Total Synthesis of Kehokorins A–E, Cytotoxic p-Terphenyls

Shunya Takahashi,^{*,†©} Yasuaki Suda,^{†,‡} Takemichi Nakamura,[†] Koji Matsuoka,[‡] and Hiroyuki Koshino[†]

[†]RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan

[‡]Division of Material Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan

S Supporting Information

ABSTRACT: This paper describes a general method for the synthesis of kehokorins A–E, novel cytotoxic *p*-terphenyls. 2,4,6-Trihydroxybenzaldehyde served as a common building block for preparation of the central aromatic ring. Construction of their *p*-terphenyl skeletons was achieved by a stepwise Suzuki–Miyaura coupling, whereas the phenyl-dibenzofuran moiety was built up by an intramolecular Ullmann reaction. Introduction of an L-rhamnose residue into partly protected kehokorin B was performed by the trichloroacetimidate method.

INTRODUCTION

Terphenyls are a group of aromatic hydrocarbons consisting of a chain of three benzene rings. Most of natural products belonging to this family are *p*-terphenyls, in which two terminal aromatic rings connect to the central ring at the *p*-position, and are known to be present in fungi and lichens.¹ Although their research history is derived from the discovery of polyporic acid as a pigment in 1877,² recent studies have been mainly focused on their diverse biological activities, such as potent immunosuppressive,³ neuroprotective,⁴ antitumor,⁵ antiallergic,⁶ and 5-lipoxygenase⁷ inhibitory activities. On the other hand, the presence of many aromatic sp² carbons existing in these molecules makes it difficult to study their structures, and several papers on structural revision may emphasize the significance of synthetic studies.⁸⁻¹² Kehokorins A-E (1-5) are novel *p*-terphenyls carrying a dibenzo [b,d] furan as a common structural motif which were isolated from fieldcollected fruit bodies of the myxomycetes Trichia favoginea by Ishibashi et al. (Figure 1).¹³ Their *p*-terphenyl structures were

mainly determined by extensive NMR analyses, and the presence of the L-rhamnose residue in 1 was confirmed by enzymatic degradation studies. These natural products exhibit cytotoxic activity against the HeLa human epithelial carcinoma cell line, and the IC₅₀ value of the most potent compound 1 was shown to be $1.5 \ \mu g/mL$. In the antimicrobial assay, only 1 was reported to show a weak activity against *Staphylococcus aureus*. These results suggest the importance of the sugar residue. Although there are many *p*-terphenyls in nature, a phenyldibenzofuran glycoside such as 1 was virtually unknown.¹⁴ In connection with our studies on bioactive *p*-terphenyls,¹⁵ the unique structure stimulated our interest. Described herein is the first total synthesis of kehokorins A–E (1–5), thus confirming the structures of the natural products.

RESULTS AND DISCUSSION

As the most complex molecule in the kehokorin series is kehokorin A (1), we initially designed a synthetic strategy directed toward 1 as illustrated in Scheme 1. Removal of the Lrhamnose residue in the target molecule leads to a benzoylated L-rhamnose derivative 6 and 8-O-protected kehokorin B 7. Cleavage of the internal ether linkage can revert 7 back to the p-terphenyl 8. This could be synthesized by a stepwise Suzuki-Miyaura coupling¹⁶ of 10 with a couple of boronic acid derivatives, 9 and 11. The formyl group in 10 was introduced for a regioselective functionalization of the central ring as well as for an equivalent of a masked hydroxyl group, and 2,4,6trihydroxybenzaldehyde (12) was envisaged as the common starting material. In addition, these retrosynthetic analyses would enable us to prepare kehokorin C-E(3-5) by changing the boronic acid derivatives employed in the Suzuki-Miyaura coupling.

Received: January 20, 2017

Scheme 1. Synthetic Plan for Kehokorin A (1)

The synthesis of **1** began with preparation of the central part **15**. The dibenzyl ether **13** obtained by benzylation¹⁷ of 2,4,6-trihydroxybenzaldehyde (**12**) was transformed into **14** (Scheme 2) via bromination. The structure, in particular the position of the newly introduced bromine atom, was confirmed by 2D NMR analyses.¹⁸ The free hydroxyl group was changed to the

Scheme 2. Synthesis of the Central Part 15 and Its Conversion into *p*-Terphenyl 21

corresponding methyl ether to afford the central part 15. The first Suzuki-Miyaura coupling of 15 with boronic acid 11 was performed by the action of $Pd(OAc)_2$ in the presence of XPhos and potassium phosphate in aqueous THF, giving a biphenyl 16 in high yield. Its 6-O-benzyl group was removed by magnesium bromide etherate¹⁹ giving 17 quantitatively. Its triflation afforded a biphenyl block 18 in good yield. Prior to the second Suzuki-Miyaura coupling, chloroboronic acid 20 was prepared from 5-chlorobenzo d [1,3] dioxole (19) via ortho-lithiation²⁰ with LDA followed by trapping with triisopropylborate. The selection of 20 as a coupling partner stemmed from the ready availability of the starting material 19 and the expectation of an easy hydrolysis of the methylene acetal moiety at a later stage.¹⁵ The coupling of 18 with 20, however, gave unsatisfactory results. Among the conditions tried (Table 1), a combination of $Pd(PPh_3)_4$ and potassium phosphate in anhydrous 1,4-dioxane afforded the desired pterphenyl 21 in 24% yield. The low yield made us change the boronic acid employed in the coupling.

Next, as another precursor of the terminal aromatic ring, methoxyphenylboronic acid derivavtive 28 with an acyclic protecting group was designed that would be obtained easily from 3-bromo-4-chloro-2-methoxyphenol $(25)^{21}$ (Scheme 3). It was obtained by a 1,4-addition of HCl to 5-bromo-6,6dimethoxycyclohexa-2,4-dien-1-one, but we found this method to be unsuitable for our purpose because of the low yield (2%). Therefore, direct chlorination of 22 was attempted. Treatment with sulfuryl chloride in CHCl₃ at 50 °C afforded a ca. 1:1 mixture of a *p*-chlorophenol derivative 25 and its *o*-isomer 24 in 78% yield, whereas Gustafson's method using NCS-Ph₃P= S^{22} improved the selectivity (25/24 = 82/18, total 84% yield). As the authors reported, the use of a BINAP derivative 23^{23} (0.1 mol equiv) instead of Ph₃P=S gave the desired product 25 in high selectivity (25/24 = 93/7). When a small excess of NCS $(\sim 1.5 \text{ mol equiv})$ was employed according to the original paper, the ratio of 25 was revealed to decrease due to the formation of the corresponding dichloride by the ¹H NMR analysis. Therefore, 1.0 equiv of NCS was employed in this reaction. The phenol 25 thus obtained was transformed into the corresponding MOM ether 26. Preparation²⁴ of 28 from 26 was a troublesome step. As a Pd-catalyzed cross-coupling of 26 with bis(pinacolato)diboron²⁵ resulted in a low yield of 28, a route via transmetalation was examined. Different from the case of its regioisomer,^{15b} the anion generated by treatment of 26 with n-BuLi was found to be unstable. Consequently, a brief $(<5 \text{ min}, -78 ^{\circ}\text{C})$ treatment with the base followed by immediate addition of 27 was needed to obtain 28 in a practical yield. The second Suzuki-Miyaura coupling of 18 with the boronate 28 was also effected by treatment with $Pd(PPh_3)_4$ in the presence of potassium phosphate to give 29 in good yield. Although the reaction was completed in a short time at a higher temperature (100-110 °C), hydrolysis of 18 into 17 was observed. In order to suppress the side reaction, the reaction was conducted at a low temperature (\sim 75 °C) for a long time. Construction of the dibenzo[b,d]furan skeleton was accomplished by the method^{15b} previously reported. Thus, 29 was initially oxidized with mCPBA in the presence of NaHCO₃, and then the resulting formate, without purification, was heated with Cu_2O^{26} in pyridine to furnish the desired dibenzofuran derivative 30. Treatment with HCl led to 7. The benzyl group in 7 was removed by hydrogenolysis with 10% Pd/C to give kehokorin B (2), the spectral data of which were identical with those of the natural product.^{13a} On the other hand, the

entry	catalyst (mol %)	ligand ^b	base (equiv)	solvent	temp (°C)	products (% yield)		
1	$Pd(PPh_3)_4$ (10)	_	Cs_2CO_3 (2.0)	toluene	110	17 (60), 21 (20)		
2	$Pd(PPh_3)_4(5)$	_	$K_{3}PO_{4}$ (1.5)	1,4-dioxane	100	complex mixture		
3	$Pd(PPh_3)_4(5)$	-	$K_{3}PO_{4}(1.5)$	1,4-dioxane	75	21 (24)		
4	$PdCl_2(dppf)$ (5)	_	Cs_2CO_3 (2.0)	1,4-dioxane	100	17 (23), 21 (10)		
5	$Pd(OAc)_2$ (5)	PPh ₃	$K_{3}PO_{4}$ (2.0)	THF	65	no reaction ^c		
6	$Pd(OAc)_2$ (5)	PCy ₃	KF (3.3)	THF	rt	no reaction ^c		
7	$Pd(OAc)_2$ (5)	PCy ₃	KF (3.3)	THF	55	no reaction ^c		
Boronic acid (1.3 equiv) was employed. ^b A 15 mol % portion of ligand was employed. ^c Triflate 18 was recovered in 86–95% yield.								

Scheme 3. Total Synthesis of Kehokorins A (1) and B (2)

introduction of an L-rhamnose unit into 7 was needed for the preparation of kehokorin A (1). Although several groups reported the glycosidation employing a phenol with a benzofuran moiety as a glycosyl acceptor, $^{27-32}$ no paper has appeared dealing with such reaction of a dibenzofuran derivative. We adopted Schmidt's procedure using 2,3,4-tri-*O*-benzoyl-L-rhamnosyl trichloroacetimidate (**31**)³³ as a glycosyl donor. Reaction of 7 and **31** (2.2 equiv) in the presence of TMSOTf (0.001 equiv) and MS4A in dichloromethane at -20 °C proceeded nicely to provide a glycosylated product³⁴ in high yield. This contained a considerable amount of the inseparable imidate-derived byproducts so that the glycosylated product

was isolated as **32** after debenzoylation.³⁵ Finally, debenzylation of **32** afforded kehokorin A (1). The physical and spectral data of 1 matched well those of natural kehokorin A.^{13a}

As we could establish a synthetic route to kehokorins A (1) and B (2), we next turned our attention to kehokorin C (3). Kehokorin C (3) lacks the 1-methoxy group of kehokorin B (2). Therefore, boronic acid 33 instead of 28 was employed for the second Suzuki–Miyaura coupling (Scheme 4). Reaction of

18 with 33 was effected by the use of $PdCl_2(dppf)$ in the presence of Cs_2CO_3 (Table 2) to give *p*-terphenyl 34 in high yield. Baeyer–Villiger oxidation of 34 followed by the Ullmann reaction afforded 35, which underwent debenzylation to give 3, the spectral data of which were consistent with those of natural kehokorin C.^{13a}

In a similar way, kehokorins D (4) and E (5) were synthesized from 15 and 36 (Scheme 5). Thus, a mixture of both compounds was treated with $Pd(OAc)_2$ in the presence of XPhos and potassium phosphate, affording biphenyl 37 in good yield. Debenzylation and triflation of the resulting phenol 38 gave a pivotal intermediate 39. A Pd-catalyzed coupling of 39 with 33 or 40 provided 41 or 42, respectively. Upon the indicated functionalization, each compound was transformed into 43 and 44 and then kehokorins D (4) and E (5), respectively. Spectral data for both compounds were identical in all respects to those previously reported.^{13b}

In conclusion, we achieved the total synthesis of kehokorin A (1) through a stepwise Suzuki–Miyaura coupling, Ullmann reaction, and stereoselective glycosidation as key steps. This strategy also enabled us to prepare its congeners (2-5) and therefore would be useful for preparing kehokorin A analogs with a variety of sugars in aid of SARs. Furthermore, the structures of the natural products were unambiguously established by our synthetic work.

Table 2. Suzuki-Miyaura Coupling of 18 and 33^a

entry	catalyst (mol %)	ligand ^b	base (equiv)	solvent	temp (°C)	products (% yield)			
1	$Pd(PPh_{3})_{4}$ (10)	_	Cs_2CO_3 (2.0)	toluene	110	no reaction ^c			
1	$Pd(PPh_3)_4$ (5)	_	K_3PO_4 (1.5)	1,4-dioxane	75	34 (41), 18 (43)			
2	$PdCl_2(dppf)$ (5)	_	Cs_2CO_3 (2.0)	1,4-dioxane	100	34 (96)			
3	$Pd(OAc)_2(5)$	PCy ₃	KF (3.3)	THF/H ₂ O (v/v; 12/1)	65	no reaction ^c			
^a Boronic acid (1.2 equiv) was employed. ^b A 15 mol % portion of ligand was employed. ^c Triflate 18 was recovered in 82–98% yield.									

Scheme 5. Total Synthesis of Kehokorins D (4) and E (5)

EXPERIMENTAL SECTION

General Procedures. All reactions were carried out under an argon atmosphere, unless otherwise noted. Melting points are uncorrected. IR spectra were recorded by the ATR method. The NMR spectra were recorded at 500 or 600 MHz for ¹H and 125 or 150 MHz for ¹³C. The ¹H chemical shift was referenced to the residual solvent signal ($\delta_{\rm H}$ 7.26 for CDCl₃ or $\delta_{\rm H}$ 2.04 for acetone- d_6). The ¹³C chemical shift was referenced to the solvent signal ($\delta_{\rm C}$ 77.0 for CDCl₃ or $\delta_{\rm C}$ 29.8 for acetone- d_6). High-resolution mass spectra (HRMS) were acquired in electron-impact mode (EI) or field desorption mode (FD) using a time-of-flight mass spectrometer or gas chromatograph time-of-flight mass spectrometer, respectively. The solvent extracts were dried with magnesium sulfate, and the solutions were evaporated under diminished pressure at 35–40 °C.

4,6-Bis(benzyloxy)-3-bromo-2-hydroxybenzaldehyde (14). To a stirred solution of 13 (1.23 g, 3.69 mmol) in dichloromethane (12 mL) was added dropwise bromine (0.19 mL, 3.7 mmol) at 0 °C and the mixture was stirred at 0 °C for 1 h. After being quenched with addition of saturated aqueous Na₂S₂O₃, the resulting mixture was extracted with ethyl acetate. The combined organic layers were washed successively with saturated aqueous NaHCO₃, water, and brine and concentrated. The residue was treated with n-hexane-dichloromethane to give 14 (1.33 g, 87%) as a crystalline solid: mp 149-150 °C (n-hexane-ethyl acetate); IR (ZnSe) 3031, 2880, 1634, 1604, 1411, 1384, 1293, 1217, 1123, 1092, 722 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 12.94 (1H, s), 10.15 (1H, s), 7.41–7.36 (10H, m), 6.12 (1H, s), 5.19 (2H, s), 5.09 (2H, s); 13 C NMR (150 MHz, CDCl₃) δ 191.8, 162.7, 162.2, 161.5, 135.4, 135.3, 128.9, 128.8, 128.6, 128.4, 127.4, 126.9, 106.8, 91.8, 90.1, 71.1, 71.0; HRMS (EI⁺) calcd for $C_{21}H_{17}BrO_4 [M]^+$ 412.0310, found 412.0309.

4,6-Bis(benzyloxy)-3-bromo-2-methoxybenzaldehyde (15). To a stirred suspension of 14 (100 mg, 0.24 mmol) and potassium carbonate (60.2 mg, 0.435 mmol) in *N*,*N*-dimethylformamide (0.5 mL) was added iodomethane (40 μ L, 0.61 mmol) at rt, and the mixture was stirred at rt for 16 h, diluted with water, and then extracted with ether. The combined organic layers were washed successively with water and brine and concentrated. The residue was chromatographed on silica gel (*n*-hexane–ethyl acetate–dichloromethane = 4:1:1) to give 15 (103 mg, quant.) as a crystalline solid: mp 91–92 °C (*n*-hexane–ethyl acetate); IR (ZnSe) 2942, 2871, 1672, 1578, 1198, 1168, 1101, 734 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.36 (1H, s), 7.43–7.33 (10H, m), 6.40 (1H, s), 5.15 (2H, s), 5.11 (2H, s), 3.91 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 186.9, 161.8, 160.7, 160.5, 135.5, 135.2, 128.6, 128.5, 128.22, 128.20, 126.9, 126.8, 114.2, 100.3, 95.2, 71.0, 62.2; HRMS (EI⁺) calcd for C₂₂H₁₉BrO₄ [M]⁺ 426.0467, found 426.0469.

4,6-Bis(benzyloxy)-3-(p-methoxyphenyl)-2-methoxybenzaldehyde (16). To a stirred mixture of 15 (4.08 g, 9.54 mmol), 11 (2.10 g, 13.8 mmol), potassium phosphate (6.10 g, 28.7 mmol), and XPhos (685 mg, 1.43 mmol) in THF-water (12:1, 165 mL) was added palladium acetate (107 mg, 0.476 mmol), and the mixture was stirred at 65 °C for 7 h, cooled, diluted with water, and then extracted with ethyl acetate. The combined organic layers were washed successively with water and brine and concentrated. The residue was chromatographed on silica gel (n-hexane-ethyl acetate-dichloromethane = $25:5:1 \rightarrow 8:2:1$) to give 16 (4.07g, 94%) as a crystalline solid: mp 127-128 °C (n-hexane-ethyl acetate); IR (ZnSe) 2932, 1683, 1588, 1452, 1373, 1246, 1153, 1097, 1028, 734 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 10.44 (1\text{H}, \text{s}), 7.44-7.28 (10\text{H}, \text{m}), 7.20 (2\text{H}, \text{m})$ brd, I = 7.3 Hz), 6.95 (2H, brd, I = 8.9 Hz), 6.39 (1H, s), 5.13 (2H, s), 5.04 (2H, s), 3.86 (3H, s), 3.42 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 188.1, 162.0, 161.8, 161.5, 158.6, 136.08, 136.06, 132.0, 128.7, 128.6, 128.3, 128.1, 128.0, 127.0, 126.5, 124.6, 118.3, 113.3, 94.6, 70.8, 70.4, 61.8, 55.2; HRMS (EI⁺) calcd for C₂₉H₂₆O₅ [M]⁺ 454.1780, found 454.1778.

6-(Benzyloxy)-4-hydroxy-2,4'-dimethoxy-[1,1'-biphenyl]-3carbaldehyde (17). To a stirred solution of 16 (912 mg, 2.00 mmol) in benzene-ether (7:1, 16 mL) was added magnesium bromide ethyl etherate (622 mg, 2.41 mmol) and the mixture was stirred at 80 °C for 2.5 h and then cooled to rt. After addition of 4 M HCl at 0 °C, the resulting mixture was stirred at 0 $^{\circ}C \rightarrow$ rt for 12 h and then extracted with ethyl acetate. The combined organic layers were washed successively with water and brine and concentrated. The residue was chromatographed on silica gel (*n*-hexane–ether = $6:1 \rightarrow 4:1$) to give 17 (719 mg, 98%) as an amorphous solid: IR (ZnSe) 3027, 2933, 1632, 1607, 1578, 1289, 1245, 1176, 1095, 800, 775 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 12.26 (1H, s), 10.10 (1H, s), 7.34-7.23 (7H, m), 6.96 (2H, d, J = 8.8 Hz), 6.32 (1H, s), 5.09 (2H, s), 3.86 (3H, s), 3.40 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 193.2, 164.43, 164.39, 162.0, 158.7, 135.8, 132.0, 128.6, 127.9, 126.5, 124.4, 115.9, 113.5, 109.2, 96.4, 70.3, 62.1, 55.2; HRMS (EI⁺) calcd for C₂₂H₂₀O₅ [M]⁺ 364.1311, found 364.1314.

6-(Benzyloxy)-3-formyl-2,4'-dimethoxy-[1,1'-biphenyl]-4-yl Trifluoromethanesulfonate (18). To a stirred solution of 17 (50.5 mg, 0.139 mmol) in *N*,*N*-dimethylformamide (1.3 mL) were added *N*-phenylbis(trifluoromethanesulfonimide) (54.5 mg, 0.152 mmol) and potassium carbonate (21.0 mg, 0.152 mmol) at -17 °C, and the mixture was stirred at -17 °C \rightarrow rt for 6.5 h, poured into ice–water, and then extracted with ether. The combined organic layers were washed with water (2×) and brine and concentrated to give a white

solid, which was treated with dichloromethane–ether to afford **18** (61.4 mg, 86%) as white needles. The mother liquid was chromatographed on silica gel (*n*-hexane–ethyl acetate = $10:1 \rightarrow 4:1$) to give additional **18** (5.4 mg, 8%) as white needles: mp 163–164 °C (*n*-hexane–ethyl acetate); IR (ZnSe) 3027, 2954, 1692, 1595, 1427, 1189, 1122, 1028, 733 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.28 (1H, s), 7.37–7.22 (7H, m), 7.00 (2H, d, *J* = 8.9 Hz), 6.67 (1H, s), 5.11 (2H, s), 3.88 (3H, s), 3.44 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 186.5, 162.9, 161.5, 159.4, 147.7, 135.1, 131.6, 128.7, 128.3, 126.6, 125.2, 122.9, 118.7 (q, *J*_{CF} = 321.4 Hz), 116.5, 113.7, 103.6, 71.1, 62.5, 55.3; HRMS (EI⁺) calcd for C₂₃H₁₉F₃O₇S [M]⁺ 496.0804, found 496.0798.

(5-Chlorobenzo[d][1,3]dioxol-4-yl)boronic Acid (20). To a stirred solution of lithium diisopropylamide (LDA) prepared from diisopropylamine (0.77 mL, 5.5 mmol) and *n*-butyllithium (1.6 M in *n*hexane, 3.43 mL, 5.50 mmol) in tetrahydrofuran (15 mL) was added dropwise a solution of 19 (0.79 g, 5.0 mmol) in tetrahydrofuran (0.6 mL) at -78 °C. After 15 min, triisopropylborate (1.44 mL, 6.25 mL) was added, and the mixture was stirred at -78 °C for 10 min and then gradually warmed to 0 °C over 2 h with stirring. After addition of cold 1 M HCl, the resulting mixture was stirred vigorously for 15 min and then extracted with ethyl acetate. The combined organic layers were washed successively with water and brine and concentrated. The residue was chromatographed on silica gel (n-hexane-ethyl acetate = $4:1 \rightarrow 2:1 \rightarrow 1:1$) to give 20 (526 mg, 52%) as an amorphous solid: IR (ZnSe) 3325, 2900, 1630, 1430, 1230, 1038, 947, 794 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 6.90 (1\text{H}, \text{d}, I = 8.3 \text{ Hz}), 6.83 (1\text{H}, \text{d}, I = 8.3 \text{ Hz})$ Hz), 6.08 (2H, s), 5.95 (2H, s); 13 C NMR (125 MHz, CDCl₃) δ 153.7, 145.7, 130.2, 123.3, 111.3, 101.7; HRMS (EI⁺) calcd for C₇H₆ClO₄B [M]⁺ 200.0048, found 200.0039.

6-(Benzyloxy)-4-(5-chlorobenzo[d][1,3]dioxol-4-yl)-2,4'-dimethoxy-[1,1'-biphenyl]-3-carbaldehyde (21). To a stirred mixture of 18 (15 mg, 30 µmol), 20 (8.0 mg, 39 µmol), and potassium phosphate (9.0 mg, 45 µmol) in dioxane (0.5 mL) was added tetrakis(triphenylphosphine)palladium (1.7 mg, 1.4 μ mol), and the mixture was stirred at 75 °C for 6.5 h, cooled, and concentrated. The residue was purified by preparative TLC (n-hexane-ethyl acetate = 4:1, and then benzene-ether = 30:1, two developments) to give 21 (3.7 mg, 24%) as a foam: IR (ZnSe) 2925, 2853, 1685, 1547, 1438, 1238, 1102, 932, 800, 734 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.21 (1H, s), 7.45 (2H, d, J = 8.8 Hz), 7.31–7.22 (5H, m), 6.99 (2H, d, J = 8.8 Hz), 6.95 (1H, d, J = 8.3 Hz), 6.78 (1H, d, J = 8.3 Hz), 6.74 (1H, s), 5.95 (1H, d, J = 1.5 Hz), 5.94 (1H, d, J = 1.5 Hz), 5.12 (2H, s), 3.88 (3H, s), 3.46 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 189.4, 162.3, 160.4, 158.9, 146.1, 146.0, 136.0, 135.5, 131.8, 128.5, 127.8, 126.6, 125.15, 125.11, 124.2, 122.0, 121.9, 121.1, 113.4, 111.7, 108.3, 101.8, 70.4, 62.1, 55.2; HRMS (EI⁺) calcd for C₂₉H₂₃ClO₆ [M] 502.1183, found 502.1183.

3-Bromo-6-chloro-2-methoxyphenol (24) and 3-Bromo-4chloro-2-methoxyphenol (25). To a stirred solution of 22 (200 mg, 0.985 mmol) and (R)-[1,1'-binaphthalene]-2,2'-diylbis-(diphenylphosphine sulfide) (23) (68 mg, 99 μ mol) in dichloromethane (1 mL) was added N-chlorosuccinimide (132 mg, 0.989 mmol) by portions, and the mixture was stirred at rt in the dark for 14 h and then directly poured into a column of silica gel (n-hexane). Elution with n-hexane-ethyl acetate (1:0 \rightarrow 20:1 \rightarrow 10:1) gave 24 (10.7 mg, 5%) and 25 (158 mg, 67%).

24: syrup; IR (ZnSe) 3382, 2952, 1455, 1415, 1201, 1142, 996, 786 cm⁻¹; ¹H NMR (500 MHz,CDCl₃) δ 7.03 (1H, d, *J* = 8.8 Hz), 6.99 (1H, d, *J* = 8.8 Hz), 5.91 (1H, s), 3.93 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 146.6, 145.3, 125.8, 124.1, 119.9, 114.8, 61.1; HRMS (EI⁺) calcd for C₇H₆BrClO₂ [M]⁺ 235.9240, found 235.9243.

25: syrup; IR (ZnSe) 3408, 2940, 1576, 1466, 994, 896, 839, 809 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.15 (1H, d, *J* = 8.8 Hz), 6.89 (1H, d, *J* = 8.8 Hz), 5.68 (1H, brs), 3.91 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 148.4, 145.6, 126.05, 125.99, 117.1, 115.3, 61.1; HRMS (EI⁺) calcd for C₇H₆BrClO₂ [M]⁺ 235.9240, found 235.9236.

2-Bromo-1-chloro-3-methoxy-4-(methoxymethoxy)benzene (26). To a stirred solution of 25 (168 mg, 0.707 mmol) and *N*,*N*-diisopropylethylamine (0.22 mL, 1.3 mmol) in dichloromethane (1.5 mL) was added dropwise methoxymethyl chloride (70 μ L, 0.92 mmol)

at 0 °C, and then the mixture was stirred at 0 °C \rightarrow rt for 1.2 h. After being quenched with addition of saturated aqueous NaHCO₃, the resulting mixture was extracted with ethyl acetate. The combined organic layers were washed successively with water and brine and concentrated. The residue was chromatographed on silica gel (*n*hexane-ether = 8:1) to give **26** (180 mg, 90%) as a syrup: IR (ZnSe) 2930, 1468, 1156, 1082, 992, 877 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.16 (1H, d, *J* = 9.1 Hz), 7.06 (1H, d, *J* = 9.1 Hz), 5.20 (2H, s), 3.88 (3H, s), 3.51 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 149.7, 148.8, 128.1, 125.1, 119.0, 116.4, 95.5, 60.7, 56.4; HRMS (EI⁺) calcd for C₉H₁₀BrClO₃ [M]⁺ 279.9502, found 279.9496.

2-(6-Chloro-2-methoxy-3-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (28). To a stirred solution of 26 (377 mg, 1.34 mmol) in tetrahydrofuran (4.7 mL) was added dropwise a 1.1 M solution of n-butyllithium (1.28 mL, 1.41 mmol) in hexane at -78 °C. After 5 min, 2-isopropoxy-4,4,5,5tetramethyl-1,3,2-dioxaborolane (27) (0.38 mL, 1.9 mmol) was added, and the mixture was stirred at -78 °C for 1 h and then gradually warmed to 0 °C over 1 h with stirring. After addition of water, the resulting mixture was extracted with ethyl acetate. The combined organic layers were washed successively with water and brine and concentrated. The residue was chromatographed on silica gel (dichloromethane-ether = $200:1 \rightarrow 0:1$) to give 28 (229 mg, 52%) as a syrup: IR (ZnSe) 2976, 1459, 1319, 1254, 1157, 1143, 998 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.05 (1H, d, J = 8.8 Hz), 6.98 (1H, d, J= 8.8 Hz, 5.16 (2H, s), 3.85 (3H, s), 3.48 (3H, s), 1.40 (12H, s); ¹³C NMR (125 MHz, CDCl₃) δ 152.9, 148.2, 129.6, 124.7, 119.0, 95.3, 84.6, 61.5, 56.2, 24.7; HRMS (EI⁺) calcd for C₁₅H₂₂ClO₅B [M]⁺ 328.1249, found 328.1252.

5'-(Benzyloxy)-6-chloro-2,3',4"-trimethoxy-3-(methoxymethoxy)-[1,1':4',1"-terphenyl]-2'-carbaldehyde (29). To a stirred mixture of 18 (185 mg, 0.372 mmol), 28 (147 mg, 0.447 mmol), and potassium phosphate (119 mg, 0.561 mmol) in dioxane (3.5 mL) was added tetrakis(triphenylphosphine)palladium (34 mg, 29 μ mol), and the mixture was stirred at 75 °C for 10 h, cooled, diluted with water, and then extracted with ethyl acetate. The combined organic layers were washed successively with water and brine and concentrated. The residue was chromatographed on silica gel (n-hexane-ethyl acetate = $10:1 \rightarrow 8:1 \rightarrow 6:1$) to give 29 (169 mg, 82%) as a foam: IR (ZnSe) 2934, 2833, 1685, 1547, 1463, 1364, 1244, 1114, 1002, 805, 739 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.20 (1H, s), 7.49 (2H, d, J = 8.8 Hz), 7.31–7.21 (5H, m), 7.16 (1H, d, J = 8.8 Hz), 7.14 (1H, d, J = 8.8 Hz), 7.01 (2H, d, J = 8.8 Hz), 6.65 (1H, s), 5.26 (1H, d, J = 6.6 Hz), 5.23 (1H, d, J = 6.6 Hz), 5.12 (1H, d, J = 11.3 Hz), 5.08 (1H, d, J = 11.3 Hz), 3.88 (3H, s), 3.56 (3H, s), 3.55 (3H, s), 3.48 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 189.4, 162.1, 160.3, 158.9, 149.1, 147.9, 138.4, 136.1, 134.1, 131.9, 128.4, 127.7, 126.5, 125.8, 124.6, 124.4, 122.0, 116.8, 113.3, 111.5, 95.4, 70.3, 62.1, 60.7, 56.3, 55.2; HRMS (FD⁺) calcd for C₃₁H₂₉ClO₇ [M]⁺ 548.1602, found 548.1605.

8-(Benzyloxy)-1,6-dimethoxy-2-(methoxymethoxy)-7-(4methoxyphenyl)dibenzo[b,d]furan (30). To a stirred suspension of 29 (43 mg, 78 µmol) and NaHCO₃ (33 mg, 0.39 mmol) in dichloromethane (1.2 mL) was added dropwise a solution of mCPBA (70–75% assay; 100 mg, ca. 400 μ mol) in dichloromethane (1.5 mL) at 0 °C, and the mixture was stirred at 0 °C for 1 h. After being quenched with saturated aqueous Na2S2O3, the resulting mixture was extracted with ethyl acetate. The combined organic layers were washed successively with saturated aqueous NaHCO3, water, and brine, dried, and concentrated to give a solid (47.7 mg) which was dissolved in pyridine (2.5 mL). Cu₂O (56.2 mg, 0.393 mmol) was added, and the mixture was heated under reflux with stirring for 5 h, cooled, and then filtered through a pad of Celite. The filtrate was concentrated to give a solid, which was chromatographed on silica gel (n-hexane-ethyl acetate = 5:1 \rightarrow 4:1) to give 30 (21.4 mg, 54%) as an amorphous solid: IR (ZnSe) 2933, 1497, 1427, 1245, 1070, 1050, 831 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.41 (3H, m), 7.31-7.22 (7H, m), 7.00 (2H, brd, J = 8.8 Hz), 5.25 (2H, s), 5.08 (2H, s), 4.01 (3H, s), 3.95 (3H, s), 3.88 (3H, s), 3.59 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 152.9, 152.8, 145.15, 145.10, 143.4, 142.9, 137.4, 132.1, 128.4, 127.5, 126.9, 126.2, 123.6, 123.5, 118.8, 118.1, 113.3, 107.0, 101.9,

96.9, 71.6, 61.0, 60.8, 56.4, 55.2; HRMS (EI⁺) calcd for $C_{30}H_{28}O_7$ $\rm [M]^+$ 500.1835, found 500.1835.

8-(Benzyloxy)-1,6-dimethoxy-2-hydroxy-7-(4-methoxyphenyl)dibenzo[b,d]furan (7). Treatment of 30 (40.4 mg, 80.7 μ mol) in dichloromethane (1.5 mL) with a 10% HCl solution in methanol (1.5 mL) at rt for 1 h gave, after evaporation, a solid, which was diluted with ethyl acetate; washed successively with saturated aqueous NaHCO3, water, and brine; and concentrated. The residue was chromatographed on silica gel (*n*-hexane-ethyl acetate = 4:1) to give 7 (36.8 mg, quant.) as an amorphous solid: IR (ZnSe) 3390, 2925, 1428, 1245, 1070, 1029, 803, 735 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 7.43 (2H, brd, I = 8.8 Hz), 7.31–7.28 (6H, m), 7.24 (1H, brd, J = 8.8 Hz), 7.07 (1H, brd, J = 8.8 Hz), 7.01 (2H, d, J = 8.8 Hz), 5.46 (1H, s), 5.08 (2H, s), 3.96 (3H, s), 3.91 (3H, s), 3.89 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 158.7, 152.8, 151.5, 144.1, 143.6, 143.1, 140.4, 137.4, 132.0, 128.4, 127.6, 126.9, 126.1, 123.8, 122.6, 117.7, 115.0, 113.3, 107.9, 101.9, 71.8, 61.2, 60.8, 55.2; HRMS (EI⁺) calcd for $C_{28}H_{24}O_6$ [M]⁺ 456.1573, found 456.1579.

Kehokorin B (2). To a stirred solution of 7 (4.5 mg, 10 μ mol) in methanol (0.3 mL) was added 10% palladium on carbon (1.0 mg). The mixture was stirred vigorously under a hydrogen atmosphere at rt for 5 h, filtered through a pad of Celite, and then concentrated. The residue was chromatographed on silica gel (benzene–ethyl acetate = 20:1) to give 2 (3.4 mg, 94%) as an amorphous solid: IR (ZnSe) 3513, 3392, 2939, 2832, 1498, 1427, 1248, 1164, 1056, 953 cm⁻¹; ¹H NMR (500 MHz, acetone- d_6) δ 7.39 (1H, s), 7.36 (2H, brd, *J* = 8.8 Hz), 7.19 (1H, d, *J* = 8.8 Hz), 7.06 (1H, d, *J* = 8.8 Hz), 6.98 (2H, brd, *J* = 8.8 Hz), 4.02 (3H, s), 3.90 (3H, s), 3.84 (3H, s); ¹³C NMR (125 MHz, acetone- d_6) δ 159.8, 152.0, 151.9, 145.9, 143.7, 143.2, 142.5, 133.0, 127.1, 124.5, 121.9, 119.0, 117.3, 114.1, 107.6, 103.2, 60.9, 60.7, 55.5; HRMS (EI⁺) calcd for C₂₁H₁₈O₆ [M]⁺ 366.1103, found 366.1114.

Glycoside 32. To a stirred suspension of 7 (36.8 mg, 80.6 μ mol), 31 (109 mg, 0.176 mmol), and MS4A (130 mg) in dichloromethane (4.0 mL) was added trimethylsilyl trifluoromethanesulfonate (0.01 mL, 0.06 μ mol) at -20 °C. After 30 min, more trimethylsilyl trifluoromethanesulfonate (0.01 mL, 0.06 μ mol) was added and stirring was continued for additional 15 min. Triethylamine (0.11 mL, 0.79 mmol) was added, and the mixture was stirred at -10 °C for 15 min and then concentrated. The residue was passed through a short column of silica gel (*n*-hexane–ethyl acetate = $8:1 \rightarrow 4:1$) to give a solid (88.7 mg) which was dissolved in methanol-dichloromethane (2:1, 1.5 mL). A 1.0 M solution of sodium methoxide in methanol (0.02 mL) was added at rt, and the mixture was stirred at rt for 1 h, made neutral with Dowex 50W X-8 (H⁺) resin, and filtered, and the filtrate was concentrated. The residue was chromatographed on silica gel (chloroform-methanol = $100:1 \rightarrow 50:1 \rightarrow 20:1$) to give 32 (42.4 mg, 87%) as an amorphous solid: $[\alpha]_D^{25}$ -49 (c 0.41, CHCl₃); IR (ZnSe) 3406, 2973, 2912, 1236, 1087, 878 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 7.36 (2H, brd, J = 8.8 Hz), 7.31 (1H, s), 7.25–7.14 (7H, m), 6.97 (2H, brd, J = 8.8 Hz), 5.56 (1H, brs), 4.98 (2H, s), 4.39 (1H, brs), 4.20 (1H, brd, J = 7.8 Hz), 4.04 (1H, m), 3.93 (3H, s), 3.89 (3H, s), 3.86 (3H, s), 3.76 (1H, m), 1.39 (3H, d, J = 5.8 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 158.7, 153.0, 152.9, 144.8, 144.2, 143.4, 142.9, 137.3, 132.0, 128.3, 127.5, 126.9, 126.0, 123.8, 123.1, 119.0, 117.7, 113.3, 107.2, 101.7, 100.3, 73.2, 71.8, 71.5, 71.2, 69.3, 61.1, 60.7, 55.2, 17.6; HRMS (FD⁺) calcd for $C_{34}H_{34}O_{10}$ [M]⁺ 602.2152, found 602.2125.

Kehokorin A (1). According to the method described for the preparation of **2** from 7, compound **32** (12 mg, 20 μ mol) was hydrogenated over 10% palladium on carbon (2.0 mg) in methanol–ethyl acetate (5:2, 0.7 mL) for 7 h and upon purification by chromatography on silica gel (dichloromethane–methanol =100:1 \rightarrow 50:1 \rightarrow 10:1) gave 1 (9.4 mg, 92%) as an amorphous solid: $[\alpha]_D^{25}$ -54 (*c* 0.31, methanol); lit.^{13a} $[\alpha]_D^{25}$ -49 (*c* 0.50, methanol); IR (ZnSe) 3406, 2919, 1236, 1088, 884, 830 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*₆) δ 8.00 (1H, brs), 7.42 (1H, s), 7.37 (1H, d, *J* = 8.8 Hz), 7.36 (2H, d, *J* = 8.8 Hz), 7.29 (1H, d, *J* = 8.8 Hz), 6.98 (2H, d, *J* = 8.8 Hz), 5.47 (1H, s), 4.19 (1H, brs), 4.07 (3H, s), 3.94 (1H, brdd, *J* = 9.3, 2.5 Hz), 3.91 (3H, s), 3.89 (1H, m), 3.84 (3H, s), 3.53 (1H, t, *J* = 9.3 Hz), 1.23 (3H, d, *J* = 6.1 Hz); ¹³C NMR (125 MHz, acetone-*d*₆) δ 159.8, 153.7,

152.3, 146.2, 145.6, 143.7, 143.2, 133.0, 127.0, 124.5, 122.2, 119.4, 119.3, 114.1, 107.5, 103.3, 101.9, 73.6, 72.5, 71.9, 70.5, 61.3, 60.8, 55.5, 18.1; HRMS (FD⁺) calcd for $C_{27}H_{28}O_{10}$ [M]⁺ 512.1683, found 512.1693.

5,5'-Bis(benzyloxy)-2-chloro-3',4"-dimethoxy-[1,1':4',1"-terphenyl]-2'-carbaldehyde (34). To a stirred mixture of 18 (15 mg, 30 μ mol), 33 (9.5 mg, 36 μ mol), and cesium carbonate (20 mg, 61 µmol) in dioxane (0.5 mL) was added PdCl₂(dppf) (1.8 mg, 2.4 μ mol), and the mixture was stirred at 100 °C for 10 h, cooled, and then concentrated. The residue was directly chromatographed on silica gel (*n*-hexane-ethyl acetate = $8:1 \rightarrow 4:1 \rightarrow 0:1$) to give 34 (16.4 mg, 96%) as a foam: IR (ZnSe) 3061, 3031, 2933, 2833, 1685, 1547, 1452, 1243, 1166, 1011, 735 cm $^{-1};~^{1}\mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 10.12$ (1H, s), 7.47–7.22 (8H, m), 7.00 (2H, brd, J = 8.5 Hz), 6.96 (1H, dd, *J* = 8.8, 3.2 Hz), 6.87 (1H, d, *J* = 3.2 Hz), 6.66 (1H, s), 5.10, 5.08 (2H, each d, J = 12.2 Hz), 5.04 (2H, s), 3.88 (3H, s), 3.48 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 189.5, 161.6, 160.3, 158.9, 157.2, 142.6, 139.7, 136.4, 136.0, 131.9, 130.0, 128.6, 128.5, 128.1, 127.8, 127.6, 126.6, 124.8, 124.4, 124.3, 121.8, 116.8, 115.6, 113.4, 111.1, 70.4, 70.3, 62.0, 55.2; HRMS (FD⁺) calcd for C₃₅H₂₉ClO₅ [M]⁺ 564.1704, found 564.1741.

2,8-Bis(benzyloxy)-4-methoxy-3-(4-methoxyphenyl)dibenzo[*b*,*d*]furan (35). As described for the preparation of 30 from 29, treatment of 34 (42.7 mg, 75.6 µmol) with mCPBA (70-75% assay; 37 mg, ca. 0.15 mmol) in dichloromethane (0.66 mL) afforded the corresponding formate (44.1 mg), which was treated with Cu₂O (54.0 mg, 378 μ mol) in pyridine (2.7 mL) at 110 °C for 4 h. The usual workup followed by chromatography on silica gel (benzene-ethyl acetate = 50:0 \rightarrow 20:1) gave 35 (16.5 mg, 42%) as an amorphous solid: IR (ZnSe) 3066, 3031, 2942, 2834, 1601, 1430, 1246, 1182, 1151, 1027, 737 cm⁻¹; ¹H NMR (500 MHz, CDCl₂) δ 7.51–7.24 (14H, m), 7.21 (1H, s), 7.12 (1H, dd, J = 8.8, 2.5 Hz), 6.99 (2H, d, J = 8.6 Hz), 5.17 (2H, s), 5.07 (2H, s), 3.98 (3H, s), 3.88 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 154.9, 152.8, 151.5, 143.9, 143.2, 137.3, 137.0, 132.1, 128.6, 128.4, 128.0, 127.6, 127.5, 126.8, 126.2, 124.9, 124.7, 123.7, 116.0, 113.2, 112.3, 104.9, 99.3, 71.5, 71.0, 60.8, 55.2; HRMS (EI⁺) calcd for C₃₄H₂₈O₅ [M]⁺ 516.1937, found 516.1943.

Kehokorin C (3). According to the method described for the preparation of 2 from 7, compound **35** (14.3 mg, 27.7 μ mol) was hydrogenated over 10% palladium on carbon (4.0 mg) in tetrahydrofuran (1.0 mL) for 23 h and upon purification by preparative TLC (benzene–ethyl acetate = 10:1, three developments) gave **3** (7.6 mg, 81%) as an amorphous solid: IR (ZnSe) 3533, 3370, 2930, 2850, 1173, 1147, 1047, 796 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (1H, d, *J* = 8.8 Hz), 7.36 (2H, brd, *J* = 8.8 Hz), 7.31 (1H, d, *J* = 2.4 Hz), 7.17 (1H, s), 7.07 (2H, brd, *J* = 8.8 Hz), 6.96 (1H, dd, *J* = 8.8, 2.4 Hz), 4.92 (1H, s), 4.76 (1H, brs), 4.01 (3H, s), 3.89 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 159.6, 151.5, 151.2, 149.3, 142.9, 142.5, 131.9, 125.5, 125.1, 124.2, 119.9, 115.5, 114.8, 112.2, 106.2, 99.8, 60.8, 55.3; HRMS (EI⁺) calcd for C₂₀H₁₆O₅ [M]⁺ 336.0998, found 336.1004.

4,6-Bis(benzyloxy)-3-phenyl-2-methoxybenzaldehyde (37). According to the procedure described for the preparation of 16, a mixture of 15 (50.0 mg, 0.117 mmol) and 36 (20.0 mg, 0.164 mmol) in THF-water (12:1, 2.0 mL) was treated with palladium acetate (1.3 mg, 5.7 μ mol) in the presence of potassium phosphate (75 mg, 0.35 mmol) and XPhos (8.5 mg, 18 µmol) at 65 °C for 10 h. The usual workup followed by chromatography on silica gel (benzene-ethyl acetate = $100:1 \rightarrow 50:1$) gave 37 (44.5 mg, 89%) as an amorphous solid: IR (ZnSe) 2931, 2856, 1672, 1579, 1173, 1096, 1009, 733 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.44 (1H, s), 7.46–7.40 (8H, m), 7.37–7.28 (5H, m), 7.19 (2H, brd, J = 8.1 Hz), 6.40 (1H, s), 5.14 (2H, s), 5.04 (2H, s), 3.43 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 188.0, 161.83, 161.75, 161.7, 136.0, 132.5, 130.9, 128.7, 128.55, 128.47, 128.12, 128.06, 127.9, 127.8, 127.2, 127.0, 126.4, 118.7, 113.2, 94.5, 70.8, 70.3, 61.9; HRMS (EI⁺) calcd for C₂₈H₂₄O₄ [M]⁺ 424.1675, found 424.1665.

6-(Benzyloxy)-4-hydroxy-2-methoxy-[1,1'-biphenyl]-3-carbaldehyde (38). According to the procedure described for the preparation of 17, compound 37 (338 mg, 0.796 mmol) was treated with magnesium bromide ethyl etherate (268 mg, 1.04 mmol) in benzene–ether (7:1, 16 mL) at 80 °C for 3 h. The usual workup followed by chromatography on silica gel (*n*-hexane–ethyl acetate = $1:0 \rightarrow 15:1$) gave 38 (235 mg, 88%) as a crystalline solid: mp 120– 121 °C (*n*-hexane–ether); IR (ZnSe) 3024, 2939, 2867, 1603, 1362, 1265, 1172, 1052, 1004, 943, 811, 734 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 12.28 (1H, s), 10.11 (1H, s), 7.44–7.26 (8H, m), 7.21 (2H, brd, *J* = 8.1 Hz), 6.33 (1H, s), 5.10 (2H, s), 3.40 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 193.2, 164.6, 164.3, 162.0, 135.8, 132.4, 131.0, 128.5, 128.0, 127.9, 127.3, 126.5, 116.4, 109.2, 96.5, 70.3, 62.3; HRMS (EI⁺) calcd for C₂₁H₁₈O₄ [M]⁺ 334.1205, found 334.1195.

6-(Benzyloxy)-3-formyl-2-methoxy-[1,1'-biphenyl]-4-yl Trifluoromethanesulfonate (39). According to the procedure described for the preparation of 18, compound 38 (181 mg, 0.541 mmol) was treated with N-phenylbis(trifluoromethanesulfonimide) (213 mg, 0.596 mmol) and potassium carbonate (82 mg, 0.60 mmol) at -20 °C for 3.5 h. The usual workup followed by chromatography on silica gel (dichloromethane–ether = $1:0 \rightarrow 15:1$) gave 39 (253 mg, quant.) as a crystalline solid: mp 146-148 °C (n-hexane-ethyl acetate); IR (ZnSe) 3061, 2947, 2897, 1692, 1595, 1427, 1200, 1117, 1036, 987, 843, 733 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.29 (1H, s), 7.50–7.43 (5H, m), 7.36–7.29 (3H, m), 7.23 (2H, brd, J = 7.8 Hz), 6.70 (1H, s), 5.12 (2H, s), 3.44 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 186.5, 162.9, 161.4, 148.0, 135.0, 131.0, 130.3, 128.7, 128.4, 128.3, 128.2, 128.1, 126.5, 125.5, 118.6 (q, $J_{CF} = 320.5$ Hz), 116.4, 103.5, 71.0, 62.7; HRMS (EI⁺) calcd for $C_{22}H_{17}F_3O_6S$ [M]⁺ 466.0698, found 466.0689.

5,5'-Bis(benzyloxy)-2-chloro-3'-methoxy-[1,1':4',1"-terphenyl]-2'-carbaldehyde (41). According to the procedure described for the preparation of 34, a mixture of 39 (50.0 mg, 0.107 mmol) and 33 (37.0 mg, 0.139 mmol) in dioxane (1.6 mL) was treated with $PdCl_2(dppf)$ (6.3 mg, 8.6 μ mol) in the presence of cesium carbonate (70 mg, 0.21 mmol) at 95 °C for 4 h. The usual workup followed by chromatography on silica gel (n-hexane-ethyl acetate = $100:0 \rightarrow 20:1 \rightarrow 10:1$) gave 41 (50.7 mg, 88%) as a crystalline solid: mp 134-135 °C (n-hexane-ethyl acetate); IR (ZnSe) 3031, 2939, 1684, 1546, 1371, 1266, 1145, 1013, 733 cm⁻¹; H NMR (500 MHz, $CDCl_{2}$) δ 10.13 (1H, s), 7.52 (2H, brd, I = 8.6 Hz), 7.48–7.34 (9H, m), 7.32-7.25 (3H, m), 7.20 (2H, brd, I = 8.3 Hz), 6.97 (1H, dd, I =8.8, 3.2 Hz), 6.89 (1H, d, J = 3.2 Hz), 6.67 (1H, s), 5.11, 5.08 (2H, each d, J = 12.5 Hz), 5.05 (2H, s), 3.49 (3H, s); ¹³C NMR (125 MHz, CDCl₃) *δ* 189.4, 161.5, 160.1, 157.3, 143.0, 139.7, 136.4, 136.0, 132.3, 130.7, 130.0, 128.6, 128.5, 128.1, 127.9, 127.8, 127.56, 127.52, 126.5, 125.2, 124.4, 121.7, 116.8, 115.6, 111.1, 70.3, 62.2; HRMS (FD⁺) calcd for C₃₄H₂₇ClO₄ [M]⁺ 534.1598, found 534.1566.

2,8-Bis(benzyloxy)-4-methoxy-3-phenyldibenzo[b,d]furan (43). According to the procedure described for the preparation of 30, treatment of 41 (36.7 mg, 68.6 μ mol) with mCPBA (70-75% assay; 84 mg, ca. 0.34 mmol) in the presence of NaHCO₃ (29 mg, 0.34 mmol) in dichloromethane (2.7 mL) afforded the corresponding formate (31.9 mg), which was treated with Cu₂O (40.5 mg, 283 μ mol) in pyridine (1.7 mL) at 110 °C for 4 h. The usual workup followed by chromatography on silica gel (benzene-ethyl acetate = 100:1) gave 43 (14.2 mg, 50%) as an amorphous solid: IR (ZnSe) 2926, 2851, 1602, 1478, 1448, 1424, 1264, 1182, 1150, 1016, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.52-7.37 (12H, m), 7.32-7.21 (6H, m), 7.13 (1H, dd, J = 8.9, 2.5 Hz), 5.18 (2H, s), 5.07 (2H, s), 3.99 (3H, s); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta$ 154.9, 152.7, 151.5, 143.8, 143.1, 137.2, 137.0, 134.1, 131.0, 128.6, 128.3, 128.0, 127.7, 127.6, 127.5, 127.1, 126.7, 125.0, 124.9, 124.0, 116.1, 112.4, 104.9, 99.2, 71.5, 71.0, 60.8; HRMS (EI⁺) calcd for $C_{33}H_{26}O_4$ [M]⁺ 486.1831, found 486.1852.

Kehokorin D (4). According to the method described for the preparation of **2**, compound **43** (10.1 mg, 20.8 μ mol) was hydrogenated over 10% palladium on carbon (2.8 mg) in tetrahydrofuran (0.6 mL) for 19 h, and purification by preparative TLC (*n*-hexane–ethyl acetate = 1:1, two developments) gave **4** (5.0 mg, 79%) as an amorphous solid: IR (ZnSe) 3386, 2942, 1609, 1479, 1426, 1180, 1146, 1051, 799, 701 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.55 (2H, brt, *J* = 7.8 Hz), 7.47–7.41 (4H, m), 7.31 (1H, d, *J* = 2.7

Hz), 7.18 (1H, s), 6.96 (1H, dd, J = 8.8, 2.7 Hz), 4.91 (1H, s), 4.88 (1H, s), 4.02 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 151.5, 151.3, 149.1, 142.8, 142.4, 132.5, 130.7, 129.3, 128.4, 125.8, 125.0, 120.2, 115.6, 112.2, 106.2, 100.1, 60.8; HRMS (EI⁺) calcd for C₁₉H₁₄O₄ [M]⁺ 306.0892, found 306.0880.

5'-Benzyloxy-2-chloro-5,3'-dimethoxy-[1,1':4',1"-terphenyl]-2'-carbaldehyde (42). According to the procedure described for the preparation of 34, a mixture of 39 (50.0 mg, 0.107 mmol) and 40 (26.0 mg, 0.139 mmol) in dioxane (1.6 mL) was treated with $PdCl_2(dppf)$ (6.3 mg, 8.6 μ mol) in the presence of cesium carbonate (70 mg, 0.21 mmol) at 95 °C for 10 h. The usual workup followed by chromatography on silica gel (*n*-hexane-ethyl acetate = $15:1 \rightarrow 8:1$) gave 42 (36.5 mg, 74%) as a crystalline solid: mp 136-138 °C (nhexane-ether); IR (ZnSe) 3029, 2935, 1684, 1542, 1366, 1137, 1020, 733 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.12 (1H, s), 7.52 (2H, brd, J = 8.0 Hz), 7.47 (2H, brt, J = 7.9 Hz), 7.40 (1H, m), 7.36 (1H, d, I = 8.8 Hz, 7.32–7.25 (3H, m), 7.20 (2H, brd, I = 8.0 Hz), 6.89 (1H, dd, J = 8.8, 2.9 Hz), 6.79 (1H, d, J = 2.9 Hz), 6.69 (1H, s), 5.13, 5.09 $(2H, each d, I = 12.0 Hz), 3.81 (3H, s), 3.49 (3H, s); {}^{13}C NMR (125)$ MHz, CDCl₃) δ 189.4, 161.4, 160.1, 158.0, 143.1, 139.6, 136.0, 132.3, 130.7, 129.9, 128.4, 128.0, 127.8, 127.5, 126.5, 125.2, 124.1, 121.7, 115.9, 114.7, 111.1, 70.3, 62.2, 55.5; HRMS (FD⁺) calcd for C₂₈H₂₃ClO₄ [M]⁺ 458.1285, found 458.1289.

2-Benzyloxy-4,8-dimethoxy-3-phenyldibenzo[b,d]furan (44). According to the procedure described for the preparation of 30, treatment of 42 (33.9 mg, 73.9 µmol) with mCPBA (70-75% assay; 90 mg, ca. 0.37 mmol) in the presence of NaHCO₃ (31.0 mg, 369 μ mol) in dichloromethane (2.7 mL) afforded the corresponding formate (38.2 mg), which was treated with Cu₂O (53.0 mg, 369 μ mol) in pyridine (2.0 mL) at 110 °C for 5 h. The usual workup followed by chromatography on silica gel (n-hexane-ethyl acetate-dichloromethane = 20:2:1) gave 44 (16.8 mg, 55%) as an amorphous solid: IR (ZnSe) 2934, 2831, 1602, 1480, 1422, 1265, 1183, 1149, 1064, 1027, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.45 (5H, m), 7.40-7.37 (1H, m), 7.37 (1H, d, I = 2.7 Hz), 7.32-7.22 (6H, m), 7.06(1H, dd, *J* = 9.1, 2.7 Hz), 5.08 (2H, s), 4.00 (3H, s), 3.93 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 152.7, 151.3, 143.8, 143.1, 137.2, 134.1, 130.9, 128.3, 127.7, 127.5, 127.0, 126.7, 125.0, 124.9, 123.9, 115.3, 112.3, 103.3, 99.2, 71.5, 60.8, 56.0; HRMS (EI+) calcd for $C_{27}H_{22}O_4$ [M]⁺ 410.1518, found 410.1512.

Kehokorin E (5). According to the method described for the preparation of **2**, compound **44** (11.6 mg, 28.3 μ mol) was hydrogenated over 10% palladium on carbon (3.0 mg) in tetrahydrofuran (0.7 mL) for 16 h, and purification by chromatography on silica gel (*n*-hexane–ethyl acetate = 5:1) gave **5** (7.6 mg, 84%) as an amorphous solid: IR (ZnSe) 3419, 2936, 2831, 1586, 1481, 1422, 1267, 1188, 1146, 1026, 760 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.55 (2H, brt, *J* = 7.5 Hz), 7.47–7.44 (4H, m), 7.35 (1H, d, *J* = 2.7 Hz), 7.21 (1H, s), 7.05 (1H, dd, *J* = 9.0, 2.7 Hz), 4.90 (1H, brs), 4.03 (3H, s), 3.92 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 151.4, 149.1, 142.7, 142.3, 132.5, 130.7 129.3, 128.4, 126.1, 124.7, 120.0, 115.5, 112.2, 103.6, 99.9, 60.8, 56.0; HRMS (EI⁺) calcd for C₂₀H₁₆O₄ [M]⁺ 320.1049, found 320.1045.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b00147.

NMR spectra of 1-5, 7, 14-18, 20, 21, 24-26, 28-30, 32, 34, 35, 37-39, and 41-44 and 2D NMR spectra of 14 (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: shunyat@riken.jp

ORCID [©]

Shunya Takahashi: 0000-0001-9148-9814

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Number 15K07421.

REFERENCES

(1) For recent reviews, see the following: (a) Liu, J.-K. Chem. Rev. **2006**, 106, 2209–2223. (b) Zhou, Z.-Y.; Liu, J.-K. Nat. Prod. Rep. **2010**, 27, 1531–1570 and references cited therein.

(2) Stahlschmidt, C. Liebigs Ann. Chem. 1877, 187, 177-197.

(3) Kamigauchi, T.; Sakazaki, R.; Nagashima, K.; Kawamura, Y.; Yasuda, Y.; Matsushima, K.; Tani, H.; Takahashi, Y.; Ishii, K.; Suzuki, R.; Koizumi, K.; Nakai, H.; Ikenishi, Y.; Terui, Y. *J. Antibiot.* **1998**, *51*, 445–450.

(4) Lee, I. K.; Yun, B. S.; Kim, J. P.; Ryoo, I. J.; Kim, Y. H.; Yoo, I. D. Biosci., Biotechnol., Biochem. **2003**, 67, 1813–1816.

(5) (a) Norikura, T.; Fujiwara, K.; Narita, T.; Yamaguchi, S.; Morinaga, Y.; Iwai, K.; Matsue, H. J. Agric. Food Chem. **2011**, 59, 6974–6979. (b) Norikura, T.; Fujiwara, K.; Yanai, T.; Sano, Y.; Sato, T.; Tsunoda, T.; Kushibe, K.; Todate, A.; Morinaga, Y.; Iwai, K.; Matsue, H. J. Agric. Food Chem. **2013**, 61, 1258–1264.

(6) Onose, J.; Xie, C.; Ye, Y. Q.; Sugaya, K.; Takahashi, S.; Koshino, H.; Yasunaga, K.; Abe, N.; Yoshikawa, K. *Biol. Pharm. Bull.* **2008**, *31*, 831–833.

(7) Takahashi, A.; Kudo, R.; Kusano, G.; Nozoe, S. Chem. Pharm. Bull. **1992**, 40, 3194–3196.

(8) Ye, Y.-Q.; Koshino, H.; Onose, J.; Negishi, C.; Yoshikawa, K.; Abe, N.; Takahashi, S. J. Org. Chem. **2009**, *74*, 4642–4645.

(9) Lin, D. W.; Masuda, T.; Biskup, M. B.; Nelson, J. D.; Baran, P. S. J. Org. Chem. **2011**, 76, 1013–1030.

(10) Usui, I.; Lin, D. W.; Masuda, T.; Baran, P. S. Org. Lett. 2013, 15, 2080–2083.

(11) Nakazaki, A.; Huang, W.-Y.; Koga, K.; Yingyongnarongkul, B-e.; Boonsombat, J.; Sawayama, Y.; Tsujimoto, T.; Nishikawa, T. *Biosci., Biotechnol., Biochem.* **2013**, *77*, 1529–1532.

(12) Fujiwara, K.; Kushibe, K.; Sato, T.; Norikura, T.; Matsue, H.; Iwai, K.; Katoono, R.; Suzuki, T. *Eur. J. Org. Chem.* **2015**, 2015, 5798– 5809.

(13) (a) Kaniwa, K.; Ohtsuki, T.; Yamamoto, Y.; Ishibashi, M. *Tetrahedron Lett.* **2006**, *47*, 1505–1508. (b) Watanabe, K.; Ohtsuki, T.; Yamamoto, Y.; Ishibashi, M. *Heterocycles* **2007**, *71*, 1807–1814.

(14) The synthesis of a glucosylated *p*-terphenyl without a dibenzofuran moiety was reported: Yamazoe, A.; Hayashi, K.; Kuboki, A.; Ohira, S.; Nozaki, H. *Tetrahedron Lett.* **2004**, *45*, 8359–8362.

(15) (a) Ye, Y.-Q.; Koshino, H.; Onose, J.; Yoshikawa, K.; Abe, N.; Takahashi, S. Org. Lett. **2007**, *9*, 4131–4134. (b) Ye, Y.-Q.; Koshino, H.; Onose, J.; Yoshikawa, K.; Abe, N.; Takahashi, S. Org. Lett. **2009**, *11*, 5074–5077.

(16) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.

(17) Anderson, J. C.; Headley, C.; Stapleton, P. D.; Taylor, P. W. *Tetrahedron* **2005**, *61*, 7703–7711.

(18) See the Supporting Information.

(19) Baldwin, J. E.; Haraldsson, G. G. Acta Chem. Scand. 1986, 40b, 400-401.

(20) Mattson, R. J.; Sloan, C. P.; Lockhart, C. C.; Catt, J. D.; Gao, Q.; Huang, S. J. Org. Chem. 1999, 64, 8004–8007.

(21) Chittimalla, S. K.; Bandi, C. Tetrahedron Lett. 2016, 57, 15-19.

(22) Maddox, S. M.; Nalbandian, C. J.; Smith, D. E.; Gustafson, J. L. Org. Lett. **2015**, *17*, 1042–1045.

(23) Maddox, S. M.; Dinh, A. N.; Armenta, F.; Um, J.; Gustafson, J. L. Org. Lett. **2016**, *18*, 5476–5479.

(24) Prior to this experiment, preparation of the corresponding boronic acid 9 (R = H, P = MOM, Me) was attempted. However, we found that the MOM group was unstable under the OH-free conditions and that the boronic acid gradually decomposed.

(25) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. **1995**, 60, 7508–7510.

(26) Wipf, P.; Jung, J. - K. J. Org. Chem. 2000, 65, 6319-6337.

(27) Jain, S. M.; Dhar, K. L.; Atal, C. K. Indian J. Chem. B 1985, 24B, 454-5.

(28) Jain, S. M.; Anand, K. K.; Chandan, B. K.; Atal, C. K. Indian J. Pharm. Sci. 1987, 49, 13–16.

(29) Zhang, X.; Urbanski, M.; Patel, M.; Zeck, R. E.; Cox, G. G.; Bian, H.; Conway, B. R.; Beavers, M. P.; Rybczynski, P. J.; Demarest, K. T. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 5202–5206.

(30) Chen, C.-Y.; Sun, J.-G.; Liu, F.-Y.; Fung, K.-P.; Wu, P.; Huang, Z.-Z. Tetrahedron 2012, 68, 2598–2606.

(31) Morelli, L.; Bernardi, A.; Sattin, S. Carbohydr. Res. 2014, 390, 33-41.

(32) Sattin, S.; Panza, M.; Vasile, F.; Berni, F.; Goti, G.; Tao, J.; Moroni, E.; Agard, D.; Colombo, G.; Bernardi, A. *Eur. J. Org. Chem.* **2016**, 2016, 3349–3364.

(33) Zhang, M.; Du, Y.; Kong, F. Carbohydr. Res. 2001, 330, 319–324.

(34) The corresponding β -anomer was not detected by the ¹H NMR analysis of the coupling product.

(35) The configuration of a newly created anomeric center was confirmed as α by the one-bond ${}^{13}\text{C}{-}^{1}\text{H}$ coupling constant (${}^{1}J_{\text{C-H}} = 172 \text{ Hz}$)³⁶ between C"-1 and H"-1.

(36) Bock, K.; Lundt, I.; Pedersen, C. Tetrahedron Lett. 1973, 14, 1037-1040.