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Abstract: The northern-hemisphere fragments 4 and 5 of the thio-
peptide antibiotic nosiheptide have been synthesized from Boc-Glu-
OBn 7 and Boc-Thr 12 in 21.8% and 16.8% overall yields, respec-
tively.
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The antibiotic nosiheptide 1 (RP9671), originally isolated
from Streptomyces actuous 40037 in the early 1960s by
French workers,1,2 with its structure determined by chem-
ical degradation3 and X-ray crystallography,4,5 is charac-
terized by the presence of seven heterocyclic rings (five
thiazoles, one indole, one pyridine) in a double macrocy-
clic array. Nosiheptide is a member of the thiopeptide an-
tibiotics, a growing class of sulfur-rich modified cyclic
peptides,6 and has been subject of detailed biosynthetic
studies which establish the origin of the heterocyclic rings
from modification of the amino acid side-chains with cy-
clization.7 Although none of the thiopeptides are used
clinically as yet, nosiheptide is in commercial use as a
feed additive to increase weight gain in poultry and
pigs.8,9

Figure 1

Nosiheptide has traditionally been regarded as comprising
six fragments (Figure 1) – dehydroalanine and fragments
A (2,3,5,6-tetrasubstituted pyridine), B (threonine), C
(threonine–cysteine-derived propenylthiazole), D (modi-
fied glutamate) and E (2,3,4-trisubstituted indole). Al-
though nosiheptide has yet to succumb to total synthesis,
routes to various fragments have been described, includ-
ing the indole fragment E,10–12 the modified glutamate
fragment D,13–15 and the pyridine fragment A.16,17 The
synthesis of a potential precursor to the B-C-D-fragment
has also been described,14 although in many of these ex-
amples, the use of non-orthogonal protecting groups
would appear to preclude their use in any total-synthesis
campaign. In continuation of our interest in the synthesis
of the thiopeptide antibiotics,18–21 including nosiheptide,12

we now report concise routes to the ‘northern-hemi-
sphere’ fragments of the antibiotic.

Our overall plan for the synthesis of nosiheptide (1) is
shown in Scheme 1, and involves formation of the macro-
lactone/thiolactone from a suitable indole 2, previously
synthesized in our laboratory,12 and macrocyclic pyridine
fragment 3, which in turn could be derived from the
‘northern-hemisphere’ fragments 4 and 5 and the pyridine
6 by two amide couplings and one Pd-catalyzed biaryl
formation (Scheme 1).

The modified glutamate 4, corresponding to fragment D
in the original analysis, has been synthesized on four pre-
vious occasions: from D-glucose (ca. 12 steps),13 from
(S)-2,2-dimethyl-1,3-dioxolane-4-acetaldehyde (10 steps,
overall yield ca. 11%),15 from (S)-pyroglutamic acid
(11 steps, overall yield ca. 2%),14 or from D-glyceralde-
hyde (11 steps, overall yield ca. 8%).14 Our route that
starts from commercially available N-Boc-glutamic acid
benzyl ester 7 delivers the required fragment in just seven
steps in an overall yield of 22%, and importantly, with
orthogonal protecting groups on the two carboxyl,
hydroxyl and amino groups (Scheme 2).

Thus glutamate 7 was esterified using methyl chlorofor-
mate,22 and then subjected to the excellent Hanessian pro-
tocol for the stereocontrolled hydroxylation of the
glutamate dianion, formed upon treatment with LiHMDS
(2 equiv), with the Davis oxaziridine.23,24 The resulting 4-
hydroxy compound was not purified, but immediately
converted into its TBS-ether 9, which after purification
was obtained as a single diastereomer in 60% yield over
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the two steps.25 That the hydroxyl group had indeed been
introduced with the desired S-stereochemistry was con-
firmed by removal of the Boc protecting group under
acidic conditions, basification and cyclization to the pyro-
glutamate derivative 10. NMR studies on compound 10
established that the hydrogens at C-2 and C-4 are syn to
each other. In order to complete the synthesis, the benzyl
ester in glutamate 9 was removed by hydrogenolysis, and
the resulting acid converted into the thioamide 11 by treat-
ment of the corresponding carboxamide with Lawesson’s
reagent (LR). Finally, Hantzsch reaction with tert-butyl
bromopyruvate,26 under the modified conditions to pre-
vent racemization,27 gave the orthogonally protected
glutamate fragment 4 (Scheme 2).28,29

Scheme 2 LR = Lawesson’s reagent

The synthesis of fragment 5 started with N-Boc-threonine
12, readily converted into the known carboxamide 13 in
good yield (Scheme 3). Protection of the hydroxyl group
as its 4-methoxybenzyl (PMB) ether 14 using 2-tert-bu-
tylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-di-
azaphosphorine (BEMP) as base, was followed by
conversion into the thioamide 15 and Hantzsch reaction
with methyl bromopyruvate to give the thiazole 16.30

Treatment of 16 with TFA in dichloromethane cleaved
both Boc and PMB protecting groups, and the resulting
amine trifluoroacetate salt was coupled to N-Boc-O-tert-
butyldimethylsilylthreonine (17)31 to give the dipeptide
18. The unprotected threonine side-chain underwent de-
hydration upon treatment with methanesulfonyl chloride
and triethylamine, followed by DBU32 to give the desired
Z-alkene 19 in good yield, the stereochemistry of the
double bond being confirmed by NOE studies. Finally,
selective removal of the N-Boc-group in TFA–dichloro-
methane was followed by coupling to 2-bromothiazole-4-
carboxylic acid33 to give the complete fragment 534

(Scheme 3) in an overall yield of 16.8% over the nine
steps.

Scheme 1
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Scheme 3 NMM = N-methylmorpholine; LR = Lawesson’s re-
agent

In summary, we have developed concise routes to thiaz-
oles 4 and 5 that together comprise the complete northern
hemisphere of nosiheptide, with appropriate orthogonal
protecting groups for further elaboration to the natural
product.
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