Synthesis and Platelet Aggregation Inhibiting Activity of Acid Side-chain Modified Hydantoin Prostaglandin Analogues

Paul Barraclough^{a)*}, A. Gordon Caldwell^{a)}, Robert C. Glen^{b)}, C. John Harris^{a)}, Ray Stepney^{a)}, Norman Whittaker^{a)}, and Brendan J.R. Whittle^{c)}

Departments of Medicinal Chemistry^a), Physical Sciences^b), and Pharmacology^c), Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS, U.K.

Received February 24, 1992

A series of hydantoin prostaglandin analogues, in which the hexamethylene moiety of the acid side chain was replaced by other spacing groups possessing either ether, sulphide and/or olefin functionality, were prepared and evaluated for platelet aggregation inhibiting activity. The 4-thia analogue 13^{*} proved to be the most potent inhibitor (ca. 22x PGE₁) and the 3thia- and 3-oxa-analogues, 6 and 10 respectively, are approximately equipotent with BW245C (ca. 14x PGE₁). Z-olefinic analogues (e.g. 11) were usually more potent than their *E*-isomers (e.g. 12). Structure-activity relationships are discussed in detail.

Synthese und Plättchenaggregationshemmung von Hydantoin-Prostaglandin-Analogen, modifiziert in der Säureseitenkette

Eine Reihe Hydantoin-Prostaglandin-Analoger, in welcher der Hexamethylenteil der Säureseitenkette durch andere, Ether-, Sulfid- und/oder Olefin-enthaltende Gruppen ersetzt wird, wurde hergestellt und auf Plättchenaggregationshemmung untersucht. Das 4-Thia-analoge 13^{*} ist der stärkste Hemmer (ca. 22 x PGE₁), die 3-Thia- und 3-Oxa-analogen 6 und 10 haben annähernd die gleiche Wirksamkeit wie BW245C (ca. 14 x PGE₁). Z-Olefinische Analoge (z.B. 11) besitzen höhere Wirksamkeiten als ihre *E*-Isomeren (z.B. 12). Struktur-Wirkung-Verhältnisse werden ausführlich diskutiert.

Prostaglandin D_2 (PGD₂) (1), is a potent inhibitor of human platelet aggregation, a vasodilator and it also exhibits a wide range of other pharmacological actions¹). However, whether these effects are mediated by a single PGD₂ receptor, previously classified as the DP receptor²), or by several subtypes of the DP receptor or other prostanoid receptors, is not yet known³).

The hydantoin prostaglandin analogue, BW245C 2^{4} , is also a potent inhibitor of human platelet aggregation and displays pronounced vasode-pressor actions. Studies⁵⁻⁷ with selective DP receptor antagonists suggest that these effects are mediated through (DP)² receptors.

In the vasculature, BW245C also acts on the DP receptor as well as another prostanoid receptor⁷⁾, possibly a PGE₂ (EP₂)^{2,5)} receptor. Additionally the PGE₁/PGI₂ (IP)²⁾ receptor may also mediate some of the platelet effects of BW245C⁶⁾. More quantitative classification studies are at present hindered by the lack of selective antagonists for these two latter prostanoid receptors. Moreover, it is not yet known whether differences exist between DP receptors on human platelet membranes and in the human vasculature, and whether any differences could be exploited to develop a platelet-selective agent.

The search for a more platelet-selective analogue of BW245C which has reduced cardiovascular effects in man must therefore be somewhat empirical at this time.

In continuation of our detailed studies^{8,9)} on the structureactivity relationships of hydantoin PGD_2 mimics, we now report the effects of modifying the acidic side chain of BW245C. It was of particular interest to know whether the

Chemistry

BW245C 2^{10} , analogue 3^{11} and analogue 20^{10} were obtained by described methods. Hydantoins 4-19 were synthesized from the corresponding 2-substituted ethyl glycinates 21-36 by the five stage route (Scheme 1).

The intermediates were not routinely purified or characterized (other than by t.l.c.) since this was found to be unnecessary. Purification of the required PG analogues was achieved by washing the corresponding crude sodium salts with ether followed by column chromatography when required. The pharmacologically active less polar epimers **2-20** were then isolated from the diastereomeric mixtures (containing more polar epimers**41**) by prep. HPLC.

*) All analogues are racemic

introduction of oxygen or sulphur atoms and/or unsaturation into the hexamethylene chain of 2 would give rise to more potent and platelet selective agents. This study thus necessitated the synthesis and pharmacological evaluation of the analogues $3-20^{*}$). The ability of the hydantoin PG analogues to inhibit ADP-induced platelet aggregation was measured *in vitro* with human platelet rich plasma. Those analogues which proved to be more potent than PGE₁, were also tested for their hypotensive effects in anaesthetised rats.

^{*)} PG numbering ('omitted for convenience: 4-thia = 4'-thia, etc.)

Five different methods (A-E) were employed to prepare the ethyl glycinate precursors 21-36 as shown in Schemes 2-6. Suitable C-alkylation of diethylacetamidomalonate (DEAM, method A, Scheme 2) or benzylidene glycine ethyl ester (method D, Scheme 5) followed by acid hydrolysis of the C-alkylated intermediates gave glycinates 21, 22, 26-29, and 32. The milder hydrolysis conditions for method D avoided the problem of competing ether cleavage which was found to occur when method A was used to obtain glycinates 28 and 29. These C-alkylations utilised the known bromides 42^{12} , 43^{13} , 45^{14} , $59-61^{15}$, and chloride 44, which was prepared by reaction of *E*-1,4-dichlorobut-2-ene with ethyl mercaptoacetate.

Glycinates 23-25 and 30 were obtained by reaction of the DEAM derivatives 50^{16} , 51^{17} , and 52^{18} with ethyl mercaptoacetate (or -propionate) and subsequent hydrolysis/reesterification (method B) (Scheme 3). Similarly chloride 57^{19} was converted *via* malonate 58 to glycinate 34 (Scheme 4). S-Alkylation of cysteine or homocysteine methyl ester 62^{20} proved to be the simplest method (E, Scheme 6) of preparing glycinates 31, 33, 35, and 36.

Many of the DEAM derivatives described above were used *in situ*, rigorous purification and characterization being performed only when t.l.c. and n.m.r. spectra indicated the presence of substantial by-products. Further details of the preparation and properties of the hydantoin analogues and glycinate intermediates are given in Tables 2 and 3, respectively, (Experim. Part).

Structure-activity relationships

The pharmacological properties of the BW245C analogues as inhibitors of human platelet aggregation and as hypotensive agents in the rat are given in Table 1. A number of saliant structure-activity points emerge from an analysis of the platelet data.

First it appears that a six atom array for the acid side chain linkage, X, is optimal. Thus either increasing or decreasing the hexamethylene spacer group of BW245C by Scheme 1

 ${\sf R}={\sf C}_6{\sf H}_{11}$ in all cases except for analogue ~19~ where ${\sf R}={\sf C}_5{\sf H}_9$

Scheme 2 (Method A)

 $Hal - X - CO_{2}Et \xrightarrow{EtO_{2}C} NH.Ac \xrightarrow{EtO_{2}C} NH.Ac \xrightarrow{EtO_{2}C} NH.Ac \xrightarrow{EtO_{2}C} NH.Ac \xrightarrow{1.5N} HCl \xrightarrow{EtO_{2}C} NH_{2}$

	Hal	x		
42	Br	(CH ₂)5	46	21
43	Br	(CH ₂)7	47	22
44	CI	E-CH2CH:CHCH2SCH2	48	26
45	Br	(CH2)4OCH2	49	27

Scheme 3 (Method B)

$$\underset{\text{EtO}_2C}{\text{EtO}_2C} \xrightarrow{\text{Y-Hal}} \frac{\text{HS(CH}_2)_x \text{CO}_2 \text{Et}}{\text{NaOEt}} \xrightarrow{\text{EtO}_2C} \xrightarrow{\text{Y-S(CH}_2)_x \text{CO}_2 \text{Et}} \frac{1.5\text{N} \text{HCl}}{2.50\text{Cl}_2, \text{EtO} \text{H}} \xrightarrow{\text{EtO}_2C} \xrightarrow{\text{Y-S(CH}_2)_x \text{CO}_2 \text{Et}} \xrightarrow{\text{EtO}_2C} \xrightarrow{\text{Y-S(CH}_2)_x \text{CO}_2 \text{Et}} \frac{1.5\text{N} \text{HCl}}{2.50\text{Cl}_2, \text{EtO} \text{H}} \xrightarrow{\text{EtO}_2C} \xrightarrow{\text{Y-S(CH}_2)_x \text{CO}_2 \text{Et}}$$

	Y-Hal		Y	x	
50	(CH ₂) ₄ Br	53	(CH ₂) ₄	1	23
51	(CH ₂) ₃ CI	54	(CH ₂) ₃	1	24
51	(CH ₂) ₃ Cl	55	(CH ₂)3	2	30
52	Z-CH2CH:CHCH2CI	56	Z-CH2CH:CHCH2	1	25

Arch. Pharm. (Weinheim) 326, 85-95 (1993)

Scheme 4 (Method C)

 CH_2 leads to lower platelet inhibitory properties. The relative potencies for the platelet inhibitory effects of 2, 4, and 5 indicate, however, that chain lengthening is better tolerated than chain shortening.

For the 3- and 4-thia analogues 6 and 13, chain shortening by CH_2 also has a very detrimental effect on activity, as evidenced by the low potencies of analogues 7 and 14. Analogue 7 is approximately 120 times less potent than 6 and BW245C (2), although the acid side chain of 7 is formally only ca. 0.5 Å shorter than the 'natural' side chain of 2. Lengthening the side chain of the 5-thia analogue 16 also drastically reduces activity *cf*. potencies of 16 and 18, which are 8x and 0.3x PGE₁, respectively.

Secondly the introduction of heteroatoms into the acid side chain seems to confer the more potent platelet inhibitory activity when the heteroatom is located in the 3- or 4position. A comparison of the activities of the thia-analogues 6, 13, 16, and 19 shows that the ranking order of potencies for replacement of a CH_2 by a S-atom is 4-S > 3-S > 5-S > 6-S. For the oxa-analogues 10, 15, and 17 the ranking is 3-O > 4-O > 5-O for replacement of CH₂ by an O-atom. A reduction of platelet inhibitory activity is observed when either the C-5 or C-6 atom is replaced by either S- or O-atoms. Thus the relative potencies of analogues 3, 2, 16, 17, and 19 indicate the following preference of 5,6 linking groups Z-CH=CH- > $-CH_2CH_2$ - > $-CH_2S$ - > $-CH_2O$ -, ~ $-SCH_2$ -.

The 5-oxa analogue of PGD₁ has also been reported²¹⁾ to be far less potent than PGD₁ as an anti-aggregating agent. The above findings may reflect the sensitivity of the C-5, C-6 region to perturbations of its normal electronic and conformational state. When the acid side chain does not contain olefinic functionality the sulphides are often found to be more potent than the corresponding ethers i.e. 13 > 15and 16 > 17. However, analogues 6 and 10 are approximately equipotent showing the 3-position to be less sensitive to heteroatom substitution. The overall ranking order of potencies for replacement of CH₂ by a heteroatom is therefore 4-S > 3-S, 3-O > 5-S > 4-O > 6-S, 5-O. For analogues possessing a 5,6 double bond, however, the ranking order is clearly different. A comparison of the potencies of analogues 8 vs. 11 and 9 vs. 12 shows that when a Z-5,6 double bond is present 3-O > 3-S, but for the *E*-olefin 3-S > 3-O.

Thirdly introduction of a Z-5,6 double bond into the acid side chain only led to more active analogues when heteroatoms were absent. Thus analogue **3** is more potent than **2** and this finding is consistent with the work of $Bundy^{21}$ who has shown that PGD₂ is much more potent than PGD₁. Ether **11** is slightly less potent than **10** and sulphide **8** is less active than analogue **6**. A Z-5,6 double bond does seem to be preferred to the *E*-olefinic functionality however. *Z*-olefins **8** and **11** are approximately 2 and 300 times more potent than their respective *E*-isomers **9** and **12**.

The potent platelet inhibitory activities of analogues possessing a Z-5,6-olefinic bond or a S- or O-atom at the 3- or 4-position may be related to the adoption of favourable conformations for these molecules, especially with regard to their acidic side chains. Thus when these analogues bind to the platelet receptor (probably the PGD₂ (DP) receptor) mediating their anti-aggregating effects their acidic side chains may more readily adopt conformations which give rise to potent ligand-receptor binding and expression of PGD₂ agonist responses. The geometries of these receptorbound conformations are not known at present and may not be elucidated until X-ray studies on crystalline receptorligand complexes are performed. Nevertheless it is interesting to note the marked differences between the side chain conformations adopted by $PGF_2\alpha^{*)}$ in aqueous solution²²⁾ and those of either PGF₂ α^{22} , BW245C²³⁾ or PGE₂²⁴⁾ in the crystal. In the solid state, the C3-C4 bond of BW245C and the C7-C8 bond of PGE₂ are in gauche conformations and the torsional angles for PGE₂ also indicate C-H eclipsed interactions around C-4 - C-5 and C-6 - C-7. These conformations may well be peculiar to the solid state. Nmr-studies²²⁾, however, did not find any unusual conformational constraints present in the α -chain of PGF₂ α in solution.

The solution conformations of $PGF_2\alpha$ (and possibly those of PGD₂) and the conformations of BW245C in the crystal thus bear little resemblance to the 'hairpin form'²⁵ seen in $PGF_{2}\alpha$ and PGE_{2} solid-state structures where the two side chains are in proximity and specific alignment. Interestingly, a molecular modelling study²⁶⁾ of over 200 PGI₂ analogues, suggests that IP receptor-bound PGI₂ exists in an elongated conformation (Fig. 1) very different from a 'hairpin form'. A similar analysis²⁷⁾ performed on 80 BW245C and 22 PGD₂ agonists also found 'hairpin forms' disfavoured for DP receptor-bound PGD₂. Although a range of conformations seemed probable, elongated conformations having C-6 - C-9 distances longer than those of PGI₂, could be readily adopted by several potent PGD₂ mimics such as analogue 3 (Fig. 1). These models suggest that in the absence of other factors Z 5,6 olefinic PG's should be more potent DP receptor agonists (but less potent IP receptor agonists) than their E-isomers. PG side chains are highly flexible structures²²⁾, however, and it remains to be seen which of the above conformations, if any, are adopted by the hydantoin analogues when in their receptor-bound state. Indeed the ability of BW245C to act at several prostanoid receptors may reflect an ability of the molecule to adopt several conformational states very readily. In addition, interaction of the side chain oxygen or sulphur lone pair may also contribute to binding of some ligands to the platelet receptor, raising the possibility that some analogues in this set bind in different modes. However, for the two most potent analogues, olefin 3 and sulphide 13, the S lone pair at the 4-position of 13 may mimic the 5.6 double-bond of 3 and provide a similar electronic contribution in the same binding mode. At present we have no simple explanation of the SAR's observed, and the reasons for the complex effects of olefinic and heteroatom functionality on platelet activity remain obscure.

The most potent inhibitors of platelet aggregation identified in this study are the 4-thia, 3-thia and 3-oxa analogues **13**, **6**, and **10**, respectively. Hydantoins **13** and **3** are more potent (22x PGE₁) than BW245C (14x PGE₁). Analogues **6** and **10** are approximately equipotent as hypotensive agents. These two analogues also exhibited much weaker blood pressure lowering effects than BW245C in anaesthetised rats. However, further studies²⁷⁾ in guinea pigs and dogs indicated there were only minor differences in the hypotensive effects of these agents and BW245C. Thus there is no evidence for an increased selectivity of platelet *vs.* cardiovascular effects for any of the analogues **3**, **6**, **10**, or **13**.

The discovery of BWA868C⁵⁻⁷⁾ as a potent and selective antagonist of the platelet inhibitory and cardiovascular actions of PGD₂ has stimulated further work towards a platelet selective PGD₂ mimic. In particular, *Collier* et al.²⁸⁾ have speculated that a partial agonist at IP receptors may display platelet selectivity whereas the results of *Leff*²⁹⁾ suggest that platelet selectivity will not be achievable at the DP receptor. In view of our present results this latter hypothesis has been studied thoroughly. In addition the many conformational possibilities relating to the present study have also led to an investigation of more conformationally constrained analogues. These studies will be reported elsewhere.

Experimental Part

Melting points: Kofler hot-stage instrument, uncorrected. ¹H Nmr-spectra: Bruker HFX90, AM-200 (200 MHz) or WM-360 (360 Mz), TMS as internal standard; chem. shift in δ (ppm).- E.I. Mass spectra: A.E.I. MS 902 spectrometer, interfaced to a VG MULTISPEC data system at 70 eV. Fast Atom Bombardment (FAB) mass spectra: Kratos MS 50 mass spectrometer, RF magnet as described⁸⁾. Thin layer chromatography (T.L.C.): Merck silica gel 60 F254; gravity column chromatography: Merck silica gel (230-400 mesh). High performance liquid chromatography (HPLC): Bio-sil silica (20-44 μ). Separation of the hydantoin diastereomers was achieved with CH₂Cl₂-MeOH-acetic acid mixtures (e.g. 93:5:2).

^{*)} PGD₂ is unstable; no crystal structure or studies of solution conformation have yet been reported.

Figure 1 Spatial representations of (A) PG conformations in the solid state and (B) postulated PG conformations when bound to appropriate receptor. Geometrical parameters are given in references 22-27.

Conversion of ethyl glycinates to hydantoin PG analogues

(±)-(S*,R*)7-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-5-oxa-heptanoic acid (17)

Amine **34** (5.22 g, 0.02 mol) and cyclohexylvinyl ketone¹⁰ (2.76 g, 0.02 mol) were mixed at 0°C and set aside at room temp. overnight giving ethyl 2-(3-cyclohexyl-3-oxopropylamino)-8-ethoxycarbonyl-5-oxaoctanoate [**37**, X=(CH₂)₂O(CH₂)₃] as an oil. A stirred solution of this ketone (7.90 g) in EtOH (100 ml) was treated dropwise at 0°C with NaBH₄ (0.75 g, 0.02 mol) in EtOH (70 ml), stirred at room temp. for 6 h, and then concentrated *in vacuo*. Water was added and the mixture was extracted with ether. The extracts were washed with brine, dried over MgSO₄ and evaporated to give 7.0 g of ethyl 2-(3-cyclohexyl-3-hydroxypropylamino)-8-ethoxycarbonyl-5-oxaoctanoate [**38**, X=(CH₂)₂O(CH₂)₃] as an oil consisting of two diastereomers, R_F 0.35; 0.40 (SiO₂; CHCl₃/MeOH, 50:1). To the foregoing crude amino-alcohol (6.9 g, 0.017 mol) dissolved in EtOH (40 ml) and 2N HCl

(20 ml, 0.04 mol), a solution of KCNO (3.24 g, 0.04 mol) in water (10 ml) was added gradually with cooling and stirring, and the solution was left at room temp. overnight. Most of EtOH was evaporated, water was added, and the oil was extracted with ether. Evaporation of the washed and dried ethereal solution left an oil which was heated on a steam bath for 24 h to give the crude hydantoin ester [40, X=(CH₂)₂O(CH₂)₃], as a yellow oily mixture (6.6 g) of diastereomers R_F 0.40; 0.45 (SiO₂; CHCl₃/MeOH, 9:1), containing some impurities. This material was stirred with 2N aqueous NaOH (90 ml) at room temp. for 3 h. The insoluble non-acidic material was removed by washing with ether and the clear alkaline solution was acidified with 2N HCl. The acid was extracted with ethyl acetate, the combined extracts dried and evaporated. Chromatography of the residual crude product on silica and elution with CHCl₃/MeOH (19:1) gave 2.4 g (32%) of a mixture of 17 and 41 as a pale yellow syrup. The diastereomers were separated by HPLC: 17 (0.62 g, 8%) m.p. 111-112°C (ethyl acetate-hexane).- C18H30N2O6 (370.5) Calcd. C 58.4 H 8.16 N 7.56. Found C 58.5 H Table 1: Pharmacological activities of BW245C analogues.

	0	0	
Compound	Inhibition of	Relative	Blood Pressure
	ADP-induced	Potency	Lowering activity
	human platelet	(PGE1=1)	in Rat
	aggregn.		Relative Potencyb
	IC ₅₀ , nM ^a (n)		(PGI ₂₌₁)
2	4.0±0.4 (10)	14	0.12 (n=4)
3	2.9±0.8 (4)	22	0.03 (n=4)
4	320±40 (2)	0.06	
5	7.6±1.5 (3)	7	0.08
6	4.7±1.1 (4)	12	0.02
7	280±40 (3)	0.1	
8	10.0±2.2 (3)	5	0.004
9	25±5 (3)	2	
10	4.2±0.9 (4)	14	0.03
11	5.3±1.2 (3)	9	0.02
12	600±200 (2)	0.03	
13	3.0±0.9 (4)	22	0.06 (n=4)
14	160±40 (2)	0.5	
15	16.0±3 (3)	3	
16	9.0±1.5 (3)	8	0.15
17	180±50 (2)	0.4	
18	200±60 (3)	0.3	
19	110±30 (2)	0.7	
20	8.5±2 (3)	8	0.07

IC₅₀, concentration reducing the aggregation to 50% of control amplitude: values are mean \pm s.e.m. for (n) experiments. Potencies relative to PGE₁ are approximate, BW245C is approximately 8 and 0.2 times as potent as PGD₂ and PGI₂, respectively. Relative potencies were confirmed by comparing the effects of groups of analogues (up to 5 per experiment) with BW245C and PGE₁ on the same batch of platelet rich plasma.

^bValues are relative to prostacyclin in the same anaesthetised animal; number of experiments (n = 2 unless stated otherwise).

8.45 N 7.53.- ¹H-NMR (90 MHz, CDCl₃): $\delta \approx 0.95$ -2.32 (17 H, m, aliphatics), 2.47 (2H, t, J = 7 Hz, CH₂CO₂), 3.00-4.07 (7H, m, NCH₂, C<u>H</u>OH, CH₂OCH₂), 4.16 (1H, m, CHN).- m/z 371 (fab).

In a similar manner the following BW245C analogues were obtained: 3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinehexanoic acid (4),

3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidineoctanoic acid (5),

7-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-3-thiaheptanoic acid (6),

6-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-3-thiahexanoic acid (7),

7(Z)-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-3-thiahept-5,6-enoic acid (8),

7(E)-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-3thiahept-5,6-enoic acid (9),

7-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-3-oxaheptanoic acid (10),

7(Z)-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-3-oxahept-5,6-enoic acid (11),

7(E)-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-3oxahept-5,6-enoic acid (12), 7-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-4-thiaheptanoic acid (13),

6-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-4-thiahexanoic acid (14),

7-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-4-oxaheptanoic acid (15),

7-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-5-thiaheptanoic acid (16),

8-[3-(3-Cyclohexyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-6-thiaoctanoic acid (18),

7-[3-(3-Cyclopentyl-3-hydroxypropyl)-2,5-dioxo-4-imidazolidinyl]-6-thiaheptanoic acid (19)

Details: Table 2.

Method A

(E)-Diethyl 2-acetamido-2-ethoxycarbonyl-7-thianon-4,5-enedioate (48)

Diethylacetamidomalonate (29.3 g, 0.13 mol) was added to a freshly prepared solution of sodium (3.10 g, 0.13 mol) in EtOH (120 ml). After stirring at room temp. for 15 min a solution of chloride 44 (28.1 g, 0.13 mol), in EtOH (20 ml) was added and the mixture then heated at reflux for 18 h. The cooled mixture was filtered, the filtrate evaporated, and water

Table 2: Preparation and Properties of Hydantoin PG Analogues

Compd.	Glycinate	Yield	m.p.(°C)	Formula		Analysis	
	Intermediate	(%)a			calc	d. (%) (Fo	und)
					С	H	N
4	21	75(15)	117-119	C18H30N2O5	61.0	8.53	7.90
5	22	80(10)	90-92	(354.5) C ₂₀ H ₃₄ N ₂ O5	(60.9) 62.8	(8.41) 8.96	(8.03) 7.32
da	23	80(32)	niass	(382.5) C19H20N2O5S	(62.6) 55.9	(9.17) 7.82	(7.41) 7.25°
0-	20	00(02)	(104 100)C	(286 5)	(55.7)C	(7.94)C	(7 16)0
7	24	52(16)	93-96	(388.5) C ₁₇ H ₂₈ N ₂ O ₅ S	54.8	(1.54)° 7.58	7.52
8 b	25	66(23)	117-118	(372.5) C ₁₈ H ₂₈ N ₂ O5S	(54.9) 56.2	(7.40) 7.34	(7.34) 7.29
				(384.5)	(56.4)	(7.44)	(7.16)
9	26	76(24)	glass	C18H28N2O5S	56.2	7.34	7.29
10	27	78(18)	142-144	(384.5) C19H20N2Oc	(56.6) 58.4	(7.66) 8.16	(6.98) 7.56
10	21	70(10)	172 177	(370.4)	(58.3)	(8.09)	(7.48)
11 ^b	28	82(34)	glass	C ₁₈ H ₂₈ N ₂ O ₆	58.7	7.66	7.60
10	29	68(10)	97-101	(368.4) C19H29N2O6	(59.0) 58.7	(7.90) 7.66	(7.30) 7.60
12	25	00(10)	07 101	(269.4)	(59.7)	(7.62)	(7.50)
13	30	84(33)	101-103	(368.4) C ₁₈ H30N2O5S	55.9	7.82	7.25
				(386.5)	(56.1)	(8.00)	(7.09)
14b	31	73(25)	80-82	C ₁₇ H ₂₈ N ₂ O ₅ S	54.8	7.58	7.52
15	32	70(16)	115-116	(372.5) C18H30N2O6	(54.6) 58.4	(7.87) 8.16	(7.31) 7.56
				(370.4)	(58.3)	(8.02)	(7.34)
16	33	64(12)	84-86	C18H30N2O5S	55.9	7.82	7.25
				(386.5)	(56.0)	(8.12)	(7.08)
17 ^b	34	32(8)	111-112	C18H30N2O6	58.4	8.16	7.56
				(370.4)	(58.5)	(8.45)	(7.53)
18	35	40(11)	70-73	C ₁₉ H ₃₂ N ₂ O ₅ S	57.0	8.05	6.99
				(400.5)	(57.3)	(8.21)	(6.80)
19b	36	7(1 ^d)	80-82	C17H28N2O5S	54.8	7.58	7.52
				(372.5)	(54.8)	(7.83)	(7.60)

^a Overall yield of the pure, isolated mixture of hydantoin diastereomers (and analytically pure racemic less polar hydantoin diastereomer) obtained from the racemic glycinate intermediate. A quantitative reaction/purification sequence = 100% overall yield.

 $^{b-1}$ H-NMR Data (90 MHz, CDCl₃): Analogue 6: δ = 0.80-2.0 (19 H, m, aliphatics), 2.66 (br.t, J = 7 Hz, CH₂S), 2.90-3.42 (4H, m, SCH₂CO, NCHHCHOH), 3.60-4.15 (2H, m, NCHH, CHN), 6.68 (2H, br.s, 2xOH, exchang.), 9.40 (1H, br.s, NH, exchang.).- Analogue 8: $\delta =$ 0.80-2.0 (13 H, m, aliphatics), 2.67 (2H, m, CH2C=C), 3.15 (2H, s, SCH2CO), 3.2-3.5 (4H, m, NCHH, CHOH, C=CCH₂S), 3.6-3.9 (1H, NCHH), 4.03 (1H, br.t, J = 4 Hz, CHN), 5.4-5.8 (2H, m, CH=CH), 7-8 (2H, v.br. peak, 2 OH, exchang.), 10.2 (br.s, NH, exchang.).- Analogue 11: $\delta = 0.80-1.95$ (13 H, m, aliphatics), 2.71 (2H, m, CH₂C=C), 3.10-3.48 (2H, m, NC<u>H</u>H, CHOH), 3.60-4.20 (6H, m, NCHH, CH2OCH2, CHN), 5.50-5.94 (2H, m, CH=CH), 6.21 (2H, br.s, 2xOH, exchang.), 9.25 (1H, br.s, NH, exchang.).- Analogue 14: $\delta = 0.90-2.0$ (13 H, m, aliphatics), 2.08 (2H, m, CH2CH2S), 2.52-2.97 (6H, m, CH2SCH2CH2CO), 3.0-4.0 (3H, NCH₂, -CHOH), 4.14 (1H, br.t, J = 4 Hz, CHN), 5.0-5.8 (2H, v.br. peak, 2xOH, exchang.).-Analogue 17: δ =0.95-2.32 (17 H, m, aliphatics), 2.47 (2H, t, J = 7 Hz, CH₂CO), 3.00-4.07 $(7H, NCH_2, -CHOH, CH_2OCH_2), 4.16 (1H, m, CHN).$ - Analogue 19: $\delta = 0.92$ -1.95 (15 H, m, aliphatics), 2.32 (2H, br.t, J = 7 Hz, CH₂CO), 2.58 (2H, br.t, J = 7 Hz, SCH₂CH₂), 2.82-3.45 (2H, m, CHOH, NCHH), 3.04 (2H, t, J = 4 Hz, CHCH₂S), 3.73-4.07 (1H, m, NCHH), 4.23 (1H, br.t, J = 4 Hz, CHN), 6.2 (2H, v.br. peak, 2xOH, exchang.), 9.7 (1H, v.br. peak, NH, exchang.).

^c refers to the more polar diastereomer of 6 i.e. 41, $X=(CH_2)_4SCH_2$.

^d low yield due to substantial decomposition during the thermolysis of **39** to **40**.

added to the residue. The mixture was extracted with ethyl acetate (2x), the extracts dried and the solvent removed *in vacuo*. The residual oil was purified by column chromatography (silica; chloroform) to give 41.7 g (80%) of **48** as a yellow oil.- $C_{17}H_{27}NO_7S$ (389.5).- ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.27$, 1.30 (9H, 2xt, J = 7 Hz, 3xMe), 2.05 (3H, s, NCOMe), 3.16 (6H, m, 2xCH₂S, CH₂C=C), 4.06-4.46 (6H, m, 3xOCH₂), 5.32-5.57 (2H, m, CH=CH), 6.85 (1H, br.s, NH, exchang.).

In a similar manner were obtained diethyl 2-acetamido-2-ethoxycarbonyloctanedioate (**46**), diethyl 2-acetamido-2-ethoxycarbonyldecanedioate (**47**), and diethyl 2-acetamido-2-ethoxycarbonyl-7-oxanonanedioate (**49**).

(E)-Diethyl 2-amino-7-thianon-4,5-enedioate (26)

Triester 48 (40.0 g, 0.10 mol) and 3N HCl (400 ml; 1.2 mol) were stirred and heated at reflux for 4 h. The cooled mixture was evaporated in vacuo and the residue dried by azeotropic distillation with benzene-EtOH. The amino acid obtained was dissolved in dry ethanol (150 ml) and this solution was added over 1 h to a freshly prepared mixture obtained from SOCl₂ (25 ml, 0.34 mol) and dry ethanol (200 ml) at -20°C with stirring. After 1 h the resulting solution was allowed to stand at room temp. overnight and then heated at reflux for 1 h. Volatile material was removed in vacuo and the residual syrup poured onto ice-water. The pH of the mixture was adjusted to 11 by Na₂CO₃ and the oil extracted (3x) with ethyl acetate. The extracts were dried and evaporated to give an oil which was chromatographed on silica/Et₂O/CH₂Cl₂/EtOH (4:4:1) gave 19.8 g (70%) of 26.- $C_{12}H_{21}NO_4S$ (275.3).- ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.29$ (6H, t, J = 7 Hz, 2xMe), 1.53 (2H, br.s, NH₂, exchang.), 2.45 (2H, m, CH₂-C=C), 3.18 (2H, s, CH2CO2), 3.22 (2H, m, C=C CH2S), 3.52 (1H, m, CHN), 4.20 (4H, q, J = 7 Hz, 2xOCH₂), 5.42-5.70 (2H, m, CH=CH).- m/z (276, (M+H)⁺, fab).

In a similar manner were obtained diethyl 2-aminooctanedioate (21), diethyl 2-aminodecanedioate (22), and diethyl 2-amino-7-oxanonanedioate (27). Details: Table 3.

Method **B**

Diethyl 2-acetamido-2-ethoxycarbonyl-7-thianonanedioate (53)

Ethyl mercaptoacetate (12.0 g, 0.10 mol) was added to a freshly prepared solution of sodium (2.30 g, 0.10 mol) in dry EtOH (130 ml). The solution was stirred 15 min and then added over 10 min to a stirred solution of diethyl (4-bromobutyl)acetamidomalonate (**50**)¹⁶ (35.2 g, 0.10 mol) in dry EtOH (150 ml). Stirring was continued for 24 h at room temp., the mixture diluted with water, and then extracted with chloroform (2x). The extracts were washed with brine, and filtered through a small silica pad. Evaporation of the filtrate and chromatography of the residue on silica/chloroform gave 28 g (72%) of a colourless gum, **53**.- C₁₇H₂₉NO₇S (391.3).- ¹H-NMR (90 MHz, CDCl₃): δ = 1.26, 1.28 (9H, 2xt, J = 7 Hz, 3xMe), 1.50-1.90 (4H, m, CH₂CH₂), 2.05 (3H, s, NCOMe), 2.63 (4H, br.t, J = 7 Hz, CH₂S, CH₂C), 3.20 (2H, s, SCH₂CO), 4.05-4.45 (6H, m, 3xOCH₂), 6.85 (1H, br.s, NH, exchang.).

In a similar manner were obtained diethyl 2-acetamido-2-ethoxycarbonyl-6-thiaoctanedioate (54), diethyl 2-acetamido-2-ethoxycarbonyl-6thianonanedioate (55), and (Z)-diethyl 2-acetamido-2-ethoxycarbonyl-7thianon-4,5-enedioate (56).

Diethyl 2-amino-7-thianonanedioate (23)

Triester 53 (25.0 g, 0.06 mol) and 3N HCl (300 ml, 0.9 mol) were stirred and heated at reflux for 3 h. The cooled mixture was evaporated, the residue azeotropically dried by addition and evaporation of ethanol (3x), to give a colourless gum. This substance was dissolved in dry EtOH (100 ml) and the solution added over 0.5 h to a stirred mixture of SOCl₂ (20 ml, 0.28 mol) and dry EtOH (120 ml) at -20°C. The mixture was stirred at room temp. overnight and then heated at reflux for 1 h. After cooling the solution was poured onto ice, adusted to pH 12 with Na₂CO₃ and extracted (3x) with CHCl₃. The extracts were dried, evaporated, and the residual oil was chromatographed on silica/Et₂O-CH₂Cl₂-EtOH (4:4:1) to give 12.5 g (70%) of a pale yellow oil **23**.- C₁₂H₂₃NO₄S (277.4).- ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.29$ (6H, t, J = 7 Hz, 2xMe), 1.50-1.90 (6H, m, 3xCH₂), 1.60 (2H, s, NH₂, exchang.), 2.67 (2H, br.t, J = 7 Hz, CH₂CH₂S), 3.23 (2H, s, SCH₂CO₂), 3.42 (1H, m, CHN), 4.22 (4H, q, J = 7 Hz, 2 CO₂CH₂).- m/z (278, (M+H)⁺, fab).

In a similar manner were obtained diethyl 2-amino-6-thiaoctanedioate (24), diethyl 2-amino-6-thianonanedioate (30), and (Z)-diethyl 2-amino-7-thianon-4,5-enedioate (25). Details: Table 3.

Method C

Diethyl 2-acetamido-2,8-di(ethoxycarbonyl)-5-oxanonanedioate (58)

Diethyl malonate (10.5 g, 0.065 mol) was added to a freshly prepared solution of sodium (1.5 g, 0.065 mol) in EtOH (200 ml). The solution was allowed to stand at room temp. for 15 min and then a solution of 2-(2-chloroethoxy-ethyl)-acetamidomalonate 57^{19} (20.0 g, 0.062 mol) in EtOH (60 ml) and NaI (9.30 g, 0.062 mol) added consecutively. The mixture was heated at reflux for 24 h, cooled and evaporated. Water was added to the residue and the mixture was extracted with ether (2x). The extracts were dried, the solvent was removed *in vacuo*, and the residue chromatographed on silica/ether to give 15.1 g (55%) of an oil **58**.- C₂₀H₃₃NO₁₀ (447.4).-¹H-NMR (200 MHz, CDCl₃): $\delta = 1.27$ (12 H, t, J = 7 Hz, 4xMe), 2.05 (3H, s, N-COMe), 2.05-2.23 (4H, m, 2xO-CH₂-CH₂), 3.33-3.60 (4H, m, CH₂OCH₂), 4.10-4.31 (8H, m, 4xCO₂CH₂), 4.65 (1H, m, O₂CCHCO₂), 6.59 (1H, br.peak, NH, exchang.).- (M+H)⁺ m/z (448, fab).

Diethyl 2-amino-5-oxanonanedioate (34)

Tetraester 58 (14.0 g, 0.03 mol), conc. HCl (110 ml, 1.2 mol) and water (200 ml) were stirred and heated at reflux for 5 h. The cooled mixture was evaporated to dryness and the last traces of water removed by azeotropic distillation with benzene. The residual amino acid was dissolved in dry EtOH (25 ml) and the solution added dropwise with stirring to a freshly prepared mixture of SOCl₂ (20 g, 0.17 mol) and dry EtOH (125 ml) at -30°C. After stirring at this temp. for 1 h, and at room temp. overnight, the mixture was heated at reflux for 2 h. The resulting solution was cooled, the volatile material was removed in vacuo and the residue poured onto icewater. The mixture was brought to pH 11 by Na₂CO₃, the aqueous layer saturated with salt, and the liberated oil extracted with ethyl acetate (4x). The extracts were dried over Na₂SO₄, evaporated and the residue distilled under reduced pressure to give 5.3 g (65%) of a pale yellow oil 34, b.p. 102-108°C/0.03 mm.- C12H23NO5 (261.3).- ¹H-NMR (90 MHz, CDCl3): δ = 1.20, 1.21 (6H, 2xt, J = 7 Hz, 2xMe), 1.63 (2H, br.s, NH₂, exchang.), 1.82-2.32 (6H, m, CH₂CO₂, 2xCH₂), 3.31-3.59 (5H, m, 2xOCH₂, CH), 4.03, 4.17 (m, 2xCO₂CH₂C).- m/z 262 ((M+H)⁺, fab).

Method D

(E)-Diethyl 2-amino-7-oxanon-4,5-enedioate (29)

A solution of lithium diisopropylamide in dry THF (200 ml) was prepared from diisopropylamine (4.00 g, 0.04 mol) and butyl lithium (24.0 ml of 1.62M, 0.04 mol) in hexane. Hexamethylphosphoramide (60 ml) was added and the stirred solution cooled to -78° C. A solution of glycine benzylidene ethyl ester³⁰ (8.00 g, 0.04 mol) in a little dry THF was added slowly and the mixture stirred at -78° C for 30 min. (*E*)-Ethyl (4-bromobut-2,3-enyloxy)acetate (60)¹⁵ (9.48 g, 0.04 mol) in a little dry THF was then added and the resulting solution was allowed to warm to room temp. and then stirred for 18 h. Most of the solvent was removed *in vacuo* and the

Amine	Method: Intermediates	Yield(s) %	Formula	Physical data ^{e, f,g,h}
21	A: 4212), 46	64a	C ₁₂ H ₂₃ NO ₄	b.p. 99-101°C/0.02mm, NMR
22	A: 43 13), 47	50a	(245.3) C14H27NO4	b.p. 123-126°C/0.04mm, Anal
23	B: 5016), 53	70b, 72c	(273.4) C ₁₂ H ₂₃ NO ₄ S	NMR, MS
24	B: 5117), 54	40a	(277.4) C11H21NO4S	b.p. 135-8°C/0.01mm, Anal,
25	B: 5218), 56	45a	(263.4) C12H21NO4S	NMR, MS
26	A: 44, 48	70b, 80c	(275.4) C ₁₂ H ₂₁ NO ₄ S	NMR, MS
27	A: 4514), 49	35a	(275.4) C ₁₂ H ₂₃ NO ₅	b.p. 118-121°C/0.005mm,
28	D: 59 15), BGEd	40b	(261.3) C12H21NO5	NMR, MS NMR, MS
29	D: 6015), BGEd	40b	(259.3) C ₁₂ H ₂₁ NO5 (259.3)	b.p. 120-122°C/0.005mm Anal NMR
30	B: 51 ¹⁷⁾ , 55	36a	C ₁₂ H ₂₃ NO ₄ S	b.p. 133-136°C/0.02mm
31	E: 62 ²⁰⁾ , 64	52b	C ₁₁ H ₂₁ NO ₄ S	b.p. 130-133°C/0.04mm
32	D: 6115), BGE	60p	(203.4) C12H23NO5	b.p. 108-112°C/0.03mm,
33	E: 62 ²⁰⁾ , 65	68p	(201.3) C ₁₂ H ₂₃ NO ₄ S	b.p. 140-144°C/0.05mm,
34	C: 5719), 58	65 ^b , 55c	(277.4) C ₁₂ H ₂₃ NO ₅	b.p. 102-108°C/0.03mm,
35	E: 6220), 66	34b	(261.3) C ₁₃ H ₂₅ NO ₄ S	юмн, мэ b.p. 140-144°C/0.02mm,
36	E: 63, 66	48b	(291.4) C ₁₂ H ₂₃ NO4S (277.4)	Anal, MS b.p. 130-134°C/0.02mm, NMR_MS

^a Overall yield for the preparation of pure, isolated glycinate from the first intermediate in the sequence. The second intermediate was used *in situ*. Amine **21**, for example, was obtained in 64% overall yield from bromide **42**. Amide **46** was used as a crude product.

^b Yield for the preparation of pure, isolated glycinate from the last intermediate in the sequence which was purified and isolated. Amine 23, for example, was obtained in 70% yield from amide 53.

^c Yield for the preparation of the last intermediate. Amide 53, for example, was obtained in 72% yield from bromide 50.

Table 3: Preparation and Properties of Ethyl Glycinates

^d BGE is N-Benzylidene glycine ethyl ester³⁰.

^c Column chromatography was routinely used to purify the glycinates. Although several of these amines were further purified by distillation low yields of the products, as oils, were often obtained; substantial amounts of non-distillable residues remained in the distillation flask. The glycinates could be stored satisfactorily at -20°C for up to one month. After this time these oils had partly solidified; the solids were found to contain the diketopiperazine derivatives and intractable polymeric material.

^f ¹H-NMR data (90 MHz, CDCl₃): **21**, δ = 1.24, 1.27 (6H, 2xt, J = 7 Hz, 2xMe), 1.40-1.80 (8H, m, 4xCH₂), 1.94 (2H, br.s, NH₂, exchang.), 2.28 (2H, br.t, J = 7 Hz, CH₂CO₂), 3.42 (1H, m, CHN), 3.90-4.30 (4H, m, 2xOCH₂).- **23**, see Exp. part.- **25**, δ = 1.28 (6H, t, J = 7 Hz, 2xMe), 1.61 (2H, s, NH₂, exchang.), 2.49 (2H, m, CH₂C=C), 3.19 (2H, s, CH₂CO), 3.24-3.62 (3H, m, CH₂S, CHN), 4.20 (4H, q, J = 7 Hz, 2xOCH₂), 5.61 (2H, m, CH=CH), **26**, see Exp. part.- **27**, δ = 1.29 (6H, t, J = 7 Hz, 2xMe), 1.45-1.90 (8H, m, aliphatics, NH₂, 2H, exchang.), 3.54 (3H, m, OCH₂, CHN), 4.05 (2H, s, CH₂CO), 4.18, 4.22 (4H, 2xq, J = 7 Hz, 2xCO₂CH₂).- **28**, δ = 1.27 (6H, t, J = 7 Hz, 2xMe), 1.62 (2H, br.s, NH₂, exchang.), 2.47 (2H, m, CH₂C=C), 3.51 (1H, m, CHN), 4.00-4.40 (8H, m, 2xCO₂CH₂, CH₂OCH₂CO), 5.70 (2H, m, CH=CH).- **29**, see Exp. part.- **31**, δ = 1.19, 1.20 (6H, 2xt, J = 7 Hz, 2xMe), 1.46 (2H, s, NH₂, exchang.), 2.60 (2H, m, CHNCH₂), 2.27-2.66 (6H, m, CH₂SCH₂CH₂CO), 3.48 (1H, m, CHN), 4.06, 4.11 (4H, 2xq, J = 7 Hz, 2xOCH₂).- **33**, δ = 1.18, 1.20 (6H, 2xt, J = 7 Hz, 2xMe), 1.50 (2H, s, NH₂, exchang.), 1.52-1.99 (4H, m, 2xCH₂-CH₂-S), 2.27-2.66 (6H, m, CH₂SCH₂, CH₂CO), 3.48 (1H, m, CHN), 4.05, 4.10 (4H, 2xq, J = 7 Hz, 2xOCH₂).- **34**, δ = 1.20, 1.21 (6H, 2xt, J = 7 Hz, 2xMe), 1.63 (2H, br.s, NH₂, exchang.), 1.82-2.32 (6H, m, CH₂CH₂CO, CHNCH₂), 3.31-3.59 (5H, m, CH₂OCH₂, CHN), 4.03-4.17 (4H, m, 2xCO₂CH₂).- **36**, δ = 1.14, 1.18 (6H, 2xt, J = 7 Hz, 2xMe), 1.58 (4H, m, aliphatics), 1.84 (2H, br.s, NH₂, exchang.), 2.21 (2H, t, J = 7 Hz, CH₂CO), 2.48-2.78 (4H, m, CH₂SCH₂), 3.53 (1H, m, CHN), 4.06 (4H, m, 2xOCH₂).

⁸ Mass Spectral (MS) data (fab) The following (M+H)⁺ ions of high intensity were observed: **23**: m/z 278; **24**: m/z 264; **25**: m/z 276; **26**: m/z 276; **27**: m/z 262; **28**: m/z 260; **30**: m/z 278; **31**: m/z 264; **32**: m/z 262; **33**: m/z 278; **34**: m/z 262; **35**: m/z 292; **36**: m/z 278.

^b Analytical data: 22: Calcd. C 61.5 H 9.96 N 5.12 Found C 61.6 H 10.1 N 5.05; 24: Calcd. C 50.2 H 8.04 N 5.32 Found C 50.5 H 7.95 N 5.09; 29: see Exp. part; 30: Calcd. C 52.0 H 8.36 N 5.05 Found C 52.3 H 8.68 N 4.80; 32: Calcd. C 55.2 H 8.87 N 5.36 Found C 54.9 H 9.08 N 5.10; 35: Calcd. C 53.6 H 8.65 N 4.81 Found C 53.9 H 8.89 N 4.54.

residue was diluted with ether and washed with aqueous NH₄Cl. The organic extract was dried, the solvent removed *in vacuo* and the residual oil stirred with 0.5N HCl (200 ml) for 1 h. The resulting suspension was thoroughly extracted with ether, the separated aqueous phase made alkaline (pH 11-12) with solid Na₂CO₃, and the mixture extracted with CHCl₃. The extracts were dried and evaporated to give a yellow syrup. This material was purified by column chromatography on silica/chloroform-ethanol (9:1) to give 4.14 g (40%) of **29** as a pale yellow oil. Distillation under reduced pressure gave an analytical sample of **29**, a colourless oil, b.p. 121.5°/0.005 mm.- C₁₂H₂₁NO₅ (259.3) Calcd. C 55.6 H 8.16 N 5.40 Found C 55.8 H 8.22 N 5.19.- ¹H-NMR (90 MHz, CDCl₃): δ = 1.28 (6H, t, J = 7 Hz, 2xMe), 1.55 (2H, br.s, NH₂, exchang.), 2.50 (2H, m, CH₂C=C), 3.53 (1H, m, CHN), 4.00-4.43 (8H, m, 2xCO₂CH₂, CH₂OCH₂CO), 5.60-5.85 (2H, m, CH=CH).

In a similar manner were obtained (Z)-diethyl 2-amino 7-oxanon-4,5enedioate (28) and diethyl 2-amino 6-oxanonanedioate (32). Details Table 3.

Method E

S-alkylation of cysteine derivatives

Diethyl 2-amino-4-thianonanedioate (36)

D,L-Cysteine methyl ester hydrochloride **63** (17.2 g, 0.10 mol) was added to a freshly prepared solution of sodium (4.60 g, 0.20 mol) in dry ethanol (320 ml). The mixture was stirred for 15 min, evaporated and the last traces of EtOH were removed under high vacuum. The residual ethyl sodiocysteinate was dissolved in dry DMSO (200 ml) and then ethyl 5-bromovalerate (**66**) (21.0 g, 0.10 mol) was added in a single portion. The reaction mixture was stirred at room temp. overnight and then poured onto ice-water containing NaH₂PO₄ (1 g). The mixture was extracted with ether, the extracts were washed with brine, and dried over MgSO₄. Removal of the solvent *in vacuo* and flash distillation gave 13.2 g (48%) of a pale yellow oil, b.p. 130-134°C/0.02 mm **36**.- C₁₂H₂₃NO₄S (277.4).- ¹H-NMR (90 MHz, CDCl₃): δ = 1.14, 1.18 (6H, 2q, J = 7 Hz, 2Me), 1.58 (4H, m, 2xCH₂), 1.84 (2H, br.s, NH₂, exchang.), 2.21 (2H, t, J = 7 Hz, CH₂CO₂), 2.48-3.52 (4H, m, CH₂SCH₂), 3.52 (1H, m, CHN), 4.06 (4H, m, 2xCH₂).- m/z (278 (M+H)⁺).

In a similar manner were obtained diethyl-2-amino-5-thiaoctanedioate (31), diethyl-2-amino-5-thianonanedioate (33), and diethyl-2-amino-5-thiadecanedioate (35). Details: Table 3.

(E)-Ethyl 7-Chloro-3-thiahept-5,6-enoate (44)

Ethyl mercaptoacetate (24.0 g, 0.20 mol) was added to a freshly prepared solution of sodium (4.60 g, 0.20 mol) in dry EtOH (300 ml). The solution was stirred 15 min and then added over 2 h to (*E*)-1,4-dichlorobut-2-ene (75.0 g, 0.60 mol) with vigorous stirring under N₂. Stirring was continued for 60 h at room temp. and then the mixture was filtered. Evaporation of the filtrate and distillation of the residue gave, after removal of recovered (*E*)-1,4-dichlorobut-2-ene, 28.2 g (68%) of a colourless, unstable oil 44, b.p. 90-93°C/0.05 mm.- C₈H₁₃ClSO₂ (208.7).- ¹H-NMR (90 MHz, CDCl₃): δ = 1.30 (3H, t, J = 7 Hz, Me), 3.15 (2H, s, SCH₂CO), 3.18-3.35 (2H, m, CH-CH₂S), 4.00-4.38 (4H, m, CH₂Cl, OCH₂), 5.66-5.90 (2H, m, CH=CH).

Inhibition of Platelet Aggregation in Vitro

Human blood was freshly collected into siliconized (Siloclad: Clay Adams) plastic (Sterilin Ltd.) vessels containing trisodium citrate (3.15%; 0.1 volume with 0.9 volume blood) and centrifuged (200 g for 15 min) at room temp. The platelet-rich plasma (PRP) was withdrawn into plastic containers and kept at room temp. Inhibition of platelet aggregation was determined by a *Born*-type aggregometer as described⁸⁾ by incubating aliquots (0.5 ml) of the PRP for 1 min at 37° C with or without the prostaglandin analogue prior to addition of sufficient adenosine diphosphate (ADP) to just cause a non-reversing control aggregation.

Cardiovascular Actions in Rats

The blood pressure lowering ability of the prostaglandin analogues following bolus intravenous administration was determined in anaesthesised male Wistar rats; arterial pressure was recorded from a cannulated femoral artery as described⁸⁾.

References

- 1 H. Giles and P. Leff, Prostaglandins 35, 277 (1988), and references therein.
- 2 R.A. Coleman, P.P.A. Humphrey, I. Kennedy, and P. Lumley, Trends Pharmacol. Sci. 5, 303 (1984).
- 3 S. Narumiya and N. Toda, Br. J. Pharmacol. 85 367 (1985).
- 4 K. Hillier, Drugs Future 7, 380 (1982), and references therein.
- 5 H. Giles, P. Leff, M.L. Bolofo, M.G. Kelly, and A.D. Robertson, Br. J. Pharmacol. 96, 291 (1989).
- 6 D.G. Trist, B.A. Collins, J. Wood, M.G. Kelly, and A.D. Robertson, Br. J. Pharmacol. 96, 301 (1989).
- 7 S. Hamid-Bloomfield and B.J.R. Whittle, Br. J. Pharmacol. 96, 307 (1989).
- 8 P. Barraclough, A.G. Caldwell, C.J. Harris, W.P. Jackson, and B.R.J. Whittle, J. Chem. Soc. Perk. 1, 1989, 1815.
- 9 P. Barraclough, W.P. Jackson, and C.J. Harris, Arch. Pharm. (Weinheim) 324, 473 (1991).
- 10 A.G. Caldwell, C.J. Harris, R. Stepney, and N. Whittaker, J. Chem. Soc. Perk. 1, 1980, 495.
- 11 A.G. Caldwell, C.J. Harris, R. Stepney, and N. Whittaker, J. C. S. Chem. Comm. 1979, 561.
- 12 G. Barger, R. Robinson, and L.H. Smith, J. Chem. Soc. 1937, 718.
- 13 R. Toubiana and J. Asselineau, Ann. Chim. 7, 593 (1962); C.A. 59, 1478c (1963).
- 14 British Patent 1, 431, 871; C.A. 82; 155527u (1975).
- 15 British Patent 1, 466, 298; C.A. 83; 96548x (1975).
- 16 H. De Koning and U.K. Pandit, Recl. Trav. Chim. Pays-Bas 90, 874 (1971).
- 17 M. Semonsky, R. Kotva, J. Vachek, and V. Jelinek, Collect. Czech. Chem. Commun. 33, 3823 (1968).
- 18 E. Leete and M.E. Mueller, J. Am. Chem. Soc. 104, 6440 (1982).
- 19 D.D. Keith, R. Yang, J.A. Tortora, and M. Weigele, J. Org. Chem. 43, 3713 (1978).
- 20 German Patent 1, 199, 276; C.A. 63; 14980b (1965).
- 21 G.L. Bundy, D.R. Morton, D.C. Peterson, E.E. Nishizawa, and W.L. Miller, J. Med. Chem. 26, 790 (1983).
- 22 N.H. Andersen and Bor-Sheng Lin, Biochemistry 24, 2338 (1985), and references therein.
- 23 M.A. Brockwell, A.G. Caldwell, N. Whittaker, and M.J. Begley, J. Chem. Soc. Perk. 1, 1981, 706.
- 24 J.W. Edmonds and W.L. Duax, Prostaglandins 5, 275 (1974).
- 25 D.A. Langs, M. Erman, and G.T. DeTitta, Science 197, 1003 (1977).
- 26 A.L. Tsai, E. Strobel-Jager, and K.K. Wu, J. Comp. Aid. Mol. Design 5, 135 (1991); C.A. 116, 34696k (1992).
- 27 Authors' unpublished results.
- 28 R.A. Armstrong, R.A. Lawrence, R.L. Jones, N.H. Wilson, and A. Collier, Br. J. Pharmacol. 97, 657 (1989).
- 29 P. Leff, presentation at the 7th International Conference on Prostaglandins and Related Substances, Florence, Italy, 1990. See H. Giles, Trends Pharm. Sci. 11, 301 (1990).
- 30 G. Stork, A.Y.W. Leong, and A.M. Touzin, J. Org. Chem. 41, 3491, (1976).

[Ph 28]