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Abstract: Symmetrical 1,3-disubstituted ureas and symmetrical thioureas have been

synthesized from corresponding isocyanates, diisocyanates, and isothiocyanates by a

new versatile, simple, and quick method in the presence of tertiary amines at room

temperature. The method under discussion has several advantages over the existing

techniques, as it is simple to carry out, does not require complicated equipment, has

a simple workup, and does not use expensive chemicals. Moreover, the yields are

almost quantitative. This method has potential in commercial applications.

Keywords: 1,3-Disubstituted ureas, diisocynates, isocyanates, tertiary amines,

thioisocyanates

INTRODUCTION

During recent years much attention has been paid to the synthesis and appli-

cation of symmetrical substituted ureas. These are essential components of

drug candidates including HIV protease inhibitors, CCK-B receptor antagonists,
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and endothelin antagonists.[1] Recently oligoureas have also been introduced as

scaffolds for the creation of artificial b sheets[2] and as peptide backbone

mimetics.[3] The symmetrical substituted ureas are found in natural

products[4] and act as useful intermediates in the synthesis of different

chemicals.[5,6] The traditional synthetic approaches to symmetrical ureas are

well documented and standard procedures involve the reactions of amines

with phosgene and its derivatives,[7] isocyanates,[8] or carbamates.[8,3b] A

report describes synthesis by phenyl diisocyanate in hot pyridine without indi-

cating its mechanism and conversion into urea.[9] A synthesis of 1,3-disubsti-

tuted ureas is reported through a reaction of carbonic acid ester with an

amine in the presence of catalyst.[10] Several homogenous Pd,[11,12] Ru,[13]

Co,[14] Mn,[15] Se,[16,17] and W[18,19] catalysts were also used for the

oxidative carbonylation of amine into ureas. Very recently, two procedures

have appeared in print: one is by oxidative carbonylation in the presence[20]

of Pd/ZrO4-SO4
22, but in a majority of cases the actual product was

accompanied with a measurable amount of undesired by-products and results

are quoted by GC-MS, whereas the other report is a two-step synthesis of dis-

ubstituted ureas through reaction of substituted carbamates with an amine.[21]

During the total synthesis of a natural product, we discovered that tertiary

amines could promote the reaction of isocyanate to symmetrical ureas without

generating intermediate primary amines. Thus, we used three amines as reac-

tion promoters including triethyl amine, pyridine, and 2,6-lutidine for

synthesis of different ureas. Herein we describe a general one-step procedure

for the preparation of symmetrical substituted ureas and thioureas from the

corresponding isocyanates and isothiocyanates in almost quantitative yields.

RESULTS AND DISCUSSION

Reaction of phenylisocyanate in 1,4-dioxane/water or pyridine/water gives

1,3-diphenylurea,[21] but the reaction is very slow and takes about 12 to

16 h. In this communication, we report a simple, economical, efficient, high-

yielding, one-pot synthesis of symmetrical disubstituted ureas, cyclic ureas,

and thioureas from the corresponding isocyanates, diisocyanates, and isothio-

cyanates in 1,4-dioxane in the presence of different tertiary amines. It was

found that excellent yields for the synthesis of symmetrical disubstituted ureas

and thioureas were obtained in the presence of triethyl amine (Scheme 1).

Scheme 1.
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Other amines used in this investigation were pyridine and 2,6-lutidine, but

they were found to be less effective (Table 1). When the reaction was

carried out in 1,4-dioxane, the tertiary amines acted as promoters; the

reaction proceeded very vigorously and was completed in 5–30 min. Isocya-

nates react more rapidly than isothiocyanates and the reaction was completed

in 1–3 min. In a typical reaction, 0.3 mol of isocyanate/diisocyanate or iso-

thiocyanate is treated with 2 mol of tertiary amines in the presence or

absence of 1,4-dioxane at room temperature, and progress of the reactions

was monitored through TLC. After the completion of the reactions, the

reaction mixture was poured into ice-cold water with continuous stirring.

The solid was filtered, which afforded pure desired product.

The rate enhancement of the reactions indicated that the reactions are

promoted by tertiary amines (see the mechanism in Scheme 4). The same

type of reactions are also observed when isocyanates are treated with tertiary

amines in the absence of 1,4-dioxane. The latter result gave very strong

evidence that the tertiary amines are acting as reaction promoters. Reagent-

grade tertiary amines were used, which contain moisture that was responsible

for the transformation. Under anhydrous conditions, cyclic diamide was

formed. If we look at our proposed mechanisms, it seems that the final

product, that is, the urea derivatives, cannot be obtained without some

moisture and in the end the intermediate will be easily converted to the

product during aqueous workup. A report[22] describes the synthesis of several

aromatic and carbohydrate-based ureas and thioureas. According to their

mechanism (Scheme 2), the reaction was initiated by water and an anhydride-

type intermediate was formed. This anhydride was then converted into substi-

tuted symmetrical disubstituted urea. Interestingly, this report does not show

the role of tertiary amine in the proposed mechanism. If the reaction was

initiated by water, then the amine was formed (Scheme 3) instead of symmetrical

disubstituted ureas. Schemes 2 and 3 indicated that these were amine-free mech-

anisms. In our case, the requirement of tertiary amines and presence of inherent

moisture supports our proposed mechanism (Scheme 4).

CONCLUSION

The described procedure serves as an excellent method for preparing sym-

metrical 1,3-disubstituted ureas and thioureas. It is an efficient, one-step

Scheme 2.
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method. The requirement of moisture supports the proposed mechanism for

the transformation.

EXPERIMENTAL

1H NMR spectra were recorded in CD3OD, CDCl3, and DMSO-d6 on a Bruker

Aspect AM-300 operating at 300 MHz using TMS as an internal standard. The

solvent was CD3OD unless otherwise mentioned. Chemical shifts are given in

ppm. IR spectra were recorded in KBr on a SHIMADZU IR-460 and Bruker

vector 22 spectrometer (wave numbers in cm21). Mass spectra (EIMS) were

measured on Finnigan MAT-1 12 instrument. High-resolution EIMS were

recorded in Jeol JMS HX-110 spectrometer.

General Procedure for the Synthesis of Ureas and Thioureas

To a mixture of 0.3 mol of isocyanate/diisocyanate or isothiocyanate in 20 to

25 mL of 1,4-dioxane was added 2 mol of tertiary amines at room temperature

and progress of reaction was monitored via TLC. After completion of reaction

(times for individual reactions are shown in Table 1), the reaction mixture was

poured into ice-cold water with continuous stirring, and the solid was filtered

and crystallized by appropriate solvent to afford the desired product.

Elemental analyses were performed by a Perkin Elmer analyzer.

Scheme 4.

Scheme 3.
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Table 1. Results of syntheses of symmetrical 1,3-disubstituted ureas and thioureas

Substrates Products

%Yield

M.P. (8C)TEA Py. Lut.

98a 85c 80c 240

97b 80d 80d 152–153

99a 83c 82c 166–168

98b 84d 80d 147–148

(continued )
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Table 1. Continued

Substrates Products

%Yield

M.P. (8C)TEA Py. Lut.

CH222ðCH2Þ422CH2

j j

N55C55O O55C55N

96a 85c 84c 252–253

H2C55CH–CH2–N55C55O

11

98.5a 90c 86c 91–93

99a 80c 80c 310

97a 80c 70c 225–227
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98a 88c 84c 245–248

99a 88c 78c 286–288

H3C–CH2–N55C55O

21

98.5a 82c 78c 112–113

H3C–CH2–N55C55S

23

99b 85d 80d 142–143

TEA ¼ triethylamine, Py. ¼ pyridine, lut. ¼ 2,6-Lutidine.
a�3 min.
b�10 min.
c�15–20 min.
d�25–30 min.
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1,3-Diphenylurea (2). Crystallization by diethyl ether or ethanol gave needle-

like crystals. Rf ¼ 0.40 (CHCl3–MeOH; 9.5:0.5); mp 2408C. IR nmax (KBr):

3285, 3194, 3036, 1647, 1597, 1555, 1312 cm21; UV lmax 254.3 ( [ 289.7),

262.9 ( [ 285), 275.5 ( [ 314.7), 283.57 ( [ 333.6), 1H NMR (CD3OD): d

7.1–7.75 (m, 10H), 7.43 (brs, 2H); HREIMS: m/z (rel. int.) ¼ 212.0947 [Mþ,

C13H12N2O requires 212.2533] (22), 120 (2), 119 (5), 93 (100), 77 (11), 66

(10), 65 (13). Anal. calcd. for C13H12N2O: C, 73.56; H, 5.70; N, 13.20.

Found: C, 73.54; H, 5.68; N, 13.18.

1,3-Diphenylthiourea (4). Recrystallization by hot ethanol gave leaflets.

Rf ¼ 0.9 (CHCl3–MeOH; 9.5:0.5); mp 152–1538C. IR nmax (KBr): 3206,

3011, 1595, 1549, 1342, 1238 cm21; UV lmax 259.46 ( [ 327.6), 287.59

( [ 430.5), 293.33 ( [ 457.6); 1H NMR (CD3OD): d 8.99 (brs, 2H),

7.23–7.75 (m, 10H); HREIMS: m/z (rel. int.) ¼ 228.0719 [Mþ, C13H12N2S

requires 228.3179] (100), 194 (100), 135 (84), 119 (37), 93 (100), 77 (100).

Anal. calcd. for C13H12N2S: C, 68.39; H, 5.30; N, 12.27. Found: C, 68.41;

H, 5.32; N, 12.25.

1,3-Dibenzylurea (6). The compound on crystallization from ethanol gave

needle-like crystals. Rf ¼ 0.40 (CHCl3–MeOH; 9.5:0.5); mp 166–1688C.

IR nmax (KBr): 3350, 3020, 1660, 1600, 1410 cm21; 1H NMR (CD3OD): d

7.0 (m, 10H), 5.78 (brs, 2H), 3.90 (d, 4H, J ¼ 16.0 Hz); HREIMS: m/z (rel.

int.) ¼ 240.1264 [Mþ, C15H16N2O requires 240.3075] (30), 163 (20), 149

(100), 133 (65). Anal. calcd. for C15H16N2O: C, 74.97; H, 6.71; N, 11.66.

Found: C, 74.95; H, 6.72; N, 11.67.

1,3-Dibenzylthiourea (8). The solid was crystallized from ethanol and gave

leaflets or plates. Rf ¼ 0.90 (CHCl3–MeOH; 9.5:0.5); mp 147–1488C. IR

nmax (KBr): 3110, 3010, 1610, 1550, 1340 cm21; 1H NMR (CD3OD): d

7.10 (m, 10H), 5.69 (brs, 2H), 3.92 (d, 4H, J ¼ 16.1 Hz); HREIMS: m/z

(rel. int.) ¼ 256.1036 [Mþ, C15H16N2S requires 256.3721] (29), 179 (15),

165 (100), 149 (76). Anal. calcd. for C15H16N2S: C, 70.28; H, 6.29; N,

10.93. Found: C, 70.23; H, 6.27; N, 10.99.

Octahydro-2H-1,3-diazonin-2-one (10). Rf ¼ 0.60 (CHCl3–MeOH;

9.5:0.5); mp 252–2538C. IR nmax (KBr): 3335, 2932, 2856, 1626, 1574,

1477, 1254 cm21; 1H NMR (DMSO-d6): d 5.74 (t, 2H, J ¼ 5.88 Hz), 2.94

(q, 4H, J ¼ 5.88 Hz), 1.33 (m, 4H), 1.22 (m, 4H); HREIMS: m/z (rel.

int.) ¼ 142.1106 [Mþ, C7H14N2O requires 142.2023] (4), 113 (5), 100 (23),

99 (22), 86 (58), 85 (62), 83 (93), 70 (15). Anal. calcd. for C7H14N2O: C,

59.13; H, 9.92; N, 19.70. Found: C, 59.16; H, 9.91; N, 19.69.

1,3-Diallylurea (12). Recrystallization from ethanol afforded crystals of

compound 12. Rf ¼ 0.40 (CHCl3–MeOH; 9.5:0.5); mp 90–938C. IR nmax

(KBr): 3200, 3015, 2930, 1620, 1540, 1330 cm21; 1H NMR (CD3OD): d

S. Perveen et al.1670
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9.68 (brs, 2H), 5.93 (ddd, 2H, J ¼ 16.2, 11.6, 5.0 Hz), 5.76 (dd, 2H, J ¼ 16.2,

1.3 Hz), 5.05 (dd, 2H, J ¼ 11.6, 1.3 Hz), 4.16 (m, 4H); HREIMS: m/z (rel.

int.) ¼ 140.0945 [Mþ, C7H12N2O requires 140.1864] (10), 99 (100), 83

(56). Anal. calcd. for C7H12N2O: C, 59.98; H, 8.63; N, 19.98. Found: C,

60.00; H, 8.61; N, 19.86.

4,40-Dinitrocarbanilide (14). Recrystallization from ethanol gave yellow

needle-like crystals. Rf ¼ 0.45 (CHCl3–MeOH; 9.5:0 5); mp 3108C. IR

nmax (KBr): 3286, 3190, 1649, 1600, 1556, 1312 cm21; 1H NMR (CD3OD):

d 9.62 (brs, 2H), 8.13 (dd, 4H, J ¼ 8.1, 0.2 Hz), 8.22 (dd, 4H, J ¼ 8.1,

0.2 Hz); HREIMS: m/z (rel. int.) ¼ 302.0650 [Mþ, C13H10N4O5 requires

302.2484] (6), 257 (15), 181 (20), 162 (100), 123 (55). Anal. calcd.

for C13H10N4O5: C, 51.66; H, 3.33; N, 18.54. Found: C, 51.64; H, 3.35; N,

18.58.

2,20-Dinitrocarbanilide (16). Recrystallization from benzene gave pale

yellow crystals. Rf ¼ 0.69 (CHCl3–MeOH; 9.5:0.5); mp 225–2278C. IR

nmax (KBr): 3285, 3194, 1647, 1597, 1555, 1443, 1312 cm21; 1H NMR

(CDCl3): d 8.82 (dd, 2H, J ¼ 8.0, 1.4 Hz), 8.33 (dd, 2H, J ¼ 8.2, 1.4 Hz),

7.66 (ddd, 2H, J ¼ 8.0, 7.3, 1.4 Hz), 7.38 (ddd, 2H, J ¼ 8.2, 7.3, 1.4 Hz);

HREIMS: m/z (rel. int.) ¼ 302.0655 [Mþ, C13H10N4O5 requires 302.2484]

(4), 257 (10), 181 (24), 164 (100), 123 (35). Anal. calcd. for C13H10N4O5:

C, 51.66; H, 3.33; N, 18.54. Found: C, 51.63; H, 3.29; N, 18.58.

3,30-Dichlorocarbanilide (18). Recrystallization by hot EtOH or hot AcOH

afforded needles of compound 18. mp 245–2488C. IR nmax (KBr): 3350, 3105,

1920, 1820, 1635, 1600, 1540, 1170 cm21; 1H NMR (CD3OD): d 7.08 (ddd, 4H,

J ¼ 8.0, 2.1, 1.9 Hz), 7.03 (ddd, 2H, J ¼ 8.0, 2.2, 1.9 Hz), 6.94 (dd, 2H, J ¼ 2.2,

2.1 Hz); HREIMS: m/z (rel. int.) ¼ 281.0170 [Mþ, C13H10Cl2N2O requires

281.1434] (15), 245 (50), 154 (100), 127 (80). Anal. calcd. for C13H10Cl2N2O: C,

55.54; H, 3.59; N, 9.96. Found: C, 55.57; H, 3.54; N, 9.92.

4,40Dihydroxycarbanilide (20). Recrystallization from hot water gave fine

needles. mp 286–2888C. IR nmax (KBr): 3600, 3287, 3040, 1645, 1602,

1320 cm21; 1H NMR (DMSO-d6): d 10.19 (brs, 4H), 6.91 (dd, 4H, J ¼ 8.2,

0.3 Hz), 6.65 (dd, 4H, J ¼ 8.2, 0.3 Hz); HREIMS: m/z (rel.

int.) ¼ 244.0849 [Mþ, C13H12N2O3 requires 244.2521] (21), 277 (5), 151

(80), 136 (100), 93 (44). Anal. calcd. for C13H12N2O3: C, 63.93; H, 4.95;

N, 11.47. Found: C, 63.90; H, 4.90; N, 11.54.

1,3-Diethylurea (22). Crystallization was carried out with ethanol, which

gave needle-like crystals. Rf ¼ 0.54 (CHCl3-MeOH; 9.5:0.5), mp 112–

1138C. IR nmax (KBr): 3050, 2930, 1650, 1350 cm21; 1H NMR (CD3OD): d

3.95 (brs, 2H), 3.22 (9, 4H, J ¼ 7.1 Hz), 1.01 (t, 6H, J ¼ 7.1 Hz); HREIMS:

m/z (rel. int.) ¼ 116.0953 [Mþ, C5H12N2O requires 116.1641] (44), 101

1,3-Disubstituted Ureas and Thioureas 1671
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(100), 87 (60), 71 (26). Anal. calcd. for C5H12N2O: C, 51.70; H, 10.41; N,

24.12. Found: C, 51.73; H, 10.38; N, 24.09.

1,3-Diethylthiourea (24). Crystallization with ethanol gave crystals.

Rf ¼ 0.95 (CHCl3–MeOH; 9.5:0.5), mp 142–1438C. IR nmax (KBr): 3035,

2935, 1530, 1320 cm21; 1H NMR (CD3OD): d 3.90 (brs, 2H), 3.10 (q, 4H,

J ¼ 7.05 Hz), 1.00 (t, 6H, J ¼ 7.05 Hz); HREIMS: m/z (rel. int.) ¼ 132.0725

[Mþ, C5H12N2S requires 132.2287] (34), 117 (100), 103 (51), 88 (80), 87

(65). Anal. calcd. for C5H12N2S: C, 45.42; H, 9.15; N, 21.19. Found: C,

45.44; H, 9.11; N, 21.21.
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