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The KOH-catalyzed isomerization of D-[lJ3C]mannose under anaerobic 
conditions was studied by r3C-n.m.r. spectroscopy, D-[l-13C]Glucose and 
D-[lJ3C]fructose are generated during the reaction, as expected. In addition, how- 
ever, [6J3C]glucose, [6J3C]mannose, and [6-13C]fructose are produced in small 
proportions, possibly via symmetrical 3,4-enediol intermediates. The involvement 
of the latter structures in 13C-label shifting is inferred from the observation of 
[1-13C]sorbose and [6-r3C]sorbose in the reaction mixture. 

INTRODUCl’ION 

It is well recognized1 that aldoses undergo four reactions in the presence of 
aqueous base: (I) anomerization; (2) aldose-ketose isomerization, known as the 
Lobry de Bruyn-Alberda van Ekenstein reaction*; (3) reverse aldol reaction and 
&elimination, to produce o-ulcarbonyl derivatives; and (4) benzylic acid-type rear- 
rangements thereof, to give lactic and saccharinic acids. The extent to which these 
reactions occur depends on the solution pH, with reactions 1 and 2 occurring in 
mild base, and reactions 3 and 4 under more strongly alkaline conditions. Oxygen 
also affects the nature and distribution of degradation products18~3. 

The isomerization of aldoses (reaction 2), catalyzed by OH-, pyridine4, or 
enzymeP , is known to involve 1,Zenediol intermediates (see Scheme l)*. In 
enzyme-catalyzed isomerization [e.g., with phosphoglucoisomerase (EC X3.1.9)], 
Rose and co-workers5 showed from isotope studies that this intermediate has the 
cis configuration. In contrast, the configuration of the 1,2-enediol in base-catalyzed 
isomerization remains unknown, but it may depend on the type of cations present 
(i.e., monovalent vs. divalent). 

*Under alkaline conditions, the enediol intermediate may exist mainly in ionized form as an enediolate. 
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Scheme 1 

We have been examining KOH-catalyzed isomerization as a simple and 
inexpensive means by which to convert rr-[1-r3C]mannose into D-[1-r3C]fructose and 
D-[lJ3C]glucose. The manlzo compound is generated in preference to its more use- 
ful C-2 epimer during the chemical synthesis of labeled glucose”; previous attempts 
at epimerization with molybdic acid were unsuccessful, generating an equilibrium 
mixture of D-[1-r3C]mannose and ~-[2-~~C]glucose ‘. The present report describes 
the fate of r3C label during base-isomerization, which implicates 3,4-enediols in the 
reaction. 

EXPERIMENTAL 

Materials and methods. - D-[l-r3C]Mannose (99 atom-% 13C) was prepared 
from D-arabinose and KlsCN, as described previously6v8. Base-isomerization reac- 
tions were performed as follows. Crystalline D-[1-r3C]mannose (10.1 g, 56 mmol) 

was dissolved in 560 mL of distilled water in a 1-L flask, the pH was adjusted to 
11.5 with 2~ KOH, and the solution was degassed with nitrogen for 30 min. The 
reaction vessel was immersed in a water-bath at 25”, and was fitted with a mineral- 
oil gas-bubbler for continuous N, aeration during the course of the reaction. At 
24-h intervals, 3-mL samples were removed, made neutral with Dowex-50 X-8 (H+) 
ion-exchange resin (20-50 mesh), and stored at 4” for subsequent analysis by 
13C-n.m.r. spectroscopy. Larger (250 mL) sample-volumes were also removed after 
3 and 7 days, made neutral, concentrated at 30” in vucuo, and chromatographed on 
a column (15 X 100 cm)’ of Dowex-50 X-8 (Ca2+) ion-exchange resin (200400 
mesh). Fractions were assayed for reducing sugar with phenol-sulfuric acid’“; 
labeled glucose was eluted first; mannose, second; and fructose, third. Fractions 
were pooled, and evaporated to syrups at 30” in vucuo. These labeled products 
crystallized from methanol, and were analyzed by r3C-n.m.r. spectroscopy. 

Reactions on a smaller scale (10 mmol of D-[1-r3C]mannose) were performed 
at pH 11.0, 11.5, and 12.0 under anaerobic conditions at 25”, in order to determine 
a pH at which aldose-ketose isomerization occurred at an appreciable rate with 
minimal generation of degradation products. From these experiments, pH 11.5 was 
found to be ideal. 

Instrumentation. - lH-Decoupled, r3C-n.m.r. spectra were recorded at 
75 MHz with a Nicolet NT-300 Ft-n.m.r. spectrometer, using lo-mm sample-tubes 
and a deuterium (2H20) lock. Fully relaxed spectra were collected at -25”, and 
f.i.d.s. were processed with and without resolution enhancement, to facilitate 
identification of sites of [IV]-enrichment. 
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RESULTS AND DISCUSSION 

General aspects of D-[l-13C]mannose base isomerization. - The reaction of 
o-[l-13C]mannose (0.1~) in distilled water at pH 11.5 and 25” under anaerobic 
conditions can be monitored readily by 13C-n.m.r. spectroscopy. During the 
reaction, the C-l signals of D-[l-13C]mannose (a-pyranose, 95.5 p.p.m.; p- 
pyranose, 95.2 p.p.m.) are converted into two new anomeric-carbon signals, at 
93.6 and 97.4 p.p.m. ( a- and P_o-[1-W]glucopyranoses, respectively) and to a 
group of signals (-65 p.p.m.) characteristic of hydroxymethyl carbon atoms of 
sugars (see Fig. 1)“. The C-l resonances of D-[l-13C]fructose contribute to the 
latter group, and are found at 65.4,64.4, and 64.2 p.p.m. (/3-pyranose, cr-furanose, 
and @uranose, respectively); the remaining resonances arise from various by- 
products (see later). From spectral integration (see Fig. lB, lC), the following 
product ratios in the reaction mixture (Man : Glc : Fru : by-products) were 
determined: 10.8:3.2:4.2:1.0 (3 d) and 3.0:2.4:2.3:1.0 (7 d). After 7 days, the 

reaction has not reached chemical equilibrium; using pyranose conformational 
interaction-energies12 and equilibrium constants from reactions with D-xylose (D- 
glucose) isomerase (EC 5.3.1.5)13, AGO values of -1.97 kJ.mol-’ and -0 

C 

Fig. 1. (A) ‘H-Decoupled 13C-n.m.r. spectrum (75 MHz) of o-[1-13C]mannose, showing only the 
enriched carbon atoms: a-pyranose, 95.5 p.p.m.; f3-pyranose, 95.2 p.p.m. (B and C) i3C-Spectra of an 
isomerization reaction-mixture (pH 11.5,25”, anaerobic) after 3 and 7 days, respectively, showing the 
production of o-[l-13C]gIucose (97.4 and 93.6 p.p.m.) and o-[1-i3C]fructose (65.4 and 64.2 p.p.m.). 
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Fig. 2. Rate profile for D-[1-Wlmannose isomerization (pH 11.5, 25”, anaerobic), showing loss of 
D-[1-“C]mannose (a), and formation of D-[l%$lucose (x) and D-[l-‘3C]fIUdOSe (0). The percent 
reaction refers only to mannose, glucose, and fructose components (i.e., percentages of by-products are 
not considered here). 

J.mol-1 are estimated for mannose-glucose and fructose-glucose equilibria, from 
which the equilibrium condition of Man:Glc:Fru = 0.44: 1.0: 1.0 can be calculated. 
Interestingly, however, the glucos+fructose reaction is close to equilibrium after 

7 days. 

The rates at which D-[1-‘3c]gl ucose and D-[1-13C]fructose are generated from 
D-[1-Wlmannose at pH 11.5 (25”, anaerobic) are illustrated in Fig. 2. From these 
data, it appears that mild-base isomerization might be a useful means by which to 
effect conversion of D-[1-13C]mannose into D-[1-13C]glucose and D-[l-13C]fructose. 

13C-N,m.r. analysis of ~-[l-~~c]gZucose and D-[l-13Clfructose generated from 
D-[I-i3C]mannose isomerization. - The 13C-n.m.r. spectrum (unenriched region) 
of authentic D-[l-13C]glucose (with carbon assignments) is shown in Fig. 3A. 
13C-13C Couplings to C-l are as follows: a-pyranose, l.IcI,cz 46.2, 2Jc1,c3 0.0, 2Jc,,c5 
1.8, and 3.1c,,c6 3.3 Hz; Ppyranose, 1Jc1,c2 46.0, 23c1,c3 4.5, 25c1,c5 0.0, and 3Jcl,,-6 
4.1 Hz. Comparison of this spectrum with those obtained for D-[1-13C]glucose 
isolated from an isomerization reaction-mixture (pH 11.5, 25”) shows a significant 
change only in the C-6 signals. After 3 days (see Fig. 3B), the normal doublets for 
C-6 of both pyranoses have been converted into broad singlets; resolution- 
enhancement (see inset) shows each C-6 signal to be a triplet. In addition, the 
intensities (and areas) of these signals have increased relative to the remaining, 
unenriched signals. After 7 days (see Fig. 3C), the C-6 signals appear as singlets, 
and are stronger than those in the 3-day spectrum. This result suggests that a small 
proportion (2-3%) of [6-13C]gl ucose had been generated during the reaction. The 
C-2 &pyranose signal in the 7-day spectrum supports this conclusion by revealing 
a more-intense, center signal caused by C-6-labeled glucose in which the C-2 signal 
is no longer split by an enriched C-l nucleus. 

13C-N.m.r. analysis of the D-[l-13C]fructose generated by D-[l-‘3C]InannOSe 
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Fig. 3. (A) ‘H-Decoupled Wn.m.r. spectrum of D-[l-W]gl ucose, showing only the natural-abundance 
carbon atoms, with assignments. (B and C) W-Spectra of ~-[l-~~C]glucose isolated after 3 and 7 days 
of reaction, respectively. Only C-6 appears to contain [13C]-enrichment, which increases as the reaction 
proceeds. The out-of-phase signals are due to “fold-over” of the intense, enriched signals caused by 
quadrature detection. Spectra A-C are resolution-enhanced. 

isomerization also reveals the presence of selective C-6-enrichment (see 
Fig. 4AaC). The C-6 signals are close to those of the intense C-l signals, but can 
nevertheless be observed to increase in intensity (and area), relative to the enriched 
signals, as the reaction proceeds. Likewise, selective C-6-enrichment is observed in 
D-[lJ3C]mannose recovered after 3 and 7 days of reaction (see Fig. SA-SC). 

Mechanistic interpretation of the observed label shifting. - The KOH- 
catalyzed isomerization of D-[l-13C]mannose at pH 11.5 (anaerobic) results mainly 
in the production of D-[1-13C]glucose and D-[l-13C]fructose. A fraction of the 13C 
label, however, is shifted, generating a small proportion of [6J3C]glucose and [6- 
13C]fructose. [6J3C]Mannose also appears in the course of increasing reaction- 
times. From inspection of 13C-n.m.r. spectra, no other carbon sites appear to 
contain [13C]-enrichment. 

Selective [13C]-enrichment of C-6 is inconsistent with a fragmentation- 
racemization-recombination route. If D-[l-13C]fructose is cleaved by dealdoliza- 
tion, to yield [lJ3C]dihydroxy-2-propanone and D-glyceraldehyde, it is expected 
that, with time, some [WI-enrichment would appear at C-3, C-4, and C-6 of 
D-[1-‘qructose, as well as in the mannose and glucose derived from it. 
[1X]-Enrichment at C-3 would be most expected early in the reaction, because of 
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Fig. 4. (A) The r3C-n.m.r. spectrum of D-[1-*F]fructose (enriched carbon atoms), showing the presence 
of three major forms (see text). (B and C) r3C-Spectra of D-[l-‘3C]fDtCtOSe isolated after 3 (B) and 7 (C) 
days of reaction, which show increasing signal intensities at 64.9 (C-S, fl-pyranose) and 64.0 (C-6, p 
furanose) p,p.m. 

76 76 74 72 70 66 66 64 62 

Fig. 5. (A) The t3C-n.m.r. spectrum (resolution-enhanced) of D-[1-t3C]mannose (natural-abundance 
carbons), showing resonance assignments. Out-of-phase signals are an artifact (see Fig. 3). (B and C) 
Resolution-enhanced ‘H-decoupled, t3C-n.m.r. spectra of D[1-13C]mannose isolated after 3 (B) and 7 
(C) days of reaction. Only natural-abundance carbon atoms are shown. The loss in resolution of the C-6 
signal (C-6 of both pyranoses are coincident) indicates t3C enrichment at this site. The resonances at 
65.0 and 63.3 p.p.m. are due to contaminating [lJ3C]- and [dt3C]sorbose (see text). 
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the achiral structure of 1,3-dihydroxy-Z-propanone. In the absence of fragmenta- 
tion, the labeling pattern observed points to the generation of a symmetrical inter- 
mediate during the reaction. 

A hint at what may be occurring is found in the 13C-n.m.r. spectra of 
D-[lJ3C]mannose isolated after 3 and 7 days of reaction (see Fig. 5). The two sig- 
nals at 65.0 and 63.3 p.p.m. are due to a [13C]-enriched impurity that co-chromatog- 
raphs and co-crystallizes with D-mannose. These signals correspond exactly with 
the C-l (65.0 p.p.m.) and C-6 (63.3 p.p.m,) signals of authentic cw-sorbopyranose, 
the preponderant (95%) form of sorbose in aqueous solution14. It may be noted 
that both carbon atoms appear to be [13C]-enriched to a similar extent. Sowden and 
Thompsonls reported the production of D-[14C]sorbose during isomerixation of 
D-[lJ4C]glucose at 50-60” by a strong-base resin. They found l4c label mainly at 
C-l and C-6 of D- and L-sorbose, respectively, and very little 14C at internal carbon 
atoms. They explained this result by postulating the involvement, in the reaction, 
of 3-keto intermediates that undergo enolization to generate symmetrical 3,4- 
enediol structures 1. The symmetry of these structures explains the C-l-C-6 
labeling pattern of sorbose and the aforenoted configurational dependence of this 
labeling. 
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Although we have not established the enantiomeric form of the 13C-labeled 
sorboses, our 13C-n.m.r.-spectral results are consistent with the results of Sowden 
and Thompsonr5, and lend further support to the importance of the enolization- 
ketonization mechanism of rearrangement, even under mildly basic conditions. 
This mechanism predicts that the G6-labeled compounds generated during the 
course of the reaction will have the L configuration, but this matter has not yet been 
examined. 

CONCLUSIONS 

This study has shown that, under mildly basic conditions, D-[l-*3C]mannose 
equilibrates with D-[1-Wlfructose and o-[1-lsC]glucose, but that some selective 
[WI-enrichment of C-6 of these hexoses also occurs as the reaction proceeds. The 
latter observation implicates symmetrical 3,4-enediols in the reaction, a conclusion 
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supported experimentally by the presence of [ l-13C]- and [6J3C]sorbose in the reac- 
tion mixture. 

Because this minor pathway causes label shifting, the Lobry de Bruyn- 
Alberda van Ekenstein reaction cannot be used to convert D-[1-i3C]mannose into 
its more useful C-Zepimer having isotopic integrity. 
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