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Stereoselective b-mannosylation has been investigated via cesium carbonate-mediated anomeric O-alky-
lation of D-mannose-derived lactol with various electrophiles. It was found that electrophiles bearing tri-
fluoromethanesulfonate (triflate) as the leaving group are most reactive. In addition, a highly efficient
formal synthesis of potent calcium signal modulator acremomannolipin A has been achieved using this
b-mannosylation method.

� 2017 Elsevier Ltd. All rights reserved.
The glycolipid acremomannolipin A (1) was isolated from a fil-
amentous fungus Acremonium strictum.1 Structurally, acremoman-
nolipin A contains a D-mannopyranoside b-linked to a D-mannitol
and all the hydroxyls in the mannose are acylated with saturated
aliphatic acids (Fig. 1). Therefore, the D-mannose moiety is made
hydrophobic, whereas the D-mannitol portion is hydrophilic. The
structure of acremomannolipin A was elucidated on the basis of
intensive spectroscopic analyses as well as its degradation studies.
Biologically, acremomannolipin A showed the interesting activity
at 200 nM enabling calcineurin deletion mutant cells to grow in
the presence of Cl�, which would be caused by calcium signal mod-
ulating.1 As a potential calcium signal modulator, acremomanno-
lipin A is considered an attractive target for biologists as well as
synthetic chemists as acremomannolipin A and its synthetic ana-
logs may be of significance for therapeutic and biotechnological
purposes.

The structural features of acremomannolipin A have posed sig-
nificant difficulties for the total synthesis, mainly due to the pres-
ence of a b-mannoside which is known to be one of the most
synthetically challenging glycosidic linkages.2 Previously, acremo-
mannolipin A (1) was first synthesized by Muraoka and co-workers
in 2013 (Scheme 1).3 Based on Crich b-mannosylation protocol,4

key intermediate b-mannoside 4was obtained from 4,6-O-benzyli-
dene-protected D-mannose donor 2 and acceptor 3 in 71% yield (b/
a = 30/1). Later, Muraoka and co-workers also prepared 10-epi-
acremomannolipin A, the a-anomer of acremomannolipin A, which
showed reduced activity.5 In 2015, the same group also prepared
five homologs of acremomannolipin A bearing alditols of different
length and found that the length of the alditol side chain was a cru-
cial determinant for the potent calcium signal modulating activ-
ity.6 Early 2015, Li and co-workers reported another total
synthesis of acremomannolipin A in which key intermediate
b-mannoside 7 was obtained via gold(I)-catalyzed glycosylation7

between 4,6-O-benzylidene-protected D-mannose-derived
ortho-alkynylbenzoate donor 5 and acceptor 6 in 85% yield
(b/a = 13/1).8 In 2016, the Toshima group described the third total
synthesis of acremomannolipin A in which key intermediate
b-mannoside 10was obtained via borinic acid-catalyzed glycosyla-
tion between 1,2-anhydromannose donor 8 and acceptor 9 in
99% yield (b only).9

Early in 2016 we disclosed a new method for stereoselective
construction of b-mannosides via cesium carbonate-mediated
anomeric O-alkylation of D-mannose-derived lactols.10 In this Com-
munication, we would like to report our efforts in the synthesis of
acremomannolipin A in which the key intermediate b-mannoside
10 was prepared from known D-mannose-derived lactol 1111 and

D-mannitol-derived primary triflate 12 via cesium carbonate-medi-
ated anomeric O-alkylation.

In our previous report,10 only sugar-derived primary and sec-
ondary alkyl triflates, e.g. 14, were studied as electrophiles for
cesium carbonate-mediated anomeric O-alkylation with D-man-
nose-derived lactols. For example, when C6-primary triflate 14
was employed, b-D-mannoside 16 was obtained in 93% yield (b
only, entry 1).10 We wondered if other primary electrophiles bear-
ing different leaving groups other than triflates would also react
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Figure 1. The structure of acremomannolipin A (1).
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Scheme 2. Synthesis of acremomannolipin A.
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with lactol 11 in this type of b-mannosylation. As shown in Table 1,
it was found that only the use of excess 1-iodopentane and Cs2CO3

afforded desired b-D-mannoside 17 in 21% yield (b only, entry 2),
while there was no detectable product when 1-bromopentane,
n-pentyl mesylate or tosylate was employed (entries 3–5).
Elevation of the reaction temperature to 50 �C or use of other
solvents did not improve the reaction outcome. Use of methyl
iodide gave methyl b-D-mannoside 18 in 71% yield (b only, entry
6). Over-methylation at O2 could be seen if the reaction was
allowed to proceed longer. When activated alkyl halides, such as
allyl bromide and benzyl bromide, were used, corresponding
desired b-D-mannoside 19 and 20 were produced in 94% and 64%
yields, respectively (b only, entries 7 and 8). These studies
indicated that non-activated primary alkyl triflates are required
to react with mannose-derived lactols in the presence of cesium
carbonate for efficient synthesis of b-mannosides.

Next, we aimed at the synthesis of acremomannolipin A. Start-
ing from D-mannitol, the triflate acceptor 12 can be prepared in six
steps by adopting the known procedures.9,12 As shown in Scheme 2,
conversion of commercially available D-mannitol 21 into its
corresponding tri-acetonide (88%) followed by regioselective
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Scheme 1. Previous synthesis of acremomannolipin A and our strategy.

Please cite this article in press as: Li X., et al. Tetrahedron Lett. (2017), http://dx.doi.org/10.1016/j.tetlet.2017.04.049

http://dx.doi.org/10.1016/j.tetlet.2017.04.049


Table 1
Studies of stereoselective b-mannosylation via anomeric O-alkylation involving various
electrophiles.a
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bIsolated yield.
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deprotection of one of the terminal acetonides afforded diol 22
(91%).12 Regioselective benzylation11 of the primary alcohol of 22
(73%) followed by silylation9 of the secondary alcohol gave rise
to 23 (85%). Next, removal of the benzyl ether of 23 via palla-
dium-catalyzed hydrogenolysis furnished the known primary alco-
hol 24 in 83% yield.9 This primary alcohol 24 was then subjected to
standard triflation (triflic anhydride, pyridine, dichloromethane,
0 �C) to afford desired triflate 12 in 96% yield.13 Under our recently
developed optimal b-mannosylation condition,10 known D-man-
nose-derived lactol 1111 reacted with triflate acceptor 12 in
dichloroethane in the presence of cesium carbonate at 40 �C for
24 h afforded the desired key b-mannoside 10 in 87% yield
(b only).14 The Rf, 1H and 13C NMR, optical rotation, and HRMS data
of our synthesized b-mannoside 10 were found to be identical to
those reported in the literature.9 For the synthesis of acremoman-
nolipin A (1), b-mannoside 10would just need to undergo standard
acylations and deprotections.9 Thus, our efforts constitute a highly
efficient formal synthesis of acremomannolipin A (1).

In conclusion, stereoselective b-mannosylation has been stud-
ied via cesium carbonate-mediated anomeric O-alkylation of D-
mannose-derived lactol with various electrophiles. It was found
that electrophiles bearing triflate as the leaving group are most
reactive and efficient for this type of b-mannosylation. In addition,
a highly efficient formal synthesis of potent calcium signal modu-
lator acremomannolipin A has been achieved using this b-manno-
sylation method.
Please cite this article in press as: Li X., et al. Tetrahedron Lett. (2017), http://
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