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The direct synthesis of organonitrogen compounds from hydro-

carbons (nitrogenation) is a practically attractive but chemically

challenging goal. Besides the rapidly expanding range of N-func-

tionalization options involving addition to -©C unsaturation,

allylic nitrogenation of unsaturated hydrocarbons offers a de-

sirable route to polyfunctional aminéswe and others have
described allylic aminations catalyzed by Mo(Ve(ll,l11),4>and

Cu(l,11)%7 salts and complexes, using aryl hydroxylamines as ami-

nating agents (eq 1). More recently, nitroarérasd aminoarerfe
based, metal-catalyzed allylic aminations have also been develope
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Mechanistic studies of the hydroxylamine/olefin reactions cata-

lyzed by LMo(VI)O,,30 (phthalocyanine)Fe(lB, and hydrated
CuCl’ revealed the intervention of free PhNO, a proven enophile,

d.

Figure 1. X-ray structure of the cation d. Selected bond lengths (A)
and bond angles (deg): CufilN(4) 1.8983(15), Cu(ZyN(6) 1.9296(19),

as the active aminating agent. However, the aminations catalyzedCu(1)-N(2) 1.9701(18), O(1yN(2) 1.2646(16), N(4)-Cu(1)-N(6) 133.81-

by Fe(Il,lll) salts involve a novel irornazodioxide comple¥©as

(6), N(4)—Cu(1)-N(2) 120.96(6), N(6)-Cu(1)~N(2) 104.96(4).

the active PhN transfer agent. Our preliminary study on the

Cu(l)-catalyzed allylic aminatidrexcluded the intermediacy of free

nitrosoarene and aryl nitrene from trapping experiments, suggesting
that a coordinated organonitrogen species could be the active
aminating agent. Relatedly, group 10 metal complexes of ni-

obtained from the reaction of [Cu(GBN)4PFs with excesdN,N'-
diethyl-4-nitrosoaniline (1:4.3, Ci&l,, rt). The resulting greenish
red solid2 (70% yield) was identified with the aid of IR, NMR,
MS (FAB), and X-ray crystallography. As shown in Figure 1, the

trosoarenes have been proposed as intermediates in enantioselectigtion of 2 consists of a distorted trigonal planar, 16-electron

hetero-Diels-Alder!! and O-nitroso aldol reaction¥ To explore

further the nature of the reactive intermediates in these reactions,

Cu(ArNO)* moiety. The copper atom is coordinated to the nitro-
soarene ligands through the N-atom with the NO units directed

we report herein (1) the isolation and structure determination of ©Ut of the CuN plane. The CeN bond lengths (av. 1.933 A) are

the first homoleptic nitrosoarenenetal complexes, and (2) evi-

dence that such complexes are intermediates and likely N-transfer

agents in Cu(l)-catalyzed allylic aminations.

Seeking to produce copper complexes that could be potential found in

intermediates in Cu(l)-catalyzed allylic aminations, [CugCN)J-

PR was treated with 4.2 equiv of PhNO (CHCIt) to produce a
dark red, labile complex which is formulated as [Cu(PhNgh

PFs based on its Cu content, the amount of recovered PhNO, an
its TH NMR spectrum, which shows a 2:1:2 set of aromatic reso-
nances downfield from PhNO (Scheme 1). Unfortunately, the
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sensitivity and lability ofl has thus far thwarted its detailed struc-
ture determinatiod® A more tractable Ca#ArNO derivative was
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markedly varied, ranging from 1.898 to 1.970 A, as are the

N—Cu—N bond angles, which range from 105 to 23%hese dis-

tortions from ideal trigonal planarity are among the most severe

d° ML 3 complexe&* and are presumed to be sterically
derived?®® The N—O bond lengths, however, are relatively uniform
(av. 1.258 A) and are comparable to those in the free ligand (1.252
A),16 suggesting the absence of significant back-bonding from

gCu(l) to the nitrosoarene ligand. Compouds the first crystal-
lographically characterized, homoleptic nitrosoarenetal com-
plex and the first copper complex bearing a simple C-nitroso
ligand”

Most importantly, complexl is an intermediate, and possibly
the active N-transfer agent, in the Cu-catalyzed amination reactions
with PhNHOH based on the following observations. Fifistyas
isolable (47%) in the reaction of PANHOH witlxmethylstyrene
(AMS) in the presence of [Cu(GJEN)4]PFs (90 °C, dioxane, 3 h;
Scheme 1). Second, the reaction of nitrosobenzene corplét
excess AMS (9CC, dioxane, 20 h) produced the corresponding
allylamine3 cleanly (40%, Scheme 2jwhereas the more electron-
rich nitrosoaniline comple®, like its free ligand, was unreactive
toward olefins. Third, slow addition of PhANHOH to a mixture of
either1 or 2 (8 mol %) and AMS at 9695 °C (24 h) produces
allylamine 3 (36% from1 and 15% fron2), indicating thatl and

10.1021/ja044093m CCC: $30.25 © 2005 American Chemical Society
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2 are (pre)catalysts for the amination of AMS by PhNHOH.
Significantly, the stoichiometric amination by compléxioes not
involve the intermediacy of free PhNO since heatingith a 1:1
mixture of 2-methyl-2-pentene and 2,3-dimethylbutadiene (a trap-
ping agent for free PhN®) gave allylic amination productand

5 exclusively (8 and 18%, respectively, based nrather than
the Diels-Alder trapping product6, the same result found
previously in the Cu(l)-catalyzed aminations with ArNHGH.

The above observations, together with the distinctive regiose-
lectivity of the Cu-catalyzed reactions, lead us to suggest as a
plausible reaction pathway the one shown in Scheme 3. Initially,
some Cu(ll) is likely generated by Cu(l) reduction of ArNHOH
(PhNH;, detected¥° The resulting Cu(ll) then oxidizes PANHOH
to PhNO with formation of the C-nitroso compléx This likely
electrophilic species could then transfer the activated C-nitroso unit
to a free or coordinated olefin by a metal-mediateetype
reaction?! Support for the latter pathway is provided by the
formation of an adduct betwedrand styrene at room temperatdfe.
PM3(TM) MO calculation® on 1 find a set of three nearly
degenerate LUMOs (Figure Sl4) that are primarily centered on the
N—O unit (z*) with much of the positive charge on N (negative
on O). Reduction of the resulting allyl hydroxylamine by Cu(l)
would produce allylamine and regenerate Cufll).

We have thus established here the first structurally verified
Cu(l) complex of a C-nitroso compound, demonstrated its inter-
mediacy in the Cu(l)-catalyzed allylic amination of olefins, and

suggested its role as the active group transfer agent. Further

investigations of the synthetic and mechanistic aspects of
Cu-catalyzed allylic amination are underway.
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