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ABSTRACT
Alkaline phosphatases are homodimeric protein enzymes which removes phosphates from several
types of molecules. These catalyze the hydrolysis of monoesters in phosphoric acid which in turn cata-
lyze a transphosphorylation reaction. Thiazoles are a privileged class of heterocyclic compounds which
may potentially serve as effective phosphatase inhibitors. In this regard, the present research paper
reports the facile synthesis and characterization of substituted 1-benzylidene-2-(4-tert-butylthiazol-2-yl)
hydrazines with excellent yields. The synthesized compounds were tested for inhibitory potential
against alkaline phosphatases. The compound 1-(4-Hydroxy, 3-methoxybenzylidene)-2-(4-tert-butylthia-
zol-2-yl) hydrazine (5e) was found to be the most potent inhibitor of human tissue non-alkaline phos-
phatase in this group of molecules with an IC50 value of 1.09 ± 0.18mM. The compound 1-(3,4-
dimethoxybenzylidene)-2-(4-tert-butylthiazol-2-yl) hydrazine (5d) exhibited selectivity and potency for
human intestinal alkaline phosphatase with an IC50 value of 0.71±0.02mM. In addition, structure activ-
ity relationship and molecular docking studies were performed to evaluate their binding modes with
the target site of alkaline phosphatase. The docking analysis revealed that the most active inhibitors
showed the important interactions within the binding pockets of human intestinal alkaline phosphat-
ase and human tissue non-alkaline phosphatase and may be responsible for the inhibitory activity of
the compound towards the enzymes. Therefore, the screened thiazole derivatives provided an out-
standing platform for further development of alkaline phosphatase inhibitors.

Alkaline phosphatase assay revealed compound 5e (1-(4-Hydroxy, 3-methoxybenzylidene)-2-(4-
tert-butylthiazol-2-yl) hydrazine) as the most active inhibitor of h-TNAP with an IC50 value of
1.09±0.18mM. Computational evaluation clearly depicts several interactions within the binding
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pockets of h-IAP and h-TNAP and maybe responsible for the inhibitory potential of the com-
pound towards the enzymes.

HIGHLIGHTS

� The synthesis of 1-(benzylidene) thiosemicarbazides 3(a-i) was performed by reacting thiosemicar-
bazide with substituted aromatic aldehydes 1(a-i).

� The synthesized 1-(benzylidene) thiosemicarbazides was cyclized with 1-chloropinacolone to obtain
the respective 1-benzylidene-2-(4-tert-butylthiazol-2-yl) hydrazines 5(a-i).

� The synthesized 1-benzylidene-2-(4-tert-butylthiazol-2-yl) hydrazines 5(a-i) were successfully charac-
terized using elemental analysis, FT-IR and multi nuclear NMR.

� Alkaline phosphatase assay and computational study was performed in favor of the synthesized 1-
benzylidene-2-(4-tert-butylthiazol-2-yl) hydrazines 5(a-i).

Abbreviations: Anal: Analysis; APs: Alkaline Phosphatases; Arg150: Arginine 150; Arg150: Arginine 150;
Arg167: Arginine 167; Asp316: Aspartate 316; Bio-assay: Biological Assay; Cald: Calculated; CDP-Star VR :
Disodium 2-chloro-5-(4-methoxyspiro [1,2-dioxetane-3,20-(5-chlorotricyclo[3.3.1.13.7] decan])-4-yl]-1-phe-
nyl phosphate; CHN analyzer: Carbon Hydrogen and Nitrogen Analyzer; COS-7 cells: COS-7 cells; D:
Doublet; DEA: Diethanolamine; DMEM: Dulbecco’s Modified Eagle’s Medium; DMF: Dimethylformamide;
DMSO: Dimethyl sulfoxide; DNA: Deoxyribonucleic acid; EC: Enzyme Commission Number; FBS: Fetal
Bovine Serum; FlexX: Name of program; FT-IR: Fourier-Transform Infrared Spectroscopy; DG: Gibbs free
energy; GCAP: Germ Cells Alkaline Phosphatase; Glu108: Glutamate 108; Glu154: Glutamate 154;
His317: Histidine 317; His320: Histidine 320; His321: Histidine 321; His324: Histidine 324; His358:
Histidine 358; His432: Histidine 432; His434: Histidine 434; His437: Histidine 437; HYDE: Hydrogen bond
and Dehydration Energies; h-IAP: Human Intestinal Alkaline Phosphatase; HIV-infections: Human
Immunodeficiency Viruses-Infections; h-TNAP: Human Tissue Non-Specific Alkaline Phosphatase; IC50:
Half Maximal Inhibitory Concentration; IAP: Intestinal Alkaline Phosphatase; LTD4 receptor antagonist:
Leukotriene D4 Receptor Antagonist; LeadIT: Name of software used for docking studies; MgCl2:
Magnesium Chloride; MHz: Mega Hertz; MMFF94x forcefield: Merck Molecular forcefield 94x; NMR:
Nuclear Magnetic Resonance; MOE: Molecular Operating Environment; M.P.: Melting Point; Q:
Quaternary; PLAP: Placental Alkaline phosphatase; Pro91: Proline 91; RCSB: Research Collaboratory for
Structural Bioinformatics; Rf: Retention Factor; SD: Standard Deviation; SEM: Standard Error Mean;
Ser92: Serine 92; Ser93: Serine 93; Singlet: Singlet; T: Triplet; Thr436: Threonine 436; tert-butyl: Tertiary-
Butyl; TLC: Thin Layer Chromatography; TMS: Tetramethyl silane; TNAPs: Tissue Non-Specific Alkaline
Phosphatases; Tyr169: Tyrosine 169; Tyr276: Tyrosine 276; Val90: Valine 90; ZnCl2: Zinc chloride

1. Introduction

Alkaline phosphatases (APs, E.C. 3.1.3.1) are membrane
bound homodimeric metallo-enzymes with an active site
towards the extracellular space (Haarhaus et al., 2017). APs
have five cysteine residues, two zinc atoms and one magne-
sium atom in each monomer. APs dephosphorylate phos-
phate mono-esters to ensure cellular events including
protein phosphorylation, apoptosis and cellular growth at an
alkaline pH (Mill�an, 2006). APs have four types of isozymes;
germ cells (GCAP), tissue specific APs including placental
(PLAP), intestinal (IAP) and tissue non-specific APs (TNAPs)
(Sharma et al., 2014). TNAPs perform pyrophosphate
hydrolysis to maintain an optimum pyrophosphate level in
bone tissues. Intestinal APs regulate bicarbonate secretion,
lipid intestinal absorption, detoxification of bacterial lipopoly-
saccharides and maintain pH values on the surface of duode-
num (Al-Rashida et al., 2013). APs are overexpressed in
tumor cells, including esophageal, breast, liver, intestinal,
prostate, ovarian and intestinal cancer. h-TNAP and h-IAP
level increases in cancer related therapies which turn them
interesting molecular targets in drug design. As a result,
there is an utmost demand in the synthesis of selective and
effective inhibitors of APs isozymes. In this context, hetero-
cyclic compounds such as 4-quinolones (Miliutina et al.,
2017), coumarin-sulfonates (Salar et al., 2017), sulfonamides
(Bhatti et al., 2017), triazoles, triazolothiadiazines and

triazolothiadiazoles offer attracting APs inhibitors. Some of
the substituted thiazole analogues are investigated against
APs and proven to be more potent inhibitors than the refer-
ence drug (Khan et al., 2014).

Thiazoles are five-membered aromatic heterocycles having
nitrogen and sulfur atoms present at 1,3-positions of the ring
(Ayati et al., 2015; Maradiya & Patel, 2003; Mishra et al.,
2015). Thiazoles are copiously available in marine and terres-
trial micro-organisms. These are also found in various natur-
ally occurring and biologically significant molecules and are
a prime component of thiamine (vitamin B1) which is essen-
tial for the synthesis of acetylcholine to ensure normal func-
tioning of the nervous system (Hutchinson et al., 2002).
Thiazoles are potent inhibitors of stearoyl coenzyme A delta-
9 desaturase (Black et al., 2009), selective fatty acid amide
hydrolase inhibitors (Wang et al., 2009), orexin receptor
antagonist 2 (Bergman et al., 2006), amyloid-binding agents
in neurodegenerative diseases (Henriksen et al., 2007), LTD4

receptor antagonist (Lau et al., 1995) and histamine H2

antagonists (Khanfar et al., 2016). Furthermore, thiazoles are
novel therapeutic agents against hypertension, schizophre-
nia, thrombosis, inflammations and HIV-infections (Siddiqui
et al., 2009) and effective agents for b-amyloid plaques,
appetite depressants plant protectants (Gan et al., 2013) and
photographic sensitizers (Keri et al., 2015). An extensive sur-
vey of literature reveals that the thiazole moiety can be
incorporated as part of mono- or fused-rings, metal
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complexes, and peptides while its removal causes the loss of
the bioactivity. Thiazole ring is toxic to various cancer cell
lines but nontoxic to normal cells and thus quite safer for
human use (Chhabria et al., 2016; Ramos-Inza et al., 2019).

Conversely, hydrazino derivatives of 1,3-thiazole were
reported to possess potent antimicrobial activities
(Karegoudar et al., 2008). Hydrazino pharmacophores halt the
synthesis of DNA and inhibit tumor cells. Triapine is a thiose-
micarbazone derivative that has been reported as a potent
anticancer drug. In addition, thiosemicarbazones based thia-
zoles demonstrate efficiency and lower toxicity profile as
antimicrobials and antiproliferative agents (Braga et al.,
2016). Figure 1 shows some thiazole derivatives with signifi-
cant biological activities (Reddy & Reddy, 2010).

Thus, the addition of a hydrazine moiety further increases
the biological potential of thiazoles. Consequently, in view of
the potent profile of thiazoles on one hand and enhance-
ment of biological potential by combination with hydrazine
moiety on the other, we designed the target molecules pos-
sessing both structural features in a single moiety to prepare
compounds as potential APs inhibitors.

The role of the tert-butyl structure in chemical, biocata-
lytic transformations and chemoenzymatic processes is well
established (Bisel et al., 2008). The steric hindrance of a tert-

butyl group can either thwart a substrate from reacting or it
can bring high selectivity in a reaction. It is of the most
popular groups in the synthesis of stable bioactive molecules
with vividly better pharmacokinetic properties. For instance,
the replacement of certain amino acid side chain by ter-butyl
group increases the stability of peptides against chemical
and enzymatic hydrolysis due to not only steric hindrance
but also by considerably altering the secondary structures.
The presence of ter-butyl group plays important role in
adjusting the lipophilicity and the solubility in bio-
logical stems.

The current research is related to the study of APs inhib-
ition potential of some hydrazine linked thaizoles with ter-
butyl group attachment. The synthesis was performed in a
facile and efficient way in higher yields from commercially
available aldehydes, thiosemicarbazide and 1-chloro-3,3-
dimethylbutan-2-one.

2. Experimental

2.1. Chemistry

All the reagents employed in this research work were
obtained from commercial sources and were used without

Figure 1. Some literature reported thiazole and thiosemicarbazones with significant biological activities.
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any further purification. The reactions were performed using
oven dried glass ware at 70 �C for one hour under nitrogen
atmosphere.1H and 13C nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker spectrometer at 300 and
75MHz, respectively. DMSO-d6 was used as solvent and TMS
was used as an internal reference. The 1H-NMR data was
reported as position (d), relative integral, multiplicity (s, sing-
let; d, doublet; t, triplet; q, quaternary Carbon), coupling con-
stant (J, Hz) and the assignment of the atom. The 13C-NMR
data were reported as position (d) and assignment of the
atom. Vertex 70 Bruker apparatus was used for recording the
FT-IR spectra. The presence of each element was assessed
from CHNS analyzer. Melting points were determined in a
capillary tube using Stuart melting point apparatus (SMP3).
The reaction progress was monitored through thin-layer
chromatography on silica gel 60F254 with 0.25mm (Merck)
layer thickness.

2.2. Procedure for the synthesis of 1-(benzylidene)
thiosemicarbazide 3(a-i)

The synthesis of 1-(benzylidene) thiosemicarbazides 3(a-i)
was achieved using our previously reported methodology
(Saeed & Mumtaz, 2017). Briefly, appropriate aldehyde
(1.0mmol) was completely dissolved in dry ethanol (10mL)
by continuous stirring at room temperature. After half an
hour, thiosemicarbazide (1.0mmol) dissolved in dry ethanol
(10mL) was slowly added and the reaction mixture refluxed
at 78 �C for 2 h. TLC was used to check the extent of comple-
tion of the reaction using n-hexane: ethyl acetate (4:1) solv-
ent system. After 2 h, the reaction mixture was cooled and
crushed ice was added which resulted in the formation of
solid precipitates. The latter were filtered, dried and recrystal-
lized from ethanol to afford pure 1-(benzylidene) thiosemi-
carbazides 3(a-i).

2.2.1. 1-(3-hydroxybenzylidene) thiosemicarbazide (3a)
M.P. 232–236 �C; Rf¼ 0.32 (n-hexane: ethyl acetate, 4:1); Mol.
wt: 195.24; (Yield 80%): IR (Pure, cm�1) m: 3379.43 (NH2),
3289.16 (NH), 1620.43 (HC¼N), 1598.84, 1556.20, 1479.60
(Ar–C¼C), 1157.01 (C¼ S); 1H NMR (300MHz, DMSO-d6,d):
10.23 (s, 1H, NH), 8.50 (s, 1H, OH), 8.23 (s, 1H, NH), 7.89 (s,
1H, NH), 8.45 (s, 1H, HC¼N), 7.23 (d, 1H, J¼ 8.2 Hz, Ar–H),
7.19 (s, 1H, Ar–H), 7.19 (t, 1H, J¼ 8.2 Hz, Ar–H), 6.83 (d, 1H,
J¼ 8.2 Hz, Ar–H); 13C NMR (75MHz, DMSO-d6, d): 181.43
(C¼ S), 158.90 (Ar), 143.30 (HC¼N), 135.23 (Ar), 130.33 (Ar),
121.83 (Ar), 118.23 (Ar), 115.30 (Ar); Anal. Cald. For
C8H9N3OS: C, 49.21; H, 4.65; N, 21.52; S, 16.42; Found: C,
49.10; H, 4.75; N, 21.52; S, 16.40.

2.2.2. 1-(4-hydroxybenzylidene) thiosemicarbazide (3b)
M.P. 214–216 �C; Rf¼ 0.37 (n-hexane: ethyl acetate, 4:1); Red
powder; Mol. wt: 195.24; (Yield 82%): IR (Pure, cm�1) m:
3238.10 (NH2), 3178.63 (NH), 1620.64 (HC¼N), 1582.98,
1561.47, 1490.70 (Ar–C¼C), 1159.67 (C¼ S); 1H NMR
(300MHz, DMSO-d6, d): 10.20 (s, 1H, NH), 8.45 (s, 1H, OH),
8.24 (s, 1H, NH), 7.90 (s, 1H, NH), 8.43 (s, 1H, HC¼N), 7.43 (d,

2H, J¼ 7.52 Hz, Ar), 6.83 (d, 2H, J¼ 7.52Hz, Ar); 13C NMR
(75MHz, DMSO-d6, d): 181.43 (C¼ S), 161.10 (Ar), 143.30
(HC¼N), 130.90 (Ar), 126.43 (Ar), 116.30 (Ar); Anal. Cald. For
C8H9N3O3S: C, 49.21; H, 4.65; N, 21.52; S, 16.42; Found: C,
49.12; H, 4.74; N, 21.42; S, 16.46.

2.2.3. 1-(5-bromo-2-hydroxybenzylidene) thiosemicarba-
zide (3c)

M.P. 236 �C; Rf¼ 0.24 (n-hexane: ethyl acetate, 4:1); Brown
powder; Mol. wt: 274.14; (Yield 78%): IR (Pure, cm�1) m:
3208.24 (NH2), 3126.84 (NH), 2969.63 (sp2 C–H), 1619.53
(HC¼N), 1567.56, 1496.46 (Ar–C¼C), 1240.98 (C¼ S); 1H
NMR (300MHz, DMSO-d6, d): 10.12 (s, 1H, NH), 8.40 (s, 1H,
OH), 8.19 (s, 1H, NH), 7.84 (s, 1H, NH), 8.18 (s, 1H, HC¼N),
7.63 (s, 1H), 7.39 (d, 1H, J¼ 8.2 Hz, Ar), 6.73 (d, 1H, J¼ 8.2 Hz,
Ar); 13C NMR (75MHz, DMSO-d6, d): 187.31 (C¼ S), 169.03
(Ar), 143.53 (HC¼N), 135.13 (Ar), 133.90 (Ar), 124.80 (Ar),
122.48 (Ar), 118.30 (Ar); Anal. Cald. For C8H8BrN3OS: C, 35.05;
H, 2.94; N, 15.33; S, 11.70; Found: C, 35.05; H, 2.90; N, 15.30;
S, 11.80.

2.2.4. 1-(3,4-dimethoxybenzylidene) thiosemicarbazide (3d)
M.P. 192–195 �C; Rf¼ 0.22 (n-hexane: ethyl acetate, 4:1);
Yellow powder; Mol. wt: 239.29; (Yield 75%): IR (Pure, cm�1)
m: 3273.0 (NH2), 3123.07 (NH), 2962.68 (sp2 C–H), 2869.85
(sp3 C–H), 1670.87 (HC¼N), 1560.72, 1451.61 (Ar–C¼C),
1234.02 (C¼ S); 1H NMR (300MHz, DMSO-d6, d): 10.29 (s, 1H,
NH), 8.36 (s, 1H, NH), 7.99 (s, 1H, NH), 7.89 (s, 1H, HC¼N),
7.23 (s, 1H, Ar–H), 7.14 (d, 1H, J¼ 8.2 Hz, Ar–H), 6.97 (d, 1H,
J¼ 8.2 Hz, Ar–H), 3.79 (s, 6H); 13C NMR (75MHz, DMSO-d6, d):
179.08 (C¼ S), 148.32 (Ar), 146.40 (Ar), 139.91 (HC¼N),
121.19 (Ar), 119.47 (Ar), 118.55 (Ar), 113.22 (Ar), 56.31 (O–C);
Anal. Cald. For C10H13N3O2S: C, 50.19; H, 5.48; N, 17.56; S,
13.40; Found: C, 50.13; H, 5.58; N, 17.62; S, 13.40.

2.2.5. 1-(4-hydroxy-3-methoxybenzylidene) thiosemicarba-
zide (3e)

M.P. 222 �C; Rf¼ 0.28 (n-hexane: ethyl acetate, 4:1); Orange
powder; Mol. wt: 225.27; (Yield 73%): IR (Pure, cm�1) m:
3283.06 (NH2), 3122.79 (NH), 3050.84 (sp2 C–H), 2965.80 (sp3
C–H), 1620.20 (HC¼N), 1562.57, 1515.64, 1495.91 (Ar–C¼C),
1154.32 (C¼ S); 1H NMR (300MHz, DMSO-d6, d): 11.42 (s, 1H,
NH), 9.19 (s, 1H, HC¼N), 8.41 (s, 1H, OH), 8.12 (s, 1H, NH),
7.90 (s, 1H, NH), 7.53 (d, 1H, J¼ 7.80Hz, Ar–H), 6.93 (d, 1H,
J¼ 7.80Hz, Ar–H), 6.75 (s, 1H), 3.79 (s, 3H, O–CH); 13C NMR
(75MHz, DMSO-d6, d): 178.08 (C¼ S), 148.32 (Ar), 146.40 (Ar),
139.91 (HC¼N), 121.19 (Ar), 119.47 (Ar), 118.55 (Ar), 113.22
(Ar), 56.31 (O–C); Anal. Cald. For C9H11N3O2S: C, 47.99; H,
4.92; N, 18.65; S, 14.30; Found: C, 47.90; H, 4.95; N, 18.72;
S, 14.10.

2.2.6. 1-(1-phenylethylidene) thiosemicarbazide (3f)
M.P. 132–134 �C; Rf¼ 0.47 (n-hexane: ethyl acetate, 4:1); Light
yellow powder; Mol. wt: 193.27; (Yield 81%): IR (Pure, cm�1)
m: 3368.0 (NH2), 3229.10 (NH), 3174.54 (sp2 C–H), 2969.93
(sp3 C–H), 1639.57 (C¼N), 1578.56, 1548.86, 1499.54
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(Ar–C¼C), 1159.48 (C¼ S); 1H NMR (300MHz, DMSO-d6, d):
10.21 (s, 1H, NH), 8.28 (s, 1H, NH), 7.94 (s, 1H, NH), 7.92 (m,
2H, Ar–H), 7.389 (m, 3H, Ar–H), 2.30 (s, 3H, C–H); 13C NMR
(75MHz, DMSO-d6, d): 179.36 (C¼ S), 148.28 (C¼N), 138.11
(Ar), 129.66 (Ar), 128.69 (Ar), 127.06 (Ar), 14.46 (C–H); Anal.
Cald. For C9H11N3S: C, 55.93; H, 5.74; N, 21.74; S, 16.59;
Found: C, 55.80; H, 5.82; N, 21.80; S, 16.62.

2.2.7. 1-(4-chlorobenzylidene) thiosemicarbazide (3g)
M.P. 210 �C; Rf¼ 0.19 (n-hexane: ethyl acetate, 4:1); Light yel-
low powder; Mol. wt: 213.69; (Yield 76%): IR (Pure, cm�1) m:
3180.38 (NH2), 3106.65 (NH), 29621.65 (sp2 C–H), 1596.64
(HC¼N), 1575.19, 1519.73, 1489.17 (Ar–C¼C), 1199.89
(C¼ S); 1H NMR (300MHz, DMSO-d6, d): 10.26 (s, 1H, NH),
8.38 (s, 1H, NH), 7.89 (s, 1H, NH), 8.13 (s, 1H, HC¼N), 7.69 (d,
2H, J¼ 8.10Hz, Ar–H), 7.39 (d, 2H, J¼ 8.10Hz, Ar–H); 13C NMR
(75MHz, DMSO-d6, d): 181.43 (C¼ S), 143.30 (HC¼N), 136.63
(Ar), 131.93 (Ar), 130.63 (Ar), 129.13 (Ar); Anal. Cald. For C8H8

ClN3S: C, 44.97; H, 3.77; N, 19.66; S, 15.01; Found: C, 44.87; H,
3.81; N, 19.69; S, 15.1.

2.2.8. 1-(2,4-dihydroxybenzylidene) thiosemicarbazide (3h)
M.P. 245 �C; Rf¼ 0.18 (n-hexane: ethyl acetate, 4:1); Red pow-
der; Mol. wt: 211.24; (Yield 68%): IR (Pure, cm�1) m: 3466.09
(NH2), 3357.745 (NH), 3285 (OH), 3023.11, 2959.99 (sp2 C–H),
1608.15 (HC¼N), 1573.21, 1542.01, 1492.78 (Ar–C¼C),
1202.47 (C¼ S); 1H NMR (300MHz, DMSO-d6, d): 10.35 (s, 1H,
NH), 8.32 (s, 1H, NH), 7.98 (s, 1H, NH), 8.13 (s, 1H, HC¼N),
7.33 (d, 1H, J¼ 8.2 Hz, Ar–H), 6.39 (d, 1H, J¼ 8.2 Hz, Ar–H),
6.26 (s, 1H, Ar–H), 4.97 (s, OH); 13C NMR (75MHz, DMSO-d6,
d): 181.49 (C¼ S), 162.53 (Ar), 162.23 (Ar), 143.13 (HC¼N),
132.13 (Ar), 111.13 (Ar), 108.63 (Ar), 103.73 (Ar); Anal. Cald.
For C8H9N3O2S: C, 45.49; H, 4.29; N, 19.89; S, 15.18; Found: C,
45.43; H, 4.39; N, 19.96; S, 15.12.

2.2.9. 1-(furan-2-ylmethylene) thiosemicarbazide (3i)
M.P. 226–230 �C; Rf¼ 0.31 (n-hexane: ethyl acetate, 4:1); Light
yellow powder; Mol. wt: 169.2; (Yield 70%): IR (Pure, cm�1) m:
3337.75 (NH2), 3256.83 (NH), 2956.08 (sp2 C–H), 1643.14
(HC¼N), 1579.56, 1542.48, 1469.30 (Ar–C¼C), 1134.54
(C¼ S); 1H NMR (300MHz, DMSO-d6, d): 10.20 (s, 1H, NH),
8.18 (s, 1H, NH), 7.90 (s, 1H, NH), 7.53 (s, 1H, HC¼N), 7.43 (d,
1H, J¼ 7.60 Hz, Ar Ar–H), 6.36 (d, 1H, J¼ 7.60 Hz, Ar Ar–H),
6.33 (t, 1H, J¼ 7.20Hz, Ar–H); 13C NMR (75MHz, DMSO-d6, d):
181.33 (C¼ S), 149.13 (Ar), 143.93 (Ar), 134.73 (HC¼N),
109.93 (Ar), 109.53 (Ar); Anal. Cald. For C6H7N3OS: C, 42.59; H,
4.17; N, 24.83; S, 18.95; Found: C, 42.50; H, 4.20; N, 24.85;
S, 18.94.

2.3. Procedure for the synthesis of 1-benzylidene-2-(4-
tert-butylthiazol-2-yl) hydrazine 5(a-i)

An equimolar mixture of 1-(benzylidene)thiosemicarbazides
3(a-i) and 1-chloro-3,3-dimethylbutan-2-one (4) in dry etha-
nol was refluxed at 78 �C for 1.5 h. The completion of reac-
tion was monitored by TLC was in n-hexane: ethyl acetate

(4:1) solvent system. The reaction mixture was concentrated
under reduced pressure and poured onto crushed ice, the
crude products obtained were recrystallized from ethanol at
room temperature to afford the target 1-benzylidene-2-(4-
tert-butylthiazol-2-yl) hydrazines 5(a-i) (Saeed &
Mumtaz, 2017).

2.3.1. 1-(3-hydroxybenzylidene)-2-(4-tert-butylthiazol-2-yl)
hydrazine (5a)

M.P. 169 �C; Rf¼ 0.44 (n-hexane: ethyl acetate, 4:1); Red pow-
der; Mol. wt: 275.37; (Yield 78%): IR (Pure, cm�1) m: 3300.54
(NH), 3117.26 (OH), 3044.77, 2967.92 (sp2 C–H), 2903.53,
2868.53 (sp3 C–H), 1614.37 (HC¼N), 1568.44, 1516.41,
1476.68 (Ar–C¼C); 1H NMR (300MHz, DMSO-d6, d): 11.08 (s,
1H, NH), 8.45 (s, 1H, HC¼N), 7.40 (d, 1H, J¼ 8.2 Hz, Ar–H),
7.16 (s, 1H, Ar–H), 7.1 (t, 1H, J¼ 8.2 Hz, Ar–H), 6.9 (d, 1H,
J¼ 8.2 Hz, Ar–H), 6.16 (s, 1H, C¼C–H), 4.50 (s, 1H, OH), 1.39
(s, 9H, CH3);

13C NMR (75MHz, DMSO-d6, d): 172.13 (C¼N),
162.13 (C¼C), 159.22 (Ar), 143.55 (HC¼N), 137.76 (Ar),
132.48 (Ar), 122.45 (Ar), 122.48 (Ar), 116.48 (Ar), 104.13 (thia-
zol-2-yl C¼C), 39.13 (Cq), 32.13 (C–H); Anal. Cald. For
C14H17N3OS: C, 61.06; H, 6.22; N, 15.26; S, 11.64; Found: C,
61.06; H, 6.22; N, 15.24; S, 11.66.

2.3.2. 1-(4-hydroxybenzylidene)-2-(4-tert-butylthiazol-2-yl)
hydrazine (5b)

M.P. 157 �C; Rf¼ 0.43 (n-hexane: ethyl acetate, 4:1); Red pow-
der; Mol. wt: 275.37; (Yield 80%): IR (Pure, cm�1) m: 3173.20
(NH), 3115.33 (OH), 2966.49 (sp2 C–H), 2867.97 (sp3 C–H),
1606.64 (HC¼N), 1581.08, 1515.47, 1476.30 (Ar–C¼C, aro-
matic); 1H NMR (300MHz, DMSO-d6, d): 11.0 (s, 1H, NH), 8.45
(s, 1H, HC¼N), 7.48 (d, 2H, J¼ 7.52 Hz, Ar–H), 6.89 (d, 2H,
J¼ 7.52Hz, Ar–H), 6.45 (s, 1H, C¼C–H), 4.94 (s, 1H, OH), 1.45
(s, 9H, CH3);

13C NMR (75MHz, DMSO-d6, d): 171.83 (C¼N),
161.21 (C¼C), 160.41 (Ar), 142.15 (HC¼N), 132.91 (Ar),
126.28 (Ar), 116.28 (Ar), 106.28 (thiazol-2-yl, C¼C), 39.28
(Cq), 31.90 (C–H); Anal. Cald. For C14H17N3OS: C, 61.06; H,
6.22; N, 15.26; S, 11.64; Found: C, 61.06; H, 6.24; N, 15.28;
S, 11.60.

2.3.3. 1-(5-bromo,2-hydroxybenzylidene)-2-(4-tert-butylth-
iazol-2-yl) hydrazine (5c)

M.P. 180 �C; Rf¼ 0.36 (n-hexane: ethyl acetate, 4:1); Yellow
powder; Mol. wt: 354.27; (Yield 75%): IR (Pure, cm�1) m:
3378.82 (NH), 3228.64 (OH), 3059.78 (sp2 C–H), 2969.63 (sp3
C–H), 1619.53 (HC¼N), 1567.56, 1496.46 (Ar–C¼C); 1H NMR
(300MHz, DMSO-d6, d): 11.09 (s, 1H, NH), 8.18 (s, 1H, HC¼N),
7.78 (s, 1H, Ar–H), 7.45 (d, 1H, J¼ 8.2 Hz, Ar–H), 7.25 (d, 1H,
J¼ 8.2 Hz, Ar–H), 6.29 (s, 1H, C¼C–H), 4.74 (s, 1H, OH), 1.45
(s, 9H, CH3);

13C NMR (75MHz, DMSO-d6, d): 170.45 (C¼N),
162.34 (C¼C), 159.34 (Ar), 145.23 (HC¼N), 135.89 (Ar),
134.62 (Ar), 128.12 (Ar), 121.92 (Ar), 120.32 (Ar) 105.34 (thia-
zol-2-yl, C¼C), 39.34 (Cq), 31.10 (C–H); Anal. Cald. For
C14H16BrN3OS: C, 47.46; H, 4.55; N, 11.86; S, 9.05; Found: C,
47.46; H, 4.55; N, 11.87; S, 9.10.
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2.3.4. 1-(3,4-dimethoxybenzylidene)-2-(4-tert-butylthiazol-
2-yl) hydrazine (5d)

M.P. 212 �C; Rf¼ 0.32 (n-hexane: ethyl acetate, 4:1); Red pow-
der; Mol. wt: 319.42; (Yield 80%): IR (Pure, cm�1) m: 3153.85
(NH), 3000 (sp2 C–H), 2959.60, 2866.80 (sp3 C–H), 1609.72
(HC¼N), 1569.01, 1524.01, 1456.78 (Ar–C¼C); 1H NMR
(300MHz, DMSO-d6, d): 11.84 (s, 1H, NH), 7.99 (s, 1H, HC¼N),
7.23 (s, 1H, Ar–H), 7.137 (d, 1H, J¼ 8.4 Hz, Ar–H), 6.975 (d, 1H,
J¼ 8.4 Hz, Ar–H), 6.33 (s, 1H, C¼C–H), 3.784 (s, 6H, OCH3),
1.22 (s, 9H, CH3);

13C NMR (75MHz, DMSO-d6, d): 168.36
(C¼N), 162.07 (C¼C), 150.36 (Ar), 149.43 (Ar), 141.22
(HC¼N), 127.89 (Ar), 120.39 (Ar), 112.12 (Ar), 108.81 (Ar),
99.78 (thiazol-2-yl, C¼C), 55.98, 55.79 (O–C), 34.73 (Cq),
33.03 (C–H); Anal. Cald. For C16H21N3O2S: C, 60.16; H, 6.63; N,
13.16; S, 10.04; Found: C, 60.10; H, 6.60; N, 13.15; S, 10.14.

2.3.5. 1-(4-hydroxy, 3-methoxybenzylidene)-2-(4-tert-
butylthiazol-2-yl) hydrazine (5e)

M.P. 145 �C; Rf¼ 0.30 (n-hexane: ethyl acetate, 4:1); Red pow-
der; Mol. wt: 305.4; (Yield 74%): IR (Pure, cm�1) m: 3216.75
(NH), 314.81 (OH), 3059.29, 2955.35 (sp2 C–H), 2913.07 (sp3
C–H), 1672.72 (HC¼N), 1567.26, 1419.61 (Ar–C¼C); 1H NMR
(300MHz, DMSO-d6, d): 11.09 (s, 1H, NH), 8.20 (s, 1H, HC¼N),
7.23 (d, 1H, J¼ 8.02Hz, Ar–H), 7.05 (s, 1H, Ar–H), 7.0 (d, 1H,
J¼ 8.02Hz, Ar–H), 6.20 (s, 1H, C¼C–H), 3.74 (s, 3H, O–CH),
5.01 (s, 1H, OH), 1.41 (s, 9H, CH3);

13C NMR (DMSO-d6,
75MHz) d: 172.53 (C¼N), 162.53 (C¼C), 152.34 (Ar), 150.23
(Ar), 143.89 (HC¼N), 128.12 (Ar), 122.92 (Ar), 118.32 (Ar),
114.89 (Ar), 104.53 (thiazol-2-yl, C¼C), 56.89 (O–C), 40.13
(Cq), 32.53 (C–H); Anal. Cald. For C15H19N3O2S: C, 58.99; H,
6.27; N, 13.76; S, 10.50; Found: C, 58.99; H, 6.29; N, 13.77;
S, 10.53.

2.3.6. 1-(4-tert-butylthiazol-2-yl)-2-(1-phenylethylidene)
hydrazine (5f)

M.P. 140 �C; Rf¼ 0.59 (n-hexane: ethyl acetate, 4:1); Black
powder; Mol. wt: 273.4; (Yield 80%): IR (Pure, cm�1) m:
3149.61 (NH), 3000, 2913.07 (sp2 C–H), 2954.04, 2855.35 (sp3
C–H), 1676.0 (C¼N), 1567.26, 1419.61 (Ar–C¼C); 1H NMR
(300MHz, DMSO-d6, d): 11.09 (s, 1H, NH), 7.63 (d, 2H,
J¼ 8.02Hz, Ar–H), 7.35 (t, 2H, J¼ 8.02 Hz, Ar–H), 7.25 (t, 1H,
J¼ 8.02Hz, Ar–H), 6.20 (s, 1H, C¼C–H), 1.41 (s, 9H, CH3), 0.90
(s, 3H, CH3);

13C NMR (75MHz, DMSO-d6, d): 171.53 (C¼C),
168.89 (C¼N), 162.89 (C¼N), 136.34 (Ar), 132.23 (Ar), 129.12
(Ar), 127.92 (Ar), 100.20 (thiazol-2-yl, C¼C), 40.13 (Cq), 32.53
(C–H), 20.89 (C–H); Anal. Cald. For C15H19N3S: C, 65.90; H,
7.00; N, 15.37; S, 11.73; Found: C, 65.90; H, 7.00; N, 15.40;
S, 11.70.

2.3.7. 1-(4-chlorobenzylidene)-2-(4-tert-butylthiazol-2-yl)
hydrazine (5g)

M.P. 165 �C; Rf¼ 0.30 (n-hexane: ethyl acetate, 4:1); Yellow
powder; Mol. wt: 293.81; (Yield 70%): IR (Pure, cm�1) m:
3183.93 (NH), 2962.98 (sp2 C–H), 2923.656.37 (sp3 C–H),
1597.61 (HC¼N), 1576.38, 1520.99, 1490.14 (Ar–C¼C); 1H
NMR (400MHz, DMSO-d6, d): 11.09 (s, 1H, NH), 7.68 (s, 1H,

HC¼N), 7.57 (d, 2H, J¼ 8.40 Hz, Ar–H), 7.34 (d, 2H,
J¼ 8.40Hz, Ar–H), 6.25 (s, 1H, C¼C–H), 1.28 (s, 9H, CH3);

13C
NMR (100MHz, DMSO-d6, d): 167.49 (C¼N), 161.95 (C¼C),
139.73 (HC¼N), 135.16 (Ar), 132.74 (Ar), 128.96 (Ar), 127.82
(Ar), 100.81 (thiazol-2-yl, C¼C), 34.56 (Cq), 29.71 (C–H); Anal.
Cald. For C14H16ClN3S: C, 57.23; H, 5.49; N, 14.30; S, 10.91;
Found: C, 57.21; H, 5.49; N, 14.30; S, 10.93.

2.3.8. 1-(2,4-dihydroxybenzylidene)-2-(4-tert-butylthiazol-
2-yl) hydrazine (5h)

M.P. 125 �C; Rf¼ 0.34 (n-hexane: ethyl acetate, 4:1); Red pow-
der; Mol. wt: 291.37; (Yield 78%): IR (Pure, cm�1) m: 3122.09
(NH), 3023.11 (OH), 3959.59 (sp2 C–H), 2864.51 (sp3 C–H),
1608.15 (HC¼N), 1573.21, 1542.01, 1445.35 (Ar–C¼C); 1H
NMR (300MHz, DMSO-d6, d): 11.09 (s, 1H, NH), 7.85 (s, 1H,
HC¼N), 7.30 (d, 1H, J¼ 8.20 Hz, Ar–H), 7.15 (d, 1H,
J¼ 8.20Hz, Ar–H), 7.0 (s, 1H, Ar–H), 4.50 (s, 2H, OH), 1.33 (s,
9H, CH3);

13C NMR (75MHz, DMSO-d6, d): 170.23 (C¼N),
161.89 (C¼C), 164.89 (Ar), 163.34 (Ar), 143.13 (HC¼N),
132.13 (Ar), 112.12 (Ar), 109.89 (Ar), 104.89 (Ar), 104.56 (thia-
zol-2-yl, C¼C), 39.23 (Cq), 31.56 (C–H); Anal. Cald. For
C14H17N3O2S: C, 57.71; H, 5.88; N, 14.42; S, 11.00; Found: C,
57.69; H, 5.83; N, 14.38; S, 11.10.

2.3.9. 1-(4-tert-butylthiazol-2-yl)-2-(furan-2-ylmethylene)-
hydrazine (5i)

Rf¼ 0.35 (n-hexane: ethyl acetate, 4:1); Viscous liquid; Mol.
wt: 2493.33; (Yield 80%): IR (Pure, cm�1) m: 3267.53 (NH),
3014.11 (sp2 C–H), 2954.04, 2855.35 (sp3 C–H), 1678.22
(HC¼N), 1567.26, 1419.61 (Ar–C¼C); 1H NMR (300MHz,
DMSO-d6, d): 11.09 (s, 1H, NH), 7.85 (s, 1H, HC¼N), 7.30 (d,
1H, J¼ 8.02Hz, Ar–H), 7.06 (d, 1H, J¼ 7.60 Hz, Ar–H), 7.0 (t,
1H, J¼ 7.60 Hz, Ar–H), 6.33 (s, 1H, J¼ 7.22 Hz, Ar–H); 1.35 (s,
9H, CH3);

13C NMR (75MHz, DMSO-d6, d): 171.23 (C¼N),
161.33 (C¼C), 150.89 (Ar), 144.34 (Ar), 143.13 (HC¼N),
112.13 (Ar), 111.12 (Ar), 39.63 (Cq), 31.96 (C–H); Anal. Cald.
For C12H15N3OS: C, 57.81; H, 6.06; N, 16.85; S, 12.86; Found:
C, 57.83; H, 6.06; N, 16.87; S, 12.82.

2.4. Bioassays

2.4.1. Cell transfection
Plasmids encoding the h-TNAP and h-IAP were transfected
as reported previously (Kukulski et al., 2005). COS-7 cells
were seeded 24 h before transfection as cells gained the con-
fluency of 80–90%. COS-7 cells were incubated for 5–6 h at
37 �C in 5% CO2 incubator after adding serum free dulbec-
co’s modified eagle’s medium (DMEM) containing 6 mg of
plasmid DNA and 24 mL of lipofectamine reagent. After 48 h,
serum free medium was replaced with cell culture medium
containing 20% fetal bovine serum (FBS). Expressed proteins
were extracted and quantify by Bradford method (Bradford,
1976). Aliquots of protein fraction were made with 7.5% gly-
cerol and stored at �80 �C.
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2.4.2. Alkaline phosphatase inhibition assay
The synthesized compounds 5(a-i) were analyzed for enzyme
inhibitory activity on recombinant h-TNAP and h-IAP after
slight changes in the previously reported method (Sergienko &
Mill�an, 2010). Disodium 2-chloro-5-(4-methoxyspiro [1,2-dioxe-
tane-3,20-(5-chlorotricyclo[3.3.1.13.7] decan])-4-yl]-1-phenyl
phosphate, also known as CDP-StarVR , was used as a chemo-
luminescent substrate in enzyme inhibitory assay. Working
solution of h-TNAP (5mg/mL) and h-IAP (3.335 mg/mL) were
prepared in dilution buffer containing diethanolamine (DEA)
250mM, ZnCl2 0.05mM and MgCl2 2.5mM. Assay was per-
formed by adding 20mL enzyme solution, 10 mL of test com-
pound (final compound concentration 200 mM and DMSO conc.
less than 2% v/v) in 384 wells white plate. After an incubation of
5 to 7min, luminescence signals were taken by microplate
reader (BioTek FLx800, Instruments, Inc. USA). To each well,
20mL of CDP-StarVR was added with final concentration of
105.2mM and 177mM for h-TNAP and h-IAP, respectively. After
an incubation of 7–10min, after-read was taken by measuring
luminescence signals. Percentage of inhibition was measured
for each compound, and those exhibited an inhibition more
50% were further analyzed for IC50 value measurement. Data
was analyzed by using PRISM 5.0 (GraphPad, San Diego,
California, USA) software.

2.4.3. Molecular docking and dynamic simulation studies
To justify the inhibition caused by potent inhibitors, most plaus-
ible binding modes were predicted using molecular docking
studies. Because of unavailability of x-ray crystallographic struc-
ture of human alkaline phosphatases, homology models gener-
ated previously by our research group were used for docking
studies (Ausekle et al., 2016). Structures of the tested com-
pounds were drawn by MOE builder tool (MOE, 2016) and opti-
mization was achieved using MMFF94x forcefield (Labute,
2007). Afterwards the energy minimization of the target pro-
teins was carried out by Molecular Operating Environment
(Schneider et al., 2013). LeadIT (BioSolveIT GmbH, Germany)
(LeadIT, 2017) was used to perform docking analysis of the pre-
pared ligands inside the respective receptors. Load Receptor
Utility of the LeadIT software was used to load the receptor and
the metallic ions were selected as part of the protein. Active
pocket of the protein for docking analysis was identified by
keeping the amino acid residues in 9.0 Å radius around catalytic
zinc ions and magnesium ion. Values of the amino acid flips,
metal co-ordinates and water handling were kept as by default.
Once docking analysis was completed, the possible interactions
of ligands with receptor proteins were inspected for studying
the possible interactions using HYDE assessment (Schneider
et al., 2013). Discovery Studio Visualizer was used to perform
visualize the interactions of ligand and receptors (Dassault
Syst�emes Biovia, 2016).

For MD simulations, protein manipulation and protonation
were made with the help of GROMOS96 force field having the
43a1 parameter set. The GROMACS simulation packages, 5.1.4
were used for the MD simulations using previously used meth-
ods (Ferreira et al., 2012; Mathew et al., 2016; €Ozgeriş et al.,
2016). Parametrization of the selected compound was carried
out by online PRODRG servers (Sch€uttelkopf & van Aalten,

2004). VMD (Humphrey et al., 1996) was used for the visualiza-
tion of trajectories. After the energy minimization of system,
two sequential NVT (100 ps) and NPT (100 ps) runs were per-
formed for equilibration of system. The resulting ensembles
were subjected to 20 ns MD simulations with a time step of 2 fs.
Periodic boundary conditions were applied during MD simula-
tions. All NVT and NPT ensembles used the Berendsen thermo-
stat and the Parrinello-Rahman barostat for temperature
(approx. 302–303 K) and pressure coupling (approx. 1.01 bar),
respectively. Cut-off radios of 10 Å and smooth Particle Mesh
Ewald protocol were observed for long-range method. Root
mean square deviation of protein was plotted using XMGRACE
v5.1.19 (Turner, 2005).

3. Results and discussion

3.1. Synthesis of 1-benzylidene-2-(4-tert-butylthiazol-2-
yl) hydrazine 5(a-i)

The synthetic route adopted for the synthesis of 1-benzyli-
dene-2-(4-tert-butylthiazol-2-yl) hydrazine derivatives 5(a-i) is
presented in Figure 2. The synthesis was carried out in two
steps. In the first step, suitably substituted aromatic alde-
hydes 1(a-i) were reacted with thiosemicarbazide (2) in dry
ethanol at reflux temperatures of 78 �C for 2 h using catalytic
amount of concentrated sulphuric acid. After the reaction
was completed, the mixture was gradually cooled to room
temperature and poured onto crushed ice resulting in solid
precipitates. The latter were filtered, dried and recrystallized
from ethanol to furnish pure 1-(benzylidene) thiosemicarba-
zides 3(a-i) in good yields (68–83%). In the second step, the
key intermediates 3(a-i) were treated with 1-chloro-3,3-dime-
thylbutan-2-one (4) in ethanol at reflux temperature of 78 �C
for 1.5 h. The reaction was constantly monitored by thin layer
chromatography in a solvent system of n-hexane: ethyl acet-
ate 4:1. On completion, the solvent was rotary evaporated,
and the reaction mixture was poured onto ice cold water fol-
lowed by recrystallization from ethanol to obtain the target
1-benzylidene-2-(4-tert-butylthiazol-2-yl) hydrazine 5(a-i) in
excellent (84–70%) yields (Table 1).

3.2. Characterization

The structural confirmation of the small library of the synthe-
sized compounds (3a-5i) was performed through micro-
elemental (CHNS), and spectroscopic analysis including FT-IR,
1H NMR and 13C NMR. Accordingly, elemental analyzer pro-
vided data highly aligned with the elements present in the
synthesized compounds (3a-5i). 1H NMR spectra of 1-(benzy-
lidene) thiosemicarbazides 3(a-i) displayed signals in the
range of 11.42–7.84 ppm for NH and NH2 protons respect-
ively. The characteristic peak for azomethine carbon of 1-
(benzylidene)thiosemicarbazide derivatives 3(a-i) displayed
sharp singlet at 7.53–9.19 and 134.13–143.53 ppm in 1H NMR
and 13C NMR respectively. The thiocarbonyl (C¼ S) functional
group displayed marked appearance in the range of
178.08–187.31 ppm in 13C NMR. The target 1-benzylidene-2-
(4-tert-butylthiazol-2-yl) hydrazine derivatives 5(a-i) displayed
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sharp signal for sp2 hybridized thiazole carbon in the range
of 99.78–106.40 ppm and for attached proton in the range of
6.16–6.45 ppm in 13C NMR and 1H NMR respectively. The
nine-proton singlet for the tert-butyl group appeared around
1.22–1.45 ppm in 1H NMR whilst the quaternary and methyl
carbons made appearance at in the range of 34.56–40.63
and 29.13–33.03 ppm in 13C NMR.

3.3. Biological activities

3.3.1. Structure activity relationship (SAR)
The synthesized compounds 5(a-i) were analyzed for their
inhibitory potential on tissue specific APs as well as human
tissue non-specific alkaline phosphatase (h-TNAP) enzymes
as structural features of these compounds exhibited resem-
blance to the already reported inhibitors of alkaline phos-
phatase. Levamisole (6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-
b][1,3]thiazole) is a well-known inhibitor of alkaline phosphat-
ase. Structural features of levamisole signify the role of thia-
zole moiety in alkaline phosphatase inhibition (Chang et al.,
2011). Tertiary butyl group fused with aromatic structures
confer the inhibitory potential for alkaline phosphatase (Iqbal
et al., 2018). Hydrazine derivatives are known to inhibit alka-
line phosphatase as well as acid phosphatase. Among various
synthesized hydrazine derivatives 2-(4,6-Dimethylpyrimidin-2-

yl)-1-[1-(6-nitrobenzaldehyde)ethylidene]hydrazine was found
to be more potent against both the clinically significant
enzymes (Ravish & Raghav, 2016). Both isozymes were human
recombinant enzymes. Human intestinal APs (h-IAP) was
taken as tissue specific APs to assess the selective inhibitory
potential of the synthesized compounds. The obtained results
showed that all the tested compounds were active inhibitors
against both the isozymes. However, some of the tested com-
pounds exhibited selective potential against h-IAP. The tested
compounds 5a, 5b, 5e, 5g were found to be potent as well
as non-selectivity for both the isozymes and compound 5d
and 5h were selective for h-IAP. Among the tested com-
pounds, 5e is more potent with an IC50 value of
1.09 ± 0.18mM for h-TNAP. Benzyl of compound 5e possess
hydroxyl group at p-position with adjacent methoxy moiety
which is 23 folds more potent as compared to known inhibi-
tor of h-TNAP, levamisole (IC50 ¼ 25.2 ± 1.90 mM).
Replacement of benzyl group with furan ring (5i) confers the
selectivity towards h-TNAP having IC50 value of
3.49 ± 0.14mM. Synthesized derivative 5d with adjacent
methoxy groups at benzyl ring exhibited selectivity and
potency against h-IAP having an IC50 value of 0.71 ± 0.02mM.
Structural data represents that un-substituted (5f) as well as
bromine substituted (5c) benzyl derivatives were not too
potent against both the isozymes and exhibited inhibitory
potential less than 50% (Table 2).

3.3.2. Enzyme kinetics study for h-TNAP and h-
IAP inhibition

Enzyme kinetics studies were carried out to find the mode of
enzyme inhibition of most potent and selective compounds
for h-TNAP and h-IAP. 5e exhibited competitive and uncom-
petitive mode of inhibition for h-TNAP and h-IAP respect-
ively, whereas, 5d was found to possess non-competitive
mode of inhibition (Figure 3).

Figure 2. Synthesis of 1-benzylidene-2-(4-tert-butylthiazol-2-yl) hydrazine derivatives (3a-5i).

Table 1. The variously substituted synthesized 1-benzylidene-2-(4-tert-butylth-
iazol-2-yl) hydrazine derivatives (3a-5i).

S.No. Compound R1 R2 S.No. Compound R1 R2
1 3a 3-OH H 10 5a 3-OH H
2 3b 4-OH H 11 5b 4-OH H
3 3c 2-OH, 5-Br H 12 5c 2-OH, 5-Br H
4 3d 3,4-di-OCH3 H 13 5d 3,4-di-OCH3 H
5 3e 3-OCH3,4-OH H 14 5e 3-OCH3, 4-OH H
6 3f H CH3 15 5f H CH3

7 3g 4-Cl H 16 5g 4-Cl H
8 3h 2,4-di-OH H 17 5h 2,4-di-OH H
9 3i 2-thiophene H 18 5i 2-thiophene H
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3.3.3. Molecular modeling investigation and molecular
simulation simulations

For further detailed insight into the activities of the synthesized
compounds 5(a-i) for human alkaline phosphatases (h-IAP and
h-TNAP), molecular modeling was performed for selective and
most active analogues. LeadIT software was used for carrying
out the modeling analysis of selected compounds (LeadIT,
2017). The crystal structures of the target proteins were unavail-
able at RCSB protein databank, hence previously reported hom-
ologymodels were used (Ausekle et al., 2016).

Levamisole ((S)-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-
b]thiazole) used as positive control in the biological assay
was docked inside the binding site of tissue non-specific APs
(Figure 4(c)). The resultant interactions involve conventional
hydrogen bonding (1.86 Å) by nitrogen of imidazole ring
with His437 and p-alkyl linkage of the same residue (3.85 Å)
with thiazole ring. Val90 was at alkyl linkage (4.61 Å) with the
thiazole ring. Three additional carbon H-bonds were noticed
by Glu108 (2.60 Å), Pro91 (2.76 Å) and Thr436 (2.45 Å).
Compound 5e, the most active inhibitor exhibited several
interactions within the binding pocket of h-TNAP as repre-
sented in Figure 4(a). Hydrogen bonds were formed by
Arg167 with methoxy (2.56 Å) and hydroxyl group (2.46 Å) of
2-methoxyphenol. However, Ser93 showed a conventional H-
bond (1.54 Å) with hydroxyl group and a carbon H-bond
(2.74 Å) with methoxy group. Two p-p T-shaped interactions
were examined by thiazole ring with His324 (4.74 Å) and
phenol ring with His321 (4.91 Å). Additionally, a p-sulfur link-
age was shown by His321 (3.66 Å) with sulfur of thiazole
ring. His434 shown p-alkyl linkage (5.42 Å) with 4-tert-butyl
moiety of thiazole ring. A p-cation (2.81 Å) linkage was made
with Zn ion. The interactions of levamisole are similar to
those exhibited by potent compound. The results are in

accordance with the previously shown interactions within
the active pocket of h-TNAP (Andleeb et al., 2019; Ausekle
et al., 2016; Khan et al., 2015). Compound 5b (dual inhibitor
of both the isozymes) was docked within the binding site of
h-TNAP (Figure 4(b)) and the most notable interactions were
hydrogen bonding of phenol ring (hydroxyl group) with
Arg167 (2.63 Å) and Ser93 (1.66 Å). p-p T-shaped interactions
were formed by phenol ring with His437 (5.17 Å) and His154
(5.96 Å), while, thiazole ring with His321 (5.33 Å). In addition,
p-alkyl linkage was formed by 4-tert-butyl moiety of thiazole
ring with His434 (5.38 Å) and a p-sulfur linkage was observed
by sulfur of thiazole ring with His321 (4.05 Å). All the interac-
tions with the amino acid residues of active pocket are simi-
lar to important interactions reported previously (Khan et al.,
2015; Salar et al., 2017). The docking analysis revealed that
the most active inhibitor exhibits the important interactions
within the binding pocket of h-TNAP and maybe responsible
for the inhibitory activity of the compound towards
the enzyme.

Molecular docking analysis of L-phenylalanine inside the
binding pocket of human intestinal alkaline phosphatase
revealed that p-p stacked interactions were shown by phenyl
ring with His320 (4.32 Å) and p-p T-shaped with His432
(5.55 Å). His358 showed a hydrogen bond (2.77 Å) and a car-
bon H bond (2.18 Å) with phenylalanine. Amino acid Ser92
made a hydrogen bond (2.16 Å) with oxygen of the alanine
group and the same oxygen was involved in a metal
acceptor interaction with zinc (2.39 Å). Compound 5d (the
most active inhibitor of h-IAP) exhibited extensive network
of hydrogen bonds like hydrazine showed H bond with
Glu321 (1.82 Å), methoxy group with Tyr276 (2.72 Å), sulfur of
thiazole ring with Arg314 (3.34 Å), nitrogen atom of hydra-
zine with Arg314 (2.69 Å) and methoxy group of benzylidene
with Arg314 (2.98 Å). Additionally, His317 formed p-p stacked
interaction with thiazole (3.86 Å) andp-sulfur interactions
with sulfur within the same ring (4.05 Å). Compound 5b
(dual inhibitor) formed p-p T-shaped interactions with His320
(5.19 Å) by phenol ring and Tyr169 (5.39 Å) by thiazole ring.
Furthermore, hydrogen bonds were observed between
Asp316 (2.81 Å) and hydroxyl group of phenol ring, Arg150
(2.71 Å) and nitrogen atom of thiazole ring, Tyr169 (2.02 Å)
and nitrogen atom of hydrazine moiety. Tyr169 also showed
a p-sulfur linkage (5.61 Å) with the compound 5b. Moreover,
a metal acceptor interaction was observed with zinc. The
mode of orientation and the binding interactions are in
agreement with reported binding of active compounds

Table 2. Inhibitory potential of 1-benzylidene-2-(4-tert-butylthiazol-2-yl)
hydrazine 5(a-i) for alkaline phosphatase isozymes.

Compound h-TNAP h-IAP
IC50 ± SEM (mM) / % inhibition ± SD

5a 27.3 ± 3.24 8.50 ± 0.09
5b 4.88 ± 0.30 5.47 ± 0.75
5c 25 ± 2% 43 ± 1%
5d 41± 2% 0.71 ± 0.02
5e 1.09 ± 0.18 6.51 ± 0.35
5f 28 ± 2% 32 ± 1%
5g 6.02 ± 0.13 2.12 ± 0.24
5h 28 ± 2% 8.80 ± 0.26
5i 3.49 ± 0.14 41 ± 3%
Levamisole 25.2 ± 1.90 –
L-phenylalanine – 100 ± 3.00

Figure 3. Double reciprocal plot of enzyme kinetics of h-TNAP for 5e (right) and h-IAP for 5e (middle), 5d (left) describing the mode of enzyme inhibition.
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within the active site of IAP (Khan et al., 2015; Salar et al.,
2017). Therefore, the resultant interactions of our selected
active compounds are in accordance with the interaction res-
idues and interaction linkages with already reported ones.
The structure-activity relationship and the docking studies of
identified potent inhibitors provide an outstanding platform
for further development of alkaline phosphatase inhibitors.
The results of docking studies for the selected compounds
were descriptive of the in vitro enzyme inhibitory activity
results, and the plausible binding poses elucidated the bind-
ing modes of these analogues (Figure 5).

The MD simulations undertaken for the docked pose of
selective inhibitor (5e) bound to h-TNAP and 5d to h-IAP
reveal the stability of the ligand and target protein over
the tested 20 ns time span during the computations.
Molecular dynamic trajectories for the selected ligands with
the respective protein were assessed in terms of the struc-
tural stability (Figure 6). In contrast, movements of the
backbone in apoprotein in relation to the active site resi-
dues produced root-mean-square deviation (RMSD), plotted
as a function of time, remain deviated over the simulation
time. Figure 6 showed that the main binding orientations
reported by h-TNAP þ 5e. In the presence of ligands 5e

and 5d within the active pocket of h-TNAP and h-IAP,
respectively, the protein back bone RMSD values were
comparable to that of the protein only (Figure 6).
Moreover, the RMSF values of protein alone and in com-
bination with selected ligands initially rise to small fluctua-
tions from their initial coordinates while with inactive
residues, the fluctuations were lower, however, again after
residue number 380, the most of the fluctuations were
noticed in both the proteins (Figure 7).

In case of radius of gyration plot for both the proteins in
apo and holo form, Figure 8 showed that holo state of pro-
tein in complex with selected ligands was more stable as
compared to apo form. The 4-hydroxy, 3-methoxybenzyli-
dene moiety of 5e, while 3,4-dimethoxybenzylidene group of
5d are the key factors in the interaction and maintenance of
overall stability in the protein-ligand complex. With the struc-
tural drift at some positions in both the proteins in apo and
holo form, the overall trajectory of the enzymeþ ligand com-
plex exhibited the stability in the system. The interaction fig-
ures revealed that 4-hydroxy, 3-methoxybenzylidene moiety
of 5e in h-TNAP and 3,4-dimethoxybenzylidene group of 5d
in h-IAP played very significant role in the stabilizing of pro-
teinþ ligand complex.

Figure 4. Plausible binding modes of compounds 5e (a); 5b (b) and Levamisole (c) inside tissue non-specific alkaline phosphatase model.
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3.4. HYDE assessment of selective compounds against
alkaline phosphatases (h-TNAP and h-IAP)

HYDE visual affinity of all the ligands was carried out in
LeadIT (2017) software for top30 ranked docked conformers
within the active site of the homology models of human h-

TNAP and h-IAP. The binding energy and docking score by
FlexX for the all the synthetic derivatives are given in Table
3. The FlexX docking score depicted that the selective deriva-
tives has lower energy scores as compared to non-selective
inhibitors. Moreover, the binding free energies DG given in
Table showed that the potent inhibitors exhibited higher

Figure 5. Plausible binding modes of compounds 5d (a); 5b (b) and L-phenylalanine (c) inside intestinal alkaline phosphatase model.

Figure 6. Root Mean Square Deviation (RMSD) of amino acid residues of h-TNAP and h-IAP protein during 20 ns MD-simulation run.
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affinity towards the respective target (h-TNAP and h-IAP).
The compound 5e interacts with the h-TNAP in a very effi-
cient manner in comparison with 5b and give favorable

contributions. Similarly, 5d showed greater affinity than 5b
towards h-IAP. The docking scores of all the compounds
revealed the similar pattern as was suggested by the in vitro
analysis. The compounds which were inactive exhibited less
docking scores, while active and potent ligands gave a sig-
nificant docking scores with the significant free binding
energy values.

4. Conclusions

The current research study reports the successful synthesis
and characterization of 1-benzylidene-2-(4-tert-butylthiazol-2-
yl) hydrazines. The compounds were evaluated to determine
their inhibitory potential using alkaline phosphatases (h-
TNAP and h-IAP). The screened compounds exhibited good
inhibitory activity for APs. Compound 5e possessed the high-
est inhibitory potential for h-TNAP with an IC50 value of
1.09 ± 0.18mM, while the compound 5d was found to be
most active against h-IAP with an IC50 of 0.71 ± 0.02 mM. The
structural elements necessary for APs inhibition were investi-
gated and the most probable binding site interaction of the
inhibitors with the APs were evaluated by molecular model-
ling studies. In future prospective, the investigated com-
pounds may serve as a pharmacophore as well as lead
compounds in the design and synthesis of more potent and

Figure 7. Root Mean Square Fluctuation (RMSF) of amino acid residues of h-TNAP and h-IAP protein during 20 ns MD-simulation run.

Figure 8. Radius of gyration (Rg) of amino acid residues of h-TNAP and h-IAP protein structures during 20 ns MD-simulation run.

Table 3. Docking score of the top pose of selected compounds and their
ranks after HYDE visual inspection.

Compound

Docking score
by FlexX for
top pose

(kcal mol–1)

Free energy
of binding

DG (kJ mol–1)

h-TNAP
5a �13.11 –10
5b �16.43 –11
5c �7.12 –2
5d �8.99 –4
5e �21.36 –15
5f �8.15 –3
5g �19.82 –7
5h �8.35 –4
5i �18.64 –13
h-IAP
5a �16.14 –13
5b �17.01 –10
5c �7.98 –2
5d �22.31 �19
5e �16.88 –12
5f �8.85 –2
5g �19.12 –18
5h �15.67 –11
5i �9.65 –1
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selective inhibitors of alkaline phosphatase. This may be the
step towards medicinally important compounds for treat-
ment of pathological dysfunctions due to APs
over-expression.
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