, CDCl₃) δ : 7.35—7.15 (m, 3H), 7.15—7.00 (m, 1H), 5.72 (dd, *J*=15.8, 5.8 Hz, 1H), 5.48 (dd, *J*=15.8, 8.2 Hz, 1H), 4.42 (q, *J*=6.6 Hz, 1H), 4.10—3.98 (m, 1H), 3.60—3.40 (m, 1H), 2.83 (d, *J*=6.6 Hz, 2H), 3.00—2.10 (m, 4H), 2.34 (t, *J*=7.2 Hz, 2H), 1.80—1.55 (m, 3H), 1.55—1.10 (m, 6H); MS (APCI) *m/z*: 394 (M+2-H)⁻, 392 (M-H)⁻; HR-MS-FAB (*m/z*): [M+H]⁺ Calcd for C₂₁H₂₉CINO₄, 394.1785; Found: 394.1793.

Methyl 4-{(2-{(2R)-2-[(1E)-4-(3-Chlorophenyl)-3-oxo-1-buten-1-yl]-5oxo-1-pyrrolidinyl}ethyl)thio}butanoate (9g) Compound 9g was prepared from 5b using 10i instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (137 mg, 44% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.30—7.20 (m, 3H), 7.20—7.05 (m, 1H), 5.75 (dd, J=15.4, 5.6 Hz, 1H), 5.50 (dd, J=15.4, 8.4 Hz, 1H), 4.50—4.35 (m, 1H), 4.20—4.10 (m, 1H), 3.67 (s, 3H), 3.65—3.55 (m, 1H), 3.05—2.85 (m, 1H), 2.83 (d, J=6.6 Hz, 2H), 2.80—2.10 (m, 9H), 2.05—1.95 (m, 1H), 1.95—1.80 (m, 2H), 1.80—1.60 (m, 1H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-chlorophenyl)but-1-enyl]-5oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3i)** Compound 3i was prepared from 9g according to the same procedure as described of 2b from 8a as a pale yellow oil (90 mg, 100%). IR (film): 3375, 2925, 1722, 1659, 1420, 1232, 1080, 1033, 976, 784, 755, 704 cm⁻¹; ¹H-NMR (200 MHz, CDCl₃) & 7.30—7.20 (m, 3H), 7.20—7.05 (m, 1H), 5.75 (dd, *J*=15.4, 5.4 Hz, 1H), 5.49 (dd, *J*=15.4, 8.6 Hz, 1H), 4.50—4.35 (m, 1H), 4.20—4.05 (m, 1H), 3.75—3.55 (m, 1H), 3.10—2.85 (m, 1H), 2.85 (d, *J*=6.6 Hz, 2H), 2.80—2.10 (m, 9H), 2.00—1.80 (m, 2H), 1.80—1.60 (m, 1H); MS (APCI) *m/z*: 412 (M+2-H)⁻, 410 (M-H)⁻.

N-Methoxy-*N*-methyl-2-(2-thienyl)acetamide (18j) Compound 18j was prepared from 2-(thiophen-2-yl) acetic acid according to the same procedure as described of 18a from (2-methylphenyl)acetic acid as a yellow oil.

3-(3-Fluorophenyl)-2-oxopropanephosphonate (10j) Compound **10j** was prepared from **18j** according to the same procedure as described of **10a** from **18a** as a colorless oil (yield 68% in 2 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.27 (m, 1H), 7.03—6.92 (m, 2H), 4.10 (s, 2H), 3.82 (s, 3H), 3.77 (s, 3H), 3.16 (d, *J*=22.8 Hz, 2H).

Methyl 4-[(2-{(2*R*)-2-[(1*E*,3*S*)-3-Hydroxy-4-thien-2-ylbut-1-enyl]-5oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoate (9h) Compound 9h was prepared from 5b using 10j instead of 10a according to the same procedure as described of 8a from 5a as a yellow oil (275 mg, yield 50% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.36—7.20 (m, 1H), 7.05—6.90 (m, 2H), 6.71 (dd, *J*=15.6, 8.0 Hz, 1H), 6.28 (d, *J*=15.6, 1H), 4.35—4.23 (m, 1H), 4.05 (s, 2H), 3.91—3.60 (m, 4H), 3.03—2.93 (m, 1H), 2.82—2.27 (m, 7H), 2.00—1.78 (m, 3H), 1.62—1.50 (m, 2H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-thien-2-ylbut-1-enyl]-5-oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic acid (3j)** Compound 3j was prepared from 9h according to the same procedure as described of 2b from 8a as a colorless viscous oil (67 mg, 100%). IR (film): 3388, 2924, 1721, 1657, 1420, 1243, 1042, 976, 910, 850, 732 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.19 (d, J=5.1 Hz, 1H), 6.95 (dd, J=5.1, 3.3 Hz, 1H), 6.86 (d, J=3.3 Hz, 1H), 5.75 (dd, J=15.0, 5.4 Hz, 1H), 5.55 (dd, J=15.0, 8.6 Hz, 1H), 4.48–4.39 (m, 1H), 4.19–4.06 (m, 1H), 3.70–3.59 (m, 1H), 3.42–2.75 (m, 4H), 2.70–2.18 (m, 10H), 1.99–1.84 (m, 2H), 1.79–1.62 (m, 1H); MS (APCI) *m/z*: 382 (M–H)⁻; HR-MS-FAB (*m/z*): [M–H]⁻ Calcd for C₁₈H₂₄NO₄S₂, 382.1147; Found: 382.1164.

6-(Tetrahydro-2*H***-pyran-2-yloxy)-2-hexynoate (25)** To a stirred solution of 4-butyn-1-ol (4.21 g, 50.0 mmol) in CH_2Cl_2 (50 ml) was added 3,4-dihydro-2*H*-pyran (5.02 ml, 55.0 mmol) and *p*-toluenesulfonic acid monohydrate (475 mg, 2.50 mmol) at room temperature under argon atmosphere. After being stirred for 10 min, the reaction was treated with triethylamine. The organic solvent was removed by evaporation, and the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc, 4/1) to give an ether as a pale yellow oil (8.01 g, 95%). ¹H-NMR (300 MHz, CDCl₃)

 $\delta:$ 4.60 (m, 1H), 3.85 (m, 2H), 3.50 (m, 2H), 2.31 (m, 2H), 1.95 (t, $J{=}2.7\,{\rm Hz},$ 1H), 1.90—1.50 (m, 8H).

To a stirred solution of **25** (8.01 g, 47.6 mmol) in THF (100 ml) was slowly added *n*-butyllithium (1.56 M in hexane, 33.6 ml, 52.4 mmol) at $-70 \,^{\circ}\text{C}$ under argon atmosphere and stirring was continued for 1 h at the same temperature. To the reaction mixture was slowly added ethyl chloroformate (13.7 ml, 143 mmol). After being stirred for additional 3 h at room temperature, the reaction mixture was poured into ice-cold aqueous NH₄Cl, extracted with EtOAc, washed with water, brine, and dried over Na₂SO₄. The organic solvent was removed by evaporation, and the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc, 4/1) to give **25** as a colorless oil (11.4 g, 100%). ¹H-NMR (300 MHz, CDCl₃) δ : 4.59 (m, 1H), 4.21 (q, J=6.9 Hz, 2H), 3.90-3.70 (m, 12H), 3.55-3.41 (m, 2H), 2.47 (t, J=7.0 Hz, 2H), 1.93-1.50 (m, 8H), 1.30 (t, J=7.5 Hz, 3H).

6-Hydroxy-2-hexynoate (26) A mixture of **25** (11.4 g, 47.4 mmol) and *p*-toluenesulfonic acid monohydrate (900 mg, 4.74 mmol) in EtOH (50 ml) was stirred at room temperature for 3 h under argon atmosphere. After quenching with triethylamine, the resulting mixture was evaporated and purified by column chromatography on silica gel (hexane/EtOAc, 1/1) to yield **26** as a colorless oil (5.30 g, 72%). ¹H-NMR (300 MHz, CDCl₃) δ : 4.21 (q, *J*=7.2 Hz, 2H), 3.76 (t, *J*=6.0 Hz, 2H), 2.48 (t, *J*=6.9 Hz, 2H), 1.84 (m, 2H), 1.31 (t, *J*=6.9 Hz, 3H).

6-Hydroxy-2-heptynoate (27) To a stirred solution of oxalyl chloride (4.15 ml, 47.6 mmol) in CH₂Cl₂ (40 ml) was slowly added a solution of DMSO (4.34 ml, 61.2 mmol) in CH₂Cl₂ (20 ml) at -70 °C in 10 min. The resulting solution was stirred for an additional 15 min at that temperature. To the reaction mixture was added a solution of **26** (5.30 g, 34.0 mmol) in CH₂Cl₂ (10 ml)in, and the resulting suspension was allowed to warm up to -35 °C in 30 min. After being stirred for an additional 10 min, the reaction mixture was treated with *N*,*N*-diisopropylethylamine (16.6 ml, 95.2 mmol) and the resulting suspension was allowed to warm up to -5 °C in 30 min. The reaction was quenched with water and then poured into ice-cold 0.5 N HCl. The mixture was extracted with EtOAc and the organic layer was washed with 1 N HCl, water and brine, and dried over MgSO₄. The organic solvent was removed by evaporation to give an aldehyde as a pale yellow oil.

To a stirred solution of an above-described aldehyde in THF (70 ml) was added a solution of methylmagnesium bromide (0.93 M in THF, 40.2 ml, 37.4 mmol) at 0 °C under argon atmosphere. After being stirred for 15 min, the reaction mixture was poured into 1 N HCl, extracted with EtOAc, washed with brine, and dried over Na₂SO₄. The organic layer was evaporated and the resulting mixture was purified by column chromatography on silica gel (hexane/EtOAc, 4/1) to yield **27** as a colorless oil(1.41 g, 24%). ¹H-NMR (300 MHz, CDCl₃) δ : 4.21 (q, *J*=7.2 Hz, 2H), 3.90 (m, 1H), 2.48 (t, *J*=7.5 Hz, 2H), 1.69 (m, 2H), 1.55 (br s, 1H), 1.40—1.28 (m, 8H).

6-Oxo-2-heptynoate (28) To a stirred solution of oxalyl chloride (1.01 ml, 11.6 mmol) in CH₂Cl₂ (10 ml) was slowly added a solution of DMSO (1.06 ml, 14.9 mmol) in CH₂Cl₂ (5 ml) at -70 °C in 10 min. The resulting solution was stirred for an additional 15 min at that temperature. To the reaction mixture was added a solution of **27** (1.41 g, 8.29 mmol), and the resulting suspension was allowed to warm up to -35 °C in 30 min. After being stirred for an additional 10 min, the reaction mixture was treated with *N*,*N*-diisopropylethylamine (4.04 ml, 23.3 mmol) and the resulting suspension was allowed to warm up to -5 °C in 30 min. The reaction was quenched with water and then poured into ice-cold 0.5 N HCl. The mixture was extracted with EtOAc and the organic layer was washed with 1 N HCl, water and brine, and dried over MgSO₄. The organic solvent was removed by evaporation to give a methyl ketone **28** as a pale brown oil (794 mg, 57%). ¹H-NMR (300 MHz, CDCl₃) δ : 4.21 (q, *J*=7.2 Hz, 2H), 2.76 (t, *J*=6.9 Hz, 2H), 2.19 (s, 3H), 1.30 (t, *J*=7.2 Hz, 3H).

(5-Methyl-2-furyl)acetate (29) To a stirred solution of 28 (637 mg, 3.79 mmol) in DMF (75 ml) was added sodium hydride (62% in mineral oil, 161 mg, 4.17 mmol) at room temperature under argon atmosphere, and then stirring was continued at 90 °C for 3 h. After being cooled to room temperature, the reaction was quenched with saturated aqueous NH₄Cl. The reaction mixture was extracted with MTBE, washed with H₂O twice, brine, and dried over MgSO₄. The organic solvent was removed by evaporation and the resulting residue was purified by column chromatography on silica gel (hexane/EtOAc 1/1) to give an ester 29 as a pale yellow oil (160 mg, 25%). ¹H-NMR (300 MHz CDCl₃) δ : 6.09 (d, *J*=3.0 Hz, 1H), 5.90 (m, 1H), 4.18 (q, *J*=6.9 Hz, 2H), 3.62 (s, 2H), 2.87 (s, 3H), 1.27 (t, *J*=6.9 Hz, 3H).

[3-(5-Methyl-2-furyl)-2-oxopropyl]phosphonate (10I) Compound 10I was prepared in the same procedure as described of 10d from 20a as a pale yellow oil (128 mg, yield 53% in 3 steps). ¹H-NMR (300 MHz CDCl₃) δ : 6.11 (m, 1H), 5.91 (m, 1H), 3.84 (s, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 3.14 (d,

J=22.5 Hz, 2H), 2.26 (s, 3H).

Butyl 4-Iodobutanoate (17) To a stirred solution of *n*-butanol (100 ml) was added dropwise slowly thionyl chloride (14.9 ml, 204 mmol) at 0 °C (internal temperature: 5–47 °C) under argon atmosphere. After being stirred for 10 min, to this mixture was added a solution of 4-chlorobutanoic acid (25.0 g, 204 mmol) in *n*-butanol (20 ml). After being stirred at 60 °C for 5 h, the reaction mixture was cooled to room temperature, and was poured into ice, extracted with EtOAc/hexane, washed with water four times, saturated aqueous NaHCO₃, then brine, and dried over Na₂SO₄. The organic solvent was removed by evaporation to give an ester as a colorless oil (41.2 g).

To a stirred solution of above-described ester in CH₃CN (200 ml) was added sodium iodide (61.5 g, 410 mmol) at room temperature under argon atmosphere, and stirring was continued at 90 °C for 3 h. The resulting yellow solution was diluted with EtOAc, and washed with water, then brine, and dried over MgSO₄. The organic solvent was removed by evaporation to afford **17** as a yellow oil (57.5 g, 100%). ¹H-NMR (300 MHz, CDCl₃) δ : 4.09 (t, *J*=7.2 Hz, 2H), 3.24 (t, *J*=7.2 Hz, 2H), 2.45 (t, *J*=7.2 Hz, 2H), 2.25—2.05 (m, 2H), 1.74—1.59 (m, 2H), 1.46—1.26 (m, 2H), 0.94 (t, *J*=7.2 Hz, 3H).

Butyl 4-({2-[(2R)-2-(Hydroxymethyl)-5-oxo-1-pyrrolidinyl]ethyl}thio)butanoate (13) To a stirred solution of potassium tert-butoxide (701 mg, 6.25 mmol) in n-butanol (5 ml) and THF (5 ml) was added a solution of thioacetate 11 (1.89 g, 5.68 mmol) in THF (10 ml) at room temperature under argon atmosphere. After being stirred for 15 min, to a reaction mixture was added iodide 17, and stirring was continued at for additional 30 min. The reaction was quenched with saturated aqueous NH₄Cl. The reaction mixture was extracted with MTBE, washed with H2O twice, brine, and dried over MgSO4. The organic solvent was removed by evaporation to give a sulfide 12. A solution of above-described sulfide 12 in THF (15 ml) was treated with a solution of TBAF (1.0 M in THF, 6.82 ml, 6.82 mmol) at room temperature under argon atmosphere for 1 h. The reaction mixture was diluted with EtOAc, washed with H₂O, brine, and dried over Na₂SO₄. The organic solvent was removed by evaporation, and the resulting residue was purified by column chromatography on silica gel (EtOAc/MeOH, 1/0-95/5) to give 13 as a pale yellow oil (1.44 g, 80%). ¹H-NMR (300 MHz, CDCl₃) δ : 4.07 (t, J=6.9 Hz, 2H), 3.73-3.39 (m, 5H), 2.79-2.26 (m, 10H), 2.24 (m, 1H), 2.00-1.86 (m, 3H), 1.70-1.55 (m, 2H), 1.78 (m, 2H), 0.94 (t, J=7.5 Hz, 3H).

Butyl 4-({2-[(2*R***)-2-Formyl-5-oxo-1-pyrrolidinyl]ethyl}thio)butanoate (14)** Compound 14 was prepared from 13 according to the same procedure as described of 5a from 4a as a pale yellow oil, 64%; ¹H-NMR (300 MHz, CDCl₃) δ: 7.10 (m, 3H), 6.67 (d, J=15.6, 7.8 Hz, 1H), 6.25 (dd, J=15, 6.0 Hz, 1H), 4.30 (m, 1H), 4.07 (t, J=6.9 Hz, 1H), 3.80 (s, 2H), 3.66 (m, 1H), 2.95 (m, 1H), 2.70–2.25 (m, 9H), 1.97–1.20 (m, 10H), 0.90 (t, J=7.5 Hz, 3H).

Butyl 4-{(2-{(2*R***)-2-[(1***E***)-4-(3-Ethylphenyl)-3-oxo-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}ethyl)thio}butanoate (16a)** Compound 16a was prepared from 14 using 10k instead of 10a according to the same procedure as described of 8a from 5a as a colorless oil (251 mg, 57% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 7.22 (m, 1H), 7.12—7.00 (m, 3H), 5.77 (dd, J=15.4, 5.8 Hz, 1H), 5.52 (dd, J=15.4, 8.8 Hz, 1H), 4.41 (m, 1H), 4.12 (m, 1H), 4.07 (t, J=6.6 Hz, 2H), 3.63 (m, 1H), 2.98 (m, 1H), 2.91–2.77 (m, 2H), 2.68—2.48 (m, 6H), 2.44—2.35 (m, 4H), 2.23 (m, 1H), 1.97—1.86 (m, 2H), 1.134 (m, 2H), 1.23 (t, J=7.4 Hz, 3H), 0.98 (t, J=7.1 Hz, 3H).

4-[(2-{(2*R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(3-ethylphenyl)but-1-enyl]-5-oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3c)** Compound 3c was prepared from 16a according to the same procedure as described of 2b from **8a** as a pale yellow oil (122 mg, 92%). IR (film): 3389, 2929, 1660, 1417, 1234, 1103, 1032, 976, 796, 704, 667 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 7.24 (m, 1H), 7.13—6.98 (m, 3H), 5.78 (dd, *J*=15.4, 5.5 Hz, 1H), 5.52 (dd, *J*=15.4, 8.2, 1.1 Hz, 1H), 4.42 (m, 1H), 4.12 (m, 1H), 3.63 (m, 1H), 3.00 (m, 1H), 2.90—2.77 (m, 2H), 2.67—2.35 (m, 10H), 2.23 (m, 1H), 1.95— 1.85 (m, 2H), 1.72 (m, 1H), 1.22 (t, *J*=7.4 Hz, 3H); MS (APCI) *m/z*: 404 (M-H)⁻; HR-MS-FAB (*m/z*): [M-H]⁻ Calcd for C₂₂H₃₀NO₄S, 404.1896; Found: 404.1910.

Butyl 4-[(2-{(2*R*)-2-[(1*E*,3*S*)-3-Hydroxy-4-(5-methyl-2-furyl)-1-buten-1-yl]-5-oxo-1-pyrrolidinyl}ethyl)thio]butanoate (16b) Compound 16b was prepared from 14 using 10l instead of 10a according to the same procedure as described of 8a from 5a as a pale yellow oil (53 mg, 34% in 3 steps). ¹H-NMR (300 MHz, CDCl₃) δ : 5.99 (m, 1H), 5.87 (m, 1H), 5.75 (dd, *J*=15.3, 5.7 Hz, 1H), 5.55 (dd, *J*=15.3, 8.7 Hz, 1H), 4.43 (m, 1H) 4.20— 4.03 (m, 3H), 3.64 (m, 1H), 3.05 (m, 1H), 2.95—2.10 (m, 15H), 1.98—1.35 (m, 7H), 0.93 (t, *J*=7.5 Hz, 3H). **4-[(2-{(2***R***)-2-[(1***E***,3***S***)-3-Hydroxy-4-(5-methyl-2-furyl)but-1-enyl]-5oxopyrrolidin-1-yl}ethyl)sulfanyl]butanoic Acid (3k)** Compound 3k was prepared from 16b according to the same procedure as described of 2b from **8a** as a pale yellow oil (36 mg, 90%). IR (film): 3383, 2921, 1726, 1657, 1420, 1361, 1218, 1156, 1023, 974, 786, 754, 666 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ : 5.99 (d, *J*=3.0 Hz, 1H), 5.88 (m, 1H), 5.76 (dd, *J*=15.6, 5.7 Hz, 1H), 5.55 (ddd, *J*=15.6, 8.1, 1.2 Hz, 1H), 4.47 (m, 1H), 4.14 (m, 1H), 3.63 (m, 1H), 3.04 (m, 1H), 2.93—2.78 (m, 2H), 2.71—2.19 (m, 12H), 1.99—1.81 (m, 2H), 1.80—1.63 (m, 1H); MS (APCI) *m/z*: 380 (M-H)⁻; HR-MS-FAB (*m/z*): [M-H]⁻ Calcd for C₁₉H₂₆NO₄S, 380.1532; Found: 380.1550.

mEP1-4 Receptor Binding Assay Competitive binding studies were conducted using radiolabeled ligands and membrane fractions prepared from Chinese hamster ovary (CHO) cells, which stably express the prostanoid receptors mEP1-4. Membranes from CHO cells expressing prostanoid receptors were incubated with a radiolabeled ligand (*i.e.* $2.5 \text{ nm} [^{3}\text{H}]\text{PGE}_{2}$) and test compounds at various concentrations in an assay buffer (i.e. 10 mm KH₂PO₄-KOH buffer containing 1 mM ethylenediaminetetraacetic acid (EDTA), 10 mM MgCl₂ and 0.1 mM NaCl, pH 6.0). Incubation was carried out at 25 °C for 60 min, with the exception of mEP1, which was incubated for 20 min. Incubation was terminated via filtration through a Whatman GF/B filter. The filter was subsequently washed with ice-cold buffer (10 mM KH₂PO₄-KOH buffer containing 0.1 mM NaCl, pH 6.0), and the radioactivity on the filter was measured in a 6 ml liquid scintillation (ACSII) mixture with a liquid scintillation counter. Non-specific binding was achieved by adding excess amounts of unlabeled PGE2 in the assay buffer. The concentration that causes 50% of inhibition (IC₅₀ value) was estimated from the regression curve. The K_i value (M) was calculated according to the following equation: $K_i = IC_{50}/(1 + [L]/K_d)$, where [L] is the concentration of radiolabeled ligand and K_d is the dissociation constant of radiolabeled ligand for the prostanoid receptor of interest.

Measurement of cAMP Production Chinese hamster ovary (CHO) cells expressing mouse or rat EP4-receptor were cultured in 24-well plates $(1 \times 10^5 \text{ cells/well})$. After 2 d, the media were removed and cells were washed with 500 μ l of minimum essential medium (MEM) and incubated for 10 min in 500 μ l of buffer (MEM containing 2 μ M of diclofenac) at 37 °C. After the removal of buffer *via* suction, cells were pre-incubated in 450 μ l of assay medium (containing 1% of bovine serum albumin (BSA)) for 10 min at 37 °C. The reaction was started with the addition of each test compound in 50 μ l of assay buffer. After incubation for 10 min at 37 °C, the reaction was terminated by adding 500 μ l of ice-cold 10% trichloroacetic acid. cAMP production was determined *via* a cAMP radioimmunoassay kit (Amersham).

LPS-Induced Changes in Plasma TNF- α **Levels in Rats** LPS was dissolved in a sterile saline solution (1 mg/ml), and the test compound was dissolved in a sterile saline solution containing 20% HP- β -CD. Then, the test compound was orally administered to seven-week-old Sprague-Dawley rats (Charles River, Japan). After 30 min, an intravenous administration of LPS (10 μ g/2 ml/kg) was given, and 90 min after the LPS injection, blood samples were withdrawn into heparinized syringes *via* aortic puncture. Following centrifugation at 12000 rpm for 3 min at 4 °C, plasma was recevered and immediately frozen at 80 °C. Plasma TNF- α concentrations were determined *via* an enzyme-linked immunosorbent assay (ELISA) kit (Biosource).

Microsome Stability Assessments The test compound (5 μ l, 10 mM in DMSO) was diluted in 995 μ l of 50% acetonitrile in water to make a 50 μ M solution. Phosphate buffer (0.1 M, 245 µl) containing 1.0 or 0.5 mg/ml human/rat liver microsomes and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-co-factor was added into a reaction container, prewarmed to 37 °C in a water bath, and incubated for 5 min. The reaction was initiated by the addition of 5 μ l of the solution containing the test compound (in 0.975% acetonitrile with 0.05% DMSO, final concentration of $1 \,\mu$ M). Immediately after the initiation of the reaction, a 20 μ l aliquot was taken from the solution and transferred into 180 μ l of acetonitrile containing the internal standard (candesartan) to terminate the reaction. A 20 μ l aliquot of the mixture was mixed with $180\,\mu l$ of 50% acetonitrile on a plate with a filter for deproteinization and filtered by suction. The filtrate was used as a standard sample. After incubation for 15 or 60 min, a 20 µl aliquot was taken from the solution and then underwent the abovementioned procedure to obtain a reaction sample. The obtained samples were measured on an LC-MS/MS system. The percent remaining (%) was calculated by dividing the peak area ratio (i.e., test compound/I.S.) for the reaction sample by the peak area ratio for the standard sample and multiplying by 100.

References

- Coleman R. A., Smith W. L., Narumiya S., *Pharmacol. Rev.*, 12, 205–229 (1994).
- Maruyama T., Kuwabe S. I., Kawanaka Y., Shiraishi T., Shinagawa Y., Sakata K., Seki A., Kishida Y., Yoshida H., Maruyama T., Ohuchida S., Nakai H., Hashimoto S., Kawamura M., Kondo K., Toda M., *Bioorg. Med. Chem.*, **10**, 2103–2110 (2002).
- Elworthy T. R., Kertesz D. J., Kim W., Roepel M. G., Quattrocchio-Setti L., Smith D. B., Tracy J. L., Chow A., Li F., Brill E. R., Lach L. K., McGee D., Yang D. S., Chiou S.-S., *Bioorg. Med. Chem. Lett.*, 14, 1655–1659 (2004).
- Elworthy T. R., Brill E. R., Chiou S.-S., Chu F., Harris J. R., Hendricks R. T., Huang J., Kim W., Lach L. K., Mirzadegan T., Yee C., Walker K. A. M., J. Med. Chem., 47, 6124—6127 (2004).
- Billot X., Chateauneuf A., Chauret N., Denis D., Greig G., Mathieu M.-C., Metters K. M., Slipetz D. M., Young R. N., *Bioorg. Med. Chem. Lett.*, 13, 1129–1132 (2003).
- 6) Cameron K. O., Lefker B. A., Chu-Moyer M. Y., Crawford D. T., Jardine P. D., DeNinno S. L., Gilbert S., Grasser W. A., Ke H., Lu B., Owen T. A., Paralkar V. M., Qi H., Scott D. O., Thompson D. D., Tjoa C. M., Zawistoski M. P., *Bioorg. Med. Chem. Lett.*, 16, 1799–1802 (2006).
- Kambe T., Maruyama T., Naganawa A., Asada M., Seki A., Maruyama T., Nakai H., Toda M., *Chem. Pharm. Bull.*, **59**, 1494–1508 (2011).
- Weintraub P. M., King C.-H. R., J. Org. Chem., 62, 1560–1562 (1997).
- 9) Vieser R., Eberbach W., Tetrahedron Lett., 36, 4405-4408 (1995).