Synthesis of the 'Northern-Hemisphere' Fragments of the Thiopeptide Antibiotic Nosiheptide

Tahar Belhadj,^{a,b} Audrey Nowicki,^a Christopher J. Moody*a,^b

^a Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

^b School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK Fax +44(115)9513564; E-mail: c.j.moody@nottingham.ac.uk

Received 23 March 2006

Dedicated to Professor Richard Heck in recognition of his outstanding contributions to organic synthesis

Abstract: The northern-hemisphere fragments 4 and 5 of the thiopeptide antibiotic nosiheptide have been synthesized from Boc-Glu-OBn 7 and Boc-Thr 12 in 21.8% and 16.8% overall yields, respectively.

Key words: thiazole, amino acids, heterocycles, antibiotics

The antibiotic nosiheptide **1** (RP9671), originally isolated from *Streptomyces actuous* 40037 in the early 1960s by French workers,^{1,2} with its structure determined by chemical degradation³ and X-ray crystallography,^{4,5} is characterized by the presence of seven heterocyclic rings (five thiazoles, one indole, one pyridine) in a double macrocyclic array. Nosiheptide is a member of the thiopeptide antibiotics, a growing class of sulfur-rich modified cyclic peptides,⁶ and has been subject of detailed biosynthetic studies which establish the origin of the heterocyclic rings from modification of the amino acid side-chains with cyclization.⁷ Although none of the thiopeptides are used clinically as yet, nosiheptide is in commercial use as a feed additive to increase weight gain in poultry and pigs.^{8,9}

SYNLETT 2006, No. 18, pp 3033–3036 Advanced online publication: 25.10.2006 DOI: 10.1055/s-2006-951502; Art ID: S03706ST © Georg Thieme Verlag Stuttgart · New York Nosiheptide has traditionally been regarded as comprising six fragments (Figure 1) – dehydroalanine and fragments A (2,3,5,6-tetrasubstituted pyridine), B (threonine), C (threonine-cysteine-derived propenylthiazole), D (modified glutamate) and E (2,3,4-trisubstituted indole). Although nosiheptide has yet to succumb to total synthesis, routes to various fragments have been described, including the indole fragment E,10-12 the modified glutamate fragment D,13-15 and the pyridine fragment A.16,17 The synthesis of a potential precursor to the B-C-D-fragment has also been described,¹⁴ although in many of these examples, the use of non-orthogonal protecting groups would appear to preclude their use in any total-synthesis campaign. In continuation of our interest in the synthesis of the thiopeptide antibiotics,^{18–21} including nosiheptide,¹² we now report concise routes to the 'northern-hemisphere' fragments of the antibiotic.

Our overall plan for the synthesis of nosiheptide (1) is shown in Scheme 1, and involves formation of the macrolactone/thiolactone from a suitable indole 2, previously synthesized in our laboratory,¹² and macrocyclic pyridine fragment 3, which in turn could be derived from the 'northern-hemisphere' fragments 4 and 5 and the pyridine 6 by two amide couplings and one Pd-catalyzed biaryl formation (Scheme 1).

The modified glutamate **4**, corresponding to fragment D in the original analysis, has been synthesized on four previous occasions: from D-glucose (ca. 12 steps),¹³ from (*S*)-2,2-dimethyl-1,3-dioxolane-4-acetaldehyde (10 steps, overall yield ca. 11%),¹⁵ from (*S*)-pyroglutamic acid (11 steps, overall yield ca. 2%),¹⁴ or from D-glyceraldehyde (11 steps, overall yield ca. 8%).¹⁴ Our route that starts from commercially available *N*-Boc-glutamic acid benzyl ester **7** delivers the required fragment in just seven steps in an overall yield of 22%, and importantly, with orthogonal protecting groups on the two carboxyl, hydroxyl and amino groups (Scheme 2).

Thus glutamate **7** was esterified using methyl chloroformate,²² and then subjected to the excellent Hanessian protocol for the stereocontrolled hydroxylation of the glutamate dianion, formed upon treatment with LiHMDS (2 equiv), with the Davis oxaziridine.^{23,24} The resulting 4hydroxy compound was not purified, but immediately converted into its TBS-ether **9**, which after purification was obtained as a single diastereomer in 60% yield over

Scheme 1

the two steps.²⁵ That the hydroxyl group had indeed been introduced with the desired *S*-stereochemistry was confirmed by removal of the Boc protecting group under acidic conditions, basification and cyclization to the pyroglutamate derivative **10**. NMR studies on compound **10** established that the hydrogens at C-2 and C-4 are *syn* to each other. In order to complete the synthesis, the benzyl ester in glutamate **9** was removed by hydrogenolysis, and the resulting acid converted into the thioamide **11** by treatment of the corresponding carboxamide with Lawesson's reagent (LR). Finally, Hantzsch reaction with *tert*-butyl bromopyruvate,²⁶ under the modified conditions to prevent racemization,²⁷ gave the orthogonally protected glutamate fragment **4** (Scheme 2).^{28,29}

Scheme 2 LR = Lawesson's reagent

The synthesis of fragment 5 started with N-Boc-threonine 12, readily converted into the known carboxamide 13 in good yield (Scheme 3). Protection of the hydroxyl group as its 4-methoxybenzyl (PMB) ether 14 using 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) as base, was followed by conversion into the thioamide 15 and Hantzsch reaction with methyl bromopyruvate to give the thiazole $16.^{30}$ Treatment of 16 with TFA in dichloromethane cleaved both Boc and PMB protecting groups, and the resulting amine trifluoroacetate salt was coupled to N-Boc-O-tertbutyldimethylsilylthreonine $(17)^{31}$ to give the dipeptide 18. The unprotected threonine side-chain underwent dehydration upon treatment with methanesulfonyl chloride and triethylamine, followed by DBU³² to give the desired Z-alkene 19 in good yield, the stereochemistry of the double bond being confirmed by NOE studies. Finally, selective removal of the N-Boc-group in TFA-dichloromethane was followed by coupling to 2-bromothiazole-4carboxylic acid³³ to give the complete fragment 5^{34} (Scheme 3) in an overall yield of 16.8% over the nine steps.

Scheme 3 NMM = *N*-methylmorpholine; LR = Lawesson's reagent

In summary, we have developed concise routes to thiazoles 4 and 5 that together comprise the complete northern hemisphere of nosiheptide, with appropriate orthogonal protecting groups for further elaboration to the natural product.

Acknowledgment

We the EPSRC for financial support, and the EPSRC Mass Spectrometry Service at Swansea for mass spectra.

References and Notes

- (1) Rhone-Poulenc, S. A. FR 1392453, 1961.
- (2) Benazet, F.; Cartier, M.; Florent, J.; Godard, C.; Jung, G.; Lunel, J.; Mancy, D.; Pascal, C.; Renaut, J.; Tarridec, P.; Theilleux, J.; Tissier, R.; Dubost, M.; Ninet, L. *Experientia* **1980**, 36.
- (3) Depaire, H.; Thomas, J.-P.; Brun, A.; Lukacs, G. *Tetrahedron Lett.* **1977**, 1365.
- (4) Prange, T.; Ducruix, S.; Pascard, C.; Lunel, J. *Nature* (*London*) **1977**, 265, 189.
- (5) Pascard, C.; Ducroix, A.; Lunel, J.; Prange, T. J. Am. Chem. Soc. 1977, 99, 6418.
- (6) Bagley, M. C.; Dale, J. W.; Merritt, E. A.; Xiong, X. Chem. Rev. 2005, 105, 685.
- (7) Mocek, U.; Knaggs, A. R.; Tsuchiya, R.; Nguyen, T.; Beale, J. M.; Floss, H. G. J. Am. Chem. Soc. **1993**, 115, 7557; and references therein.
- (8) Casteels, M.; Bekaert, H.; Buysse, F. X. Rev. Agric. 1980, 33, 1069.
- (9) Horii, S.; Oku, N. J. AOAC Int. 2000, 83, 17.
- (10) Koerber-Plé, K.; Massiot, G. Synlett 1994, 759.
- (11) Shin, C.; Yamada, Y.; Hayashi, K.; Yonezawa, Y.; Umemura, K.; Tanji, T.; Yoshimura, J. *Heterocycles* 1996, 43, 891.
- Bentley, D. J.; Fairhurst, J.; Gallagher, P. T.; Manteuffel, A. K.; Moody, C. J.; Pinder, J. L. Org. Biomol. Chem. 2004, 2, 701.
- (13) Iwakawa, M.; Kobayashi, Y.; Ikuta, S.; Yoshimura, J. Chem. Lett. 1982, 1975.
- (14) Shin, C.; Nakamura, Y.; Yamada, Y.; Yonezawa, Y.; Umemura, K.; Yoshimura, J. Bull. Chem. Soc. Jpn. 1995, 68, 3151.
- (15) Umemura, K.; Tate, T.; Yamaura, M.; Yoshimura, J.; Yonezawa, Y.; Shin, C. Synthesis 1995, 1423.
- (16) Umemura, K.; Noda, H.; Yoshimura, J.; Konn, A.;
 Yonezawa, Y.; Shin, C. G. *Tetrahedron Lett.* **1997**, *38*, 3539.
- (17) Umemura, K.; Noda, H.; Yoshimura, J.; Konn, A.;
 Yonezawa, Y.; Shin, C. G. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 1391.
- (18) Moody, C. J.; Bagley, M. C. Chem. Commun. 1998, 2049.
- Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am. Chem. Soc. 2000, 122, 3301.
- (20) Hughes, R. A.; Thompson, S. P.; Alcaraz, L.; Moody, C. J. *Chem. Commun.* **2004**, 946.
- (21) Hughes, R. A.; Thompson, S. P.; Alcaraz, L.; Moody, C. J. J. Am. Chem. Soc. 2005, 127, 15644.
- (22) Adamczyk, M.; Johnson, D. D.; Reddy, R. E. *Tetrahedron: Asymmetry* **1999**, *10*, 775.
- (23) Hanessian, S.; Vanasse, B. Can. J. Chem. 1993, 71, 1401.
- (24) Hanessian, S.; Margarita, R. *Tetrahedron Lett.* **1998**, *39*, 5887.
- (25) Analytical Data of (*S*,*S*)-1-Benzyl-5-methyl 2-tertbutoxycarbonylamino-4-tert-butyldimethylsiloxy Pentanedioate (9).
 ¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.26 (5 H, br s, ArH), 5.30 (1 H, d, *J* = 8.3 Hz, N*H*), 5.22 (1 H, d, *J* = 12.4 Hz, CHHPh), 5.11 (1 H, d, *J* = 12.4 Hz, CHHPh), 4.47 (1 H, m, CHNH), 4.28 (1 H, m, CHOSi), 3.70 (3 H, s, OMe), 2.28– 2.09 (2 H, m, 3-CH₂), 1.42 (9 H, s, CMe₃), 0.91 (9 H, s, CMe₃), 0.04 (3 H, s, Me), 0.03 (3 H, s, Me). ¹³C NMR (75 MHz, CDCl₃): δ = 173.8 (C), 172.5 (C), 155.9 (C), 135.9 (C), 129.3 (CH), 128.8 (CH), 128.6 (CH), 80.2 (C), 69.9 (CH), 67.5 (CH₂), 52.5 (Me), 51.5 (CH), 36.7 (CH₂), 28.7 (Me), 26.1 (Me), 18.6 (C), -3.18 (Me).
- (26) Singh, Y.; Stoermer, M. J.; Lucke, A. J.; Guthrie, T.; Fairlie, D. P. J. Am. Chem. Soc. 2005, 127, 6563.

- (27) Bredenkamp, M. W.; Holzapfel, C. W.; van Zyl, W. J. Synth. *Commun.* **1990**, *20*, 2235.
- (28) It is established that Boc-groups can be deprotected in the presence of *tert*-butyl esters (for an example, see ref. 21) and of *tert*-butyldimethylsilyl ethers (cf. deprotection of compound **19**).
- (29) Synthesis of (S,S)-tert-Butyl 2-[(1-tert-butoxycarbonylamino-3-tert-butyldimethylsiloxy-3-methoxycarbonyl)propyl]thiazole-4-carboxylate (4). To a solution of (S,S)-2-tert-butoxycarbonylamino-4-tertbutyldimethylsiloxy-4-methoxycarbonyl-thiobutanamide (11, 1.20 g, 2.95 mmol) and tert-butyl bromopyruvate (2.30 g, 10.33 mmol) in 1,2-dimethoxyethane (42 mL) at -30 °C was added KHCO₃ (1.18 g, 11.80 mmol). The mixture was stirred at -10 °C for 6 h. The colorless solid was filtered off and washed with 1,2-dimethoxyethane. The filtrate was concentrated in vacuo. The mixture was diluted in 1,2dimethoxyethane (42 mL) and cooled at -30 °C before addition of TFAA (1.24 mL, 8.85 mmol) and 2,6-lutidine (2.06 mL, 17.70 mmol). The mixture was stirred overnight at -20 °C. The mixture was partitioned between EtOAc and brine, the organic layer separated and concentrated in vacuo. The crude product was purified by flash chromatography (EtOAc-light PE, 1:5) to give the title compound (1.33 g, 85%) as a colorless sticky solid. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.93 (1 \text{ H}, \text{ s}, \text{H}-4), 5.77 (1 \text{ H}, \text{d}, J = 8.1 \text{ Hz},$ NHBoc), 5.15 (1 H, m, CHOSi), 4.42 (1 H, m, CHNH), 3.70 (3 H, s, OMe), 2.51–2.40 (2 H, m, CH₂), 1.57 (9 H, s, CMe₃), 1.42 (9 H, s, CMe₃), 0.91 (9 H, s, CMe₃), 0.05 (3 H, s, Me), 0.01 (3 H, s, Me). ¹³C NMR (75 MHz, CDCl₃): $\delta = 173.8$ (2 ×C), 160.8 (C), 155.6 (C), 149.0 (C), 126.9 (CH), 82.3 (C), 80.5 (C), 69.9 (CH), 52.5 (CH), 50.5 (Me), 39.1 (CH₂), 28.7 (Me), 28.6 (Me), 26.1 (Me), 18.5 (C), -4.6 (Me), -5.1 (Me). MS (FI): $m/z = 531 (14) [MH^+], 473 (100), 418 (8), 417 (32),$ 132 (38), 57 (84).
- (30) Synthesis of Methyl 2-[(S)-1-(*tert*-Butoxycarbonylamino)-(R)-2-(4-methoxybenzyloxy)propyl]thiazole-4carboxylate (16).

To a solution of *N*-tert-butoxycarbonyl-*O*-(4-methoxybenzyl)thiothreoninamide (**15**, 1.60 g, 4.51 mmol) in 1,2dimethoxyethane (31 mL) was added at 0 °C methyl bromopyruvate (1.68 mL, 15.80 mmol) and KHCO₃ (1.80 g, 18.04 mmol). The mixture was stirred 1 h at 0 °C before addition of TFAA (1.89 mL, 13.53 mmol) and 2,6-lutidine (3.15 mL, 27.06 mmol) at the same temperature. The mixture was stirred 2 h at 0 °C. The mixture was diluted in EtOAc and washed with brine. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography (light PE–EtOAc, 2:1 to 1:2) to give the title compound (1.46 g, 74%) as a yellowbrown oil. ¹H NMR (300 MHz, CDCl₃): δ = 8.09 (1 H, s, H-4), 6.95 (2 H, d, *J* = 8.6 Hz, ArH), 6.75 (2 H, d, *J* = 8.6 Hz, ArH), 5.70 (1 H, d, *J* = 8.7 Hz, NHBoc), 5.00 (1 H, d, *J* = 8.5 Hz, CHNH), 4.39 (1 H, d, J = 11.3 Hz, CHHPh), 4.31 (1 H, m, CHHMe), 4.14 (1 H, d, J = 11.1 Hz, CHPh), 3.93 (3 H, s, OMe), 3.76 (3 H, s, OMe), 1.46 (9 H, s, CMe₃), 1.27 (3 H, d, J = 6.2 Hz, Me). ¹³C NMR (75 MHz, CDCl₃): $\delta = 175.0$ (C), 162.3 (C), 159.6 (C), 156.1 (C), 147.3 (C), 130.1 (C), 129.8 (CH), 127.8 (CH), 114.0 (CH), 80.8 (C), 76.0 (CH), 71.5 (CH₂), 58.1 (CH), 55.6 (Me), 52.8 (Me), 28.7 (Me), 16.9 (Me).

- (31) Muir, J. C.; Pattenden, G.; Thomas, R. M. Synthesis **1998**, 613.
- (32) Bower, J.; Drysdale, M.; Hebdon, R.; Jordan, A.; Lentzen, G.; Matassova, N.; Murchie, A.; Powles, J.; Roughley, S. *Bioorg. Med. Chem. Lett.* 2003, *13*, 2455.
- (33) Silberg, A.; Ursu, A. Rev. Roum. Chim. 1965, 10, 897.
- (34) Synthesis of Methyl 2-{(S)-1-[2-(2-Bromothiazole-4carbonylamino)-(R)-3-(tert-butyldimethylsiloxy)butanoylamino]-(Z)-propenyl}thiazole-4carboxylate (5).

To a stirred solution of methyl 2-{(S)-1-[(S)-2-tert-butoxycarbonylamino-(R)-3-(tert-butyldimethylsiloxy)butanoylamino]-(Z)-propenyl}thiazole-4-carboxylate (19, 482 mg, 0.94 mmol) in CH₂Cl₂ (13 mL) was added TFA (1.74 mL, 23.46 mmol). The mixture was stirred 30 min at 20 °C. The solvent was removed in vacuo and the residue was azeotroped with toluene. To the crude thiazole amine trifluoroacetate and 2-bromo-4-thiazolecarboxylic acid (254 mg, 1.22 mmol) in CH2Cl2 (12 mL) at 0 °C was added PyBOP (587 mg, 1.13 mmol) and N,N-diisopropylethylamine (0.80 mL, 4.70 mmol). The mixture was stirred 15 min at 0 °C and then overnight at r.t. The solvent was removed in vacuo. The mixture was partitioned between EtOAc and sat. solution of NaHCO₃. The organic layer was washed with brine, dried over Na2SO4 and concentrated. The crude product was purified by flash chromatography (light PE-EtOAc, 1:1 to 1:2) to give the title compound (496 mg, 87%) as a colorless solid, mp 69–73 °C; $[\alpha]_D^{25}$ +24.0 (c 0.5, CHCl₃). HRMS: *m/z* calcd for C₂₂H₃₁BrN₄O₅S₂Si + H: 603.0767; found: 603.0768. IR (CH_2Cl_2): $v_{max} = 3387, 3294,$ 2954, 2930, 2856, 1727, 1670, 1536, 1473, 1432, 1244, 1215, 1094, 1014, 838, 779 cm⁻¹. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 8.41$ (1 H, br s, NH), 8.22 (1 H, d, J = 6.4 Hz, N*H*), 8.07 (2 H, s, 2 × H-4), 6.66 (1 H, q, *J* = 7.1 Hz, =C=CH), 4.71 (1 H, dd, J = 6.4, 3.8 Hz, CHNH), 4.57 (1 H, m, CHOSi), 3.92 (3 H, s, OMe), 1.85 (3 H, d, J = 7.1 Hz, =CMe), 1.31 (3 H, d, J = 6.4 Hz, CHMe), 0.92 (9 H, s, CMe₃), 0.22 (3 H, s, Me), 0.18 (3 H, s, Me). ¹³C NMR (75 MHz, CDCl₃): δ = 168.3 (C), 167.8 (C), 162.0 (C), 160.5 (C), 149.6 (C), 147.2 (C), 136.6 (C), 128.1 (CH), 127.7 (CH), 127.4 (CH), 68.1 (CH), 58.8 (CH), 52.8 (Me), 26.2 (Me), 19.1 (Me), 18.3 (C), 14.7 (Me), -4.3 (Me), -4.6 (Me); one quaternary C unobserved. MS (CI): m/z = 605/603 (95) [MH⁺], 587 (15), 525 (13), 199 (33), 133 (21), 115 (14).