

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 343 (2008) 1730–1742

Synthesis of rhamnogalacturonan I fragments by a modular design principle[☆]

Navid Nemati,^{a,†} Gnuni Karapetyan,^a Birte Nolting,^{a,‡} Hans-Ulrich Endress^b and Christian Vogel^{a,*}

^aUniversity of Rostock, Institute of Chemistry, Albert-Einstein-Strasse 3a, D-18059 Rostock, Germany ^bHerbstreith & Fox, Pectin-Factory Neuenbuerg, Turnstrasse 37, D-75305 Neuenbuerg, Germany

Received 5 February 2008; received in revised form 3 March 2008; accepted 12 March 2008 Available online 18 March 2008

Abstract—The improved syntheses of methyl 2-*O*-acetyl-3-*O*-benzyl- α -L-rhamnopyranoside (12) and 1,2-di-*O*-acetyl-3-*O*-benzyl- α -L-rhamnopyranose (15), which were used as glycosyl acceptor and donor, respectively, are described. Glycosylation of the O-4 position of both rhamnose derivatives with 2,3,4,6-tetra-*O*-benzoyl- α -D-galactopyranosyl bromide (26) provided disaccharides 27 and 29. After partial deprotection of 27 and coupling of the resulting 28 with disaccharide 19, tetrasaccharide 31 was obtained. Furthermore, transforming of 29 into the corresponding bromide 30 and coupling with galacturonates 16 and 32 provided trisaccharides 33 and 34, respectively, which could be regarded as building blocks of ramified rhamnogalacturonan fragments. The preparation of tetra-(21) and hexasaccharide (25) of rhamnogalacturonan I is reported to demonstrate the feasibility of the synthesis of larger pectin fragments using the modular design principle with this type of building blocks. © 2008 Elsevier Ltd. All rights reserved.

Keywords: D-Galacturonic acid; L-Rhamnose; D-Galactose; Oligosaccharides; Pectin fragments; Glycosylation; Building blocks

1. Introduction

Recent studies have shown that many plants used in traditional medicine to treat various types of diseases contain polysaccharides exhibiting biological activity of different kinds. Pectins are an example for complex polysaccharides possessing such an activity.^{1,2} Pectin structures consist of a homogalacturonan backbone interrupted by ramified rhamnogalacturonan regions.^{3,4} The latter, the so-called hairy region, contains α -(1 \rightarrow 2)-linked L-rhamnose units carrying neutral carbohydrate side chains, typically composed of D-galactose and D-

arabinose.⁵ The enzymes responsible for the glycosylation of rhamnose residues with the first galactose or arabinose molecule have not been identified at this point.^{§,6,7} Therefore, classical synthetic carbohydrate chemistry must be used to obtain these structures.⁸ Pursuing our programme directed towards the chemical synthesis of well-defined pectin fragments for structure– activity relationship investigations,^{9,10} we report herein the preparation of a rhamnogalacturonan I (RG-I) tetraand hexasaccharide by means of a modular design principle. Furthermore, the synthesis of building blocks for D-galactose-ramified RG-I fragments is described.

2. Results and discussion

The backbone of the RG-I polymer is composed of repeating units of the disaccharide $\rightarrow 2$)- α -L-Rhap- $(1\rightarrow 4)$ - α -D-GalpA- $(1\rightarrow$. In these oligomers, the first

^{*} Part XV of the series 'Galacturonic Acid Derivatives', for part XIV see Ref. 10.

^{*} Corresponding author. Tel.: +49 381 498 6430; fax: +49 381 498 6412; e-mail: christian.vogel@uni-rostock.de

[†]Present address: Leibniz Institute for Catalysis at University Rostock, Branch Berlin: Richard-Willstaetter-Strasse 12, D-12489 Berlin, Germany.

[‡]Present address: Wyeth Vaccine, 401 N. Middletown Rd., Pearl River, NY 10965, USA.

^{0008-6215/\$ -} see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2008.03.020

[§]Information from Henrik V. Scheller.

D-galactopyranose residue is β -glycosidically linked to the O-4 position of a rhamnose moiety. Our strategy adopted for the synthesis of larger RG-I oligomers, as well as building blocks for D-galactose-ramified RG-I fragments, involved in the preparation of L-rhamnose intermediates that allowed stereoselective formation of the required α -glycosidic bond to D-galacturonates, the regioselective deblocking of a protected O-4 position, the preparation of RG-I-modules and finally the coupling of these modules by a modular design principle.

For the synthesis of suitable L-rhamnose derivatives, we evaluated two routes as shown in Scheme 1. Methyl α -L-rhamnopyranoside (1)¹¹ was isopropylidenated (2),¹² allylated (3),¹³ and then hydrolyzed¹³ to give

Scheme 1. Alternative pathways for the preparation of L-rhamnose derivatives 12 and 15 used as glycosyl acceptors for the introduction of a D-galactose residue at their O-4 positions. Reagents and conditions: (a) anhyd CuSO₄, dry acetone, 10 h, 20 °C (2 98%); (b) allyl bromide, NaH, dry THF, 20 h, 20 °C, Ar atmosphere (3 75%); (c) H₂SO₄ (cat.), EtOH-toluene (1:1), 2 h, reflux (4 86%); (d) CH(OEt)₃, camphorsulfonic acid, dry CH₂Cl₂, 35 min, 20 °C, Ar atmosphere (6 98%); (e) CH(OEt)₃, camphorsulfonic acid, dry DMF, 40 min, 20 °C, Ar atmosphere, (5 65%); (f) allyl bromide, NaH, dry DMF, 3 h, $0 \circ C \rightarrow 20 \circ C$, Ar atmosphere (6 98%); (g) benzoyl chloride, dry pyridine, 9 h, $-20 \circ C \rightarrow 20 \circ C$, Ar atmosphere (7 98%); (h) 60% aq acetic acid, 30 min, 20 °C (8 90%, 10 91%); (i) benzyl 2,2,2-trichloroacetamide, CF₃SO₃H (cat.), dry CH₂Cl₂-heptane, 22 h. $-10 \circ C \rightarrow 20 \circ C$, Ar atmosphere (9 64%, 11 78%); (k) PdCl₂, AcOH, NaOAc, H2O, 4-6 h, 40 °C (12 63%, 15 67%); (1) Ac2O, AcOH, H2SO4 (cat.), 3 h, -30 °C→0 °C (13 91%, 14 77%).

intermediate 4. For the allylation reaction, N,N-dimethylformamide (DMF) was replaced by dry tetrahydrofuran as the solvent to avoid the need for the tedious removal of residual traces of the former solvent.

Treatment of **4** with triethylorthoacetate in CH_2Cl_2 followed by regioselective opening of the orthoester structure in **6**¹⁴ led to the formation of an acetyl protecting group at the O-2 position (**10**). This acetyl group was involved in neighbouring participation in a later glycosylation reaction and served as a temporary protecting group during the block wise synthesis of higher pectin fragments. The regioselective ring opening of orthoester **6** was proven by ¹H NMR spectroscopy. As expected, the acetyl substituent at O-2 position caused a considerable downfield shift of the H-2 signal from δ 3.90 ppm in the ¹H NMR spectrum of compound **4** to δ 5.01 ppm in the spectrum of **10**.

In a previous paper, we described an alternative route targeting the preparation of the 4-*O*-benzoyl derivative $\mathbf{8}^{15}$ Here, the formation of the orthoester structure in $\mathbf{5}$ could only be achieved in a solvent mixture of DMF and toluene. In multi-gram scale experiments, the use of DMF as a solvent crucially prolonged work-up times resulting in the migration of the acetyl groups in $\mathbf{8}$ as well as in 10. Therefore, for scale-up, the pathway via the isopropylidene derivative $\mathbf{2}$ was more convenient because this route avoided DMF in every reaction step.

Benzylation of 8 and 10 using benzyl trichloroacetimidate and a catalytic amount of trifluoromethanesulfonic acid¹⁶ provided 9¹⁵ and 11 in 64% and 78% yield, respectively. Acetolysis¹⁷ of 9 and 11 gave predominantly the α -acetate 13 α ¹⁵ and compound 14 in 84% and 71%, respectively. Small amounts of the β -acetate (14 β) could be isolated by flash chromatography. The stereochemistry at the anomeric centre was evident only from the geminal ¹³C⁻¹H coupling constants $J_{C-1,H-1}$. The observed values of 173.5 Hz and 161.5 Hz for 14 α and 14 β , respectively, verified the proposed structures.¹⁸ Deallylation of compounds 11 and 14 with the aid of palladium(II)chloride¹⁹ provided intermediates 12 and 15 in 63% and 67% yield, respectively, which served as glycosyl acceptors for the introduction of a galactose residue into the O-4 position.

The 4-*O*-benzoyl derivate **13** was employed as glycosyl donor for the preparation of disaccharide module **17** by coupling with the galacturonate acceptor **16** in the presence of trimethylsilyl trifluoromethanesulfonate (Scheme 2). The disaccharide synthesis as well as the transformation of module **17** into either glycosyl acceptor **20** by selective deacetylation of the O-2' position with 0.28 M methanolic hydrochloric acid²⁰ or into glycosyl donor **19** by deallylation and the introduction of the trichloroacetimidate function have been described previously.¹⁵ Contrary to the results observed by Reiffarth and Reimer²¹ who employed a similar block synthetic approach,²² trimethylsilyl trifluoromethane-

Scheme 2. Synthesis of rhamnogalacturonan tetrasaccharide 21 by a modular design principle and its partial deprotection. Reagents and conditions: (a) 13:16 molar ratio 1.3:1, CF₃SO₃SiMe₃, mol. sieves, dry CH₂Cl₂, 18 h, 20 °C, Ar atmosphere, darkness (17, 88%); (b) PdCl₂, AcOH, NaOAc, H₂O, 4–6 h, 40 °C (18 75%); (c) trichloroacetonitrile, DBU (cat.), dry CH₂Cl₂, 2 h, -20 °C \rightarrow 20 °C, Ar atmosphere (19 69%); (d) 0.28 M methanolic HCl, 36 h, 20 °C, Ar atmosphere (20 98%); (e) CF₃SO₃SiMe₃, mol. sieves, dry CH₂Cl₂, 21 h, -70 °C \rightarrow 20 °C, Ar atmosphere, darkness (21 60%); (f) 0.28 M methanolic HCl, 48–72 h, 20 °C, Ar atmosphere (22 97%); (g) Pd/C, H₂, EtOH, 18 h, 20 °C (23 97%); (h) LiOH, MeOH, H₂O, 15 min, 20 °C (24 86%).

sulfonate-promoted glycosylation of acceptor **20** with donor **19** in a molar ratio of 1:1, provided tetrasaccharide **21** in 60% isolated yield after chromatographic purification (Scheme 2). In a model reaction, the benzyl protecting groups of **21** were removed by hydrogenolysis over Pd–C resulting in the propyl glycoside **23**. The anomeric centre was not deprotected in these experiments to maintain the configuration and obtain well-resolved NMR spectra. Next, the cleavage of the ester linkages was achieved in methanol and water in the presence of lithium hydroxide at room temperature to provide the nearly completely deprotected tetrasaccharide 24 in excellent yield.

Selective deacetylation of tetrasaccharide **21** using again 0.28 M methanolic hydrochloric acid yielded the glycosyl acceptor **22**, which was glycosylated (Scheme 3) with donor **19** to give hexasaccharide **25** in 59% yield after HPLC purification. The α -configuration at the newly generated stereogenic centre in the tetrasaccharide as well as in the hexasaccharide was verified by ¹³C NMR spectroscopy. For the completely protected rhamnogalacturonate oligomers the α -linked anomeric

Scheme 3. The extension of the synthesis of rhamnogalacturonan I fragments by a modular design principle to furnish hexasaccharide 25. Reagents and conditions: (a) CF₃SO₃SiMe₃, mol. sieves, dry CH₂Cl₂, 21 h, $-70 \text{ }^{\circ}\text{C} \rightarrow 20 \text{ }^{\circ}\text{C}$, Ar atmosphere, darkness (25 59%).

carbons resonated between δ_C 97.60 and 99.77, while the signals for the β -linked anomeric carbon (C-1) appeared in the range of 102.72–102.84. All NMR data were in accordance with the proposed structures. It should be noted that in the crude glycosylation reaction mixtures, traces (<5%) of β -linked oligosaccharides were observed by NMR investigations. However, the total isolated amounts of these isomers were too small for full characterization.

Furthermore, the coupling of the benzoylated galactosvl bromide $26^{23,24}$ prepared using the procedure by Kochetkov and co-workers²⁵ with either methyl rhamnoside 12 or diacetate 15 as glycosyl acceptors was performed in the presence of silver trifluoromethanesulfonate (Scheme 4). After standard work-up and purification by HPLC, disaccharides 27 and 29 were obtained in 66% and 68% yields, respectively. The protected disaccharide 27 was subjected to selective deacetvlation to give 58% of the glycosyl acceptor 28. Alternatively, diacetate 29 was transformed in 90% yield into the corresponding bromide 30 using the procedure by Gillard and Israel.²⁶ In an effort to evaluate the capability of the prepared galactosyl-rhamnosides to serve as structural elements for the synthesis of ramified RG-1 fragments, acceptor 28 was glycosylated with rhamnogalacturonate 19 to provide tetrasaccharide 31 in 62% isolated yield. Again, traces (less than 5%) of a β -linked isomer were observed in the ¹³C NMR spectra of the crude reaction mixture.

Finally, the glycosylation of galacturonates 16 and 32^{27} with bromide 30 as donor gave trisaccharides 33 (68%) and 34 (74%), respectively (Scheme 4). Analytical and spectral data of 33 and 34 confirmed their structures. To establish the 1,2-*trans*-glycosidic linkage between L-rhamnose and D-galacturonate moieties, the geminal $^{13}C^{-1}H$ coupling constants were again

Scheme 4. Synthesis of D-galactose-ramified rhamnogalacturonan fragments 31, 33 and 34 of which trisaccharides 33 and 34 represent potential modules for larger oligomers. Reagents and conditions: (a) CF₃SO₃Ag, 2,6-*tert*-butyl-4-methyl-pyridine, mol. sieves, dry CH₂Cl₂, 20 h, $-65 \degree C \rightarrow 20 \degree C$, Ar atmosphere, darkness (27 66%, 29 68%); (b) 0.28 M methanolic HCl, 12 h, 20 °C, Ar atmosphere (28 58%); (c) Me₃SiBr, dry CH₂Cl₂, 19 h, $-10 \degree C \rightarrow 20 \degree C$, Ar atmosphere (30 90%); (d) CF₃SO₃SiMe₃, mol. sieves, dry CH₂Cl₂, 21 h, $-70 \degree C \rightarrow 20 \degree C$, Ar atmosphere, darkness (31 62%); (e) CF₃SO₃Ag, 2,6-*tert*-butyl-4-methyl-pyridine, mol. sieves, dry CH₂Cl₂, 20 h, $-65 \degree C \rightarrow 20 \degree C$, Ar atmosphere, darkness (33 68%, 34 74%).

determined. Because the observed values of **33** and **34** are $J_{\text{C-1',H-1'}} = 170 \pm 0.5$ Hz, a comparison with the data reported for other α -L-rhamnose examples verified the proposed structure.¹⁸ Based on these results, compounds **33** and **34** are considered to represent trisaccharide modules that can be transformed into glycosyl donor as well as glycosyl acceptors comparable to the disaccharide module **17**, procedure shown in Scheme 2.

In conclusion, simple conversion of disaccharide 17 into both glycosyl donor 19 and glycosyl acceptor 20, and their successful coupling to tetrasaccharide 21 verified our hypothesis that rhamnogalacturonates protected permanently by benzyl groups and temporarily by acetyl and allyl groups are suitable as modules for the synthesis of larger RG-1 fragments by a modular design principle. This concept was extended to the preparation of hexasaccharide 25. Furthermore, complete deprotection with exception of the reducing end of tetrasaccharide 21 was easily achieved in two steps. For the synthesis of β -galactosyl ramified RG-1 fragments, modules 33 and 34 were prepared and will be used in future experiments.

3. Experimental

3.1. General methods

Melting points were determined with a Boetius microheating plate BHMK 05 (Rapido, Dresden) and were not corrected. Optical rotations were measured for solutions in a 2-cm cell with an automatic polarimeter GYROMAT (Dr. Kernchen Co.). ¹H NMR spectra (500.13 MHz, 300.13 MHz and 250.13 MHz) and ¹³C (125.76 MHz, 75.47 MHz NMR spectra and 62.89 MHz) were recorded using Bruker instruments AVANCE 500, ARX 300 and AC 250, with CDCl₃, CD₃OD or Me₂SO-d₆ as solvents. NMR spectra were calibrated using solvent signals (CDCl₃: δ^{-1} H 7.25, δ ¹³C 77.0; CD₃OD: δ ¹H 4.78, δ ¹³C 49.0; Me₂SO-*d*₆: δ ¹H 2.50, δ ¹³C 39.7). The ¹H and ¹³C NMR signals were assigned by DEPT and two-dimensional ¹H, ¹H COSY, and ¹H,¹³C correlation spectra (HMBC and HSQC). Elemental analysis was performed on a CHNS-Flash-EA-1112 instrument (Thermoquest). All washing solutions were cooled to ~ 5 °C. The NaHCO₃ solution was saturated. Reactions were monitored by thin-layer chromatography (TLC, Silica Gel 60, F254, 0.25 mm, Merck KGaA). The following solvent systems (v/v) were used: (A) 1:1, (B) 2:1, (C) 3:1 and (D) 1:2 heptane-ethyl acetate, (E) 10:1, (F) 1.5:1 and (G) 1:2 chloroform-MeOH. The spots were made visible by spraying with ethanolic 10% H₂SO₄ solution and charring them for 3–5 min with a heat gun. Detection of benzyl derivatives was effected by UV fluorescence. Preparative flash chromatography, MPLC and HPLC were performed

by elution from columns of slurry-packed Silica Gel 60 (Merck, 40–63 μ m) and Nucleosil 100-7 (KNAUER, 7.0 μ m), respectively. All solvents and reagents were purified and dried according to the standard procedures.²⁸ After classical work-up of the reaction mixtures, organic layers were dried over MgSO₄ and then concentrated under reduced pressure (rotary evaporator).

3.2. Methyl 4-O-allyl- α -L-rhamnopyranoside (4)¹³

Colourless syrup; $[\alpha]_D^{24} - 86.1$ (*c* 1.0, CHCl₃), lit.¹³ $[\alpha]_D$ -85.3 (*c* 0.57, CHCl₃); ¹H NMR (250.13 MHz, CDCl₃): δ 1.29 (d, 3H, ³J_{5,6} = 6.4 Hz, H-6), 2.69 (br d, 2H, 2 × OH), 3.20 (t, 1H, H-4), 3.32 (s, 3 H, OCH₃), 3.62 (m, 1H, H-5), 3.81 (dd, 1H, ³J_{3,4} = 9.5 Hz, H-3), 3.90 (dd, 1H, ³J_{2,3} = 3.4 Hz, H-2), 4.19 (m, 2H, CH₂CH=CH₂), 4.62 (d, 1H, ³J_{1,2} = 1.5 Hz, H-1), 5.12, 5.27 (2m, 2H, CH₂CH=CH₂), 5.91 (m, 1H, CH₂CH=CH₂); ¹³C NMR (62.89 MHz, CDCl₃): δ 17.88 (C-6), 54.78 (OCH₃), 67.03 (C-5), 71.01 (C-2), 71.34 (C-3), 73.84 (CH₂CH=CH₂), 134.77 (CH₂CH=CH₂).

3.3. Methyl 2-*O*-acetyl-4-*O*-allyl-α-L-rhamnopyranoside (10)

Via 5: Sodium hydride (288 mg, 7.2 mmol, 60% dispersion in oil) was successively added to a stirred solution of methyl 2,3-O-methylorthoacetyl α-L-rhamnopyranoside $(5)^{15}$ (523 mg, 2.0 mmol) in dry N,N-dimethylformamide (8 mL) and dry toluene (8 mL) at 0 °C under an argon atmosphere. The solution was kept 30 min at that temperature, then allyl bromide (1 mL, 12.0 mmol) was added. The mixture was allowed to attain room temperature and stirring was continued for another 2 h. After complete reaction (6, TLC: $R_{\rm f} = 0.53$, solvent A), MeOH (1 mL) was added at 0 °C, and after stirring for additional 20 min, the reaction mixture was concentrated. After dissolving the residue in 60% ag acetic acid (25 mL), the resulting solution was stirred 30 min at ambient temperature (monitored by TLC). The reaction mixture was then concentrated and repeatedly co-concentrated with toluene. The crude product was purified by flash chromatography (eluent gradient EtOAc $0\% \rightarrow 30\%$ in heptane) to give 10 (453 mg, 87%) as a colourless syrup.

Via **4**: Camphorsulfonic acid (21 mg, 0.09 mmol) and triethylorthoacetate (0.41 mL, 2.2 mmol) were successively added to a solution of methyl 4-*O*-allyl- α -Lrhamnopyranoside¹³ (**4**, 218 mg, 1.0 mmol) in dry CH₂Cl₂ (8 mL). After stirring for 35 min at ambient temperature under an argon atmosphere (**6**, TLC: $R_{\rm f} = 0.53$, solvent A), triethylamine (1 mL) was added, and the mixture was concentrated. The residue was dissolved in chloroform (50 mL), and the organic solution

was washed with ice water $(2 \times 20 \text{ mL})$, dried and concentrated. Exactly the same procedure as above was used for the orthoester ring opening to yield 10 (237 mg, 91%) as a colourless syrup: $[\alpha]_D^{22} - 21.7$ (*c* 1.0, CHCl₃); $R_f = 0.34$ (solvent A); ¹H NMR (250.13 MHz, CDCl₃): δ 1.31 (d, 3H, H-6), 2.12 (s, 3 H, OCOCH₃), 2.35 (br d, 1H, OH), 3.19 (t, 1H, H-4), 3.31 (s, 3H, OCH₃), 3.64 (m, 1H, ${}^{3}J_{5.6} = 6.4$ Hz, H-5), 3.99 (dd, ${}^{3}J_{3,4} = 9.5 \text{ Hz}, \text{ H-3}, 4.12, 4.21 (2m, 2H,)$ 1H, $CH_2CH=CH_2$), 4.59 (d, 1H, ${}^3J_{1,2} = 1.5$ Hz, H-1), 5.01 (dd, 1H, ${}^{3}J_{2,3} = 3.7$ Hz, H-2), 5.11, 5.21 (2m, 2H, $CH_2CH=CH_2$), 5.91 (m, 1H, $CH_2CH=CH_2$); ¹³C NMR (62.89 MHz, CDCl₃): δ 17.91 (C-6), 21.04 (OCOCH₃), 54.89 (OCH₃), 67.22 (C-5), 69.96 (C-3), 72.60 (C-2), 73.99 (CH₂CH=CH₂), 81.50 (C-4), 98.34 (C-1), 117.12 (CH₂CH=CH₂), 134.78 (CH₂CH=CH₂), 170.78 (OCOCH₃). Anal. Calcd for $C_{12}H_{20}O_6$ (260.28): C, 55.37; H, 7.74. Found: C, 55.45; H, 7.69.

3.4. Methyl 2-*O*-acetyl-4-*O*-allyl-3-*O*-benzyl-α-L-rhamnopyranoside (11)

A catalytic amount of trifluoromethanesulfonic acid $(14 \,\mu\text{L}, 0.15 \,\text{mmol})$ dissolved in dry CH₂Cl₂ $(1 \,\text{mL})$ was added to a solution of compound 10 (350 mg, 1.3 mmol) and benzyl 2,2,2 trichloroacetimidate (0.5 mL, 2.7 mmol) in a mixture of dry CH₂Cl₂ (4 mL) and dry heptane (7 mL) at -10 °C under an argon atmosphere. After stirring for 3.5 h at that temperature, the mixture was allowed to attain room temperature and stirring was continued for another 18 h (monitored by TLC). Then, the mixture was passed through a laver of alkaline alumina by elution with CH₂Cl₂-heptane (2:3, v/v) and concentrated. After suspending the residue in heptane-diethyl ether (6:1, v/v, 10 mL) the formed carbohydrate-free crystals were filtered off, washed with heptane-diethyl ether (6:1, v/v, 20 mL) and the combined filtrate and washings were concentrated. The crude product was purified by flash chromatography (eluent solvent C) to give compound 11 (367 mg, 78%) as a colourless foam: $[\alpha]_{D}^{22}$ -33.1 (*c* 1.0, CHCl₃); $R_{\rm f} = 0.65$ (solvent A); ¹H NMR (300.13 MHz, CDCl₃): δ 1.26 (d, 3H, H-6), 2.06 (s, 3H, OCOCH₃), 3.21 (t, 1H, H-4), 3.25 (s, 3H, OCH₃), 3.60 (m, 1H, ${}^{3}J_{5,6} = 6.1$ Hz, H-5), 3.75 (dd, 1H, ${}^{3}J_{3,4} = 9.5$ Hz, H-3), 4.02, 4.29 (2m, 2H, CH₂CH=CH₂), 4.52 (d, 1H, ${}^{3}J_{1,2} = 1.5$ Hz, H-1), 4.43, 4.58 (2d, 2H, ${}^{2}J = 11.3$ Hz, CH₂C₆H₅), 5.07, 5.17 (2m, 2H, CH₂CH=CH₂), 5.24 (dd, 1H, ${}^{3}J_{2,3} = 3.4$ Hz, H-2), 5.84 (m, 1H, $CH_2CH=CH_2$), 7.19–7.30 (m, 5H, $CH_2C_6H_5$); ¹³C NMR (75.47 MHz, CDCl₃): δ 17.91 (C-6), 21.07 (OCOCH₃), 54.80 (OCH₃), 67.49 (C-5), 68.93 (C-2), 71.69 (CH₂C₆H₅), 74.19 (CH₂CH=CH₂), 77.75 (C-3), 79.82 (C-4), 98.65 (C-1), 116.68 (CH₂CH=CH₂), 127.62, 127.78, 127.90, 128.32, 128.88, 138.09 (CH₂C₆H₅), 135.01 (CH₂CH=CH₂), 170.40 (OCOCH₃). Anal. Calcd for $C_{19}H_{26}O_6$ (350.41): C, 65.13; H, 7.48. Found: C, 65.17; H, 7.37.

3.5. Acetolysis of methyl 2-*O*-acetyl-4-*O*-allyl-3-*O*benzyl-α-L-rhamnopyranoside (11)

Concd sulfuric acid (0.16 mL) dissolved in acetic anhydride (3 mL) was added to a solution of compound 11 (1.84 g, 5.25 mmol) in acetic anhydride-acetic acid (2.5:1, v/v, 20 mL) in three portions at -30 °C over a period of 1 h. After stirring for 1.5 h at 0 °C (monitored by TLC), cold aq 10% K₂SO₄ (200 mL) was slowly added and the stirring was continued for 30 min at 0 °C. The reaction mixture was extracted with chloroform $(3 \times 50 \text{ mL})$, and the combined organic phases were washed successively with cold aq NaHCO₃ $(3 \times 50 \text{ mL})$, water $(2 \times 50 \text{ mL})$ dried and concentrated. The residue was co-concentrated with toluene (3 times) to remove the remaining traces of acetic acid. The residue was then purified by flash chromatography (eluent gradient ethyl acetate $0\% \rightarrow 50\%$ in heptane) to provide 14 α (1.41 g, 71%) and 14 β (119 mg, 6%) in a ratio of 12:1, respectively.

3.6. 1,2-Di-*O*-acetyl-4-*O*-allyl-3-*O*-benzyl- α -L-rhamnopyranose (14 α)

Colourless foam; $[\alpha]_{\rm P}^{21}$ -28.2 (*c* 1.0, chloroform); $R_{\rm f} = 0.68$ (solvent A); ¹H NMR (300.13 MHz, CDCl₃): δ 1.24 (d, 3H, H-6), 2.00, 2.08 (2s, 6H, 2 × OCOCH₃), 3.25 (t, 1H, H-4), 3.66 (m, 1H, ${}^{3}J_{5.6} = 6.3$ Hz, H-5), 3.75 (dd, 1H, ${}^{3}J_{3,4} = 9.5$ Hz, H-3), 4.03, 4.29 (2m, 2H, $CH_2CH=CH_2$), 4.44, 4.61 (2d, 2H, ²J = 11.3 Hz, CH₂C₆H₅), 5.08, 5.12 (2m, 2H, CH₂CH=CH₂), 5.24 (dd, 1H, ${}^{3}J_{2,3} = 2.2$ Hz, H-2), 5.84 (m, 1H, CH₂CH=CH₂), 5.89 (d, 1H, ${}^{3}J_{1,2} = 1.9$ Hz, H-1), 7.20-7.31 (m, 5H, CH₂C₆H₅); ¹³C NMR (75.47 MHz, CDCl₃): δ 17.95 (C-6), 20.89, 20.93 (2 × OCOCH₃), 67.87 (C-2), 70.02 (C-5), 71.92 (CH₂C₆H₅), 74.21 (CH₂CH=CH₂), 76.54 (C-3), 79.85 (C-4), 91.13 (C-1), 117.03 (CH₂CH=CH₂), 127.80, 127.98, 128.40, 129.01, 137.81 (CH₂C₆H₅, one signal is isochronic), 134.79 $(CH_2CH=CH_2)$, 168.55, 170.03 (2 × OCOCH₃). Anal. Calcd for C₂₀H₂₆O₇ (378.42): C, 63.48; H, 6.93. Found: C, 63.54; H 6.84.

3.7. 1,2-Di-*O*-acetyl-4-*O*-allyl-3-*O*-benzyl-β-L-rhamnopyranose (14β)

Colourless foam; $[\alpha]_{D}^{21}$ -7.1 (*c* 0.1, CHCl₃); $R_{f} = 0.65$ (solvent A); ¹H NMR (300.13 MHz, CDCl₃): δ 1.36 (d, 3H, H-6), 2.07, 2.12 (2s, 6H, 2 × OCOCH₃), 3.28 (t, 1H, H-4), 3.49 (m, 1H, ³ $J_{5,6} = 6.1$ Hz, H-5), 3.60 (dd, 1H, ³ $J_{3,4} = 9.5$ Hz, H-3), 4.09, 4.36 (2m, 2H, CH₂CH=CH₂), 4.47, 4.67 (2d, 2H, ²J = 11.3 Hz, CH₂C₆H₅), 5.15, 5.23 (2m, 2H, CH₂CH=CH₂), 5.55 (dd, 1H, ${}^{3}J_{2,3} = 3.4$ Hz, H-2), 5.69 (d, 1H, ${}^{3}J_{1,2} = 1.2$ Hz, H-1), 5.88 (m, 1H, CH₂CH=CH₂), 7.25–7.37 (m, 5H, CH₂C₆H₅); 13 C NMR (75.47 MHz, CDCl₃): δ 17.83 (C-6), 20.82, 20.89 (2 × OCOCH₃), 67.58 (C-2), 71.55 (CH₂C₆H₅), 72.70 (C-5), 74.31 (CH₂CH=CH₂), 79.06 (C-4), 79.42 (C-3), 91.05 (C-1), 117.05 (CH₂CH=CH₂), 127.82, 127.99, 128.37, 128.44, 137.42 (CH₂C₆H₅, one signal is isochronic), 134.72 (CH₂CH=CH₂), 168.80, 170.55 (2 × OCOCH₃). Anal. Calcd for C₂₀H₂₆O₇ (378.42): C, 63.48; H 6.93. Found: C, 63.51; H, 6.81.

3.8. Deallylation of compounds 11 and 14a

To a solution of compound 11 or 14α (0.8 mmol) in a mixture of acetic acid and water (20:1, v/v, 25 mL) sodium acetate (656 mg, 8.0 mmol) and palladium(II)chloride (563 g, 3.2 mmol) were added. After stirring for 4–6 h at 40 °C (monitored by TLC), the reaction mixture was filtered and the filtrate was concentrated. The residue was dissolved in heptane–chloroform (2:1 v/v, 100 mL), the organic layer was washed with water (3 × 50 mL), dried and concentrated. The crude products were purified by column chromatography (eluent solvent C) to provide 12 (248 mg, 63%) as colourless foam and 15 (181 mg, 67%) as colourless crystals, respectively.

3.9. Methyl 2-*O*-acetyl-3-*O*-benzyl-α-L-rhamnopyranoside (12)

[α]₂²¹ +11.1 (*c* 0.9, CHCl₃); $R_f = 0.46$ (solvent A); ¹H NMR (250.13 MHz, CDCl₃): δ 1.25 (d, 3H, ³ $J_{5,6} = 6.1$ Hz, H-6), 2.05 (s, 3H, OCOCH₃), 2.20 (br d, 1H, OH), 3.27 (s, 3H, OCH₃), 3.41–3.66 (m, 3H, H-3, H-4, H-5), 4.56 (d, 1H, ³ $J_{1,2} = 1.5$ Hz, H-1), 4.32, 4.63 (2d, 2H, ²J = 11.3 Hz, $CH_2C_6H_5$), 5.27 (dd, 1H, ³ $J_{2,3} = 3.4$ Hz, H-2), 7.15–7.32 (m, 5H, CH₂C₆ H_5); ¹³C NMR (62.89 MHz, CDCl₃): δ 17.68 (C-6), 20.94 (OCOCH₃), 54.89 (OCH₃), 67.88 (C-2), 67.94 (C-5), 71.38 (CH₂C₆ H_5), 71.55 (C-4), 77.62 (C-3), 98.92 (C-1), 128.00, 128.11, 128.35, 128.43, 128.53, 137.57, (CH₂C₆ H_5), 170.29 (OCOCH₃). Anal. Calcd for C₁₆ $H_{22}O_6$ (310.34): C, 61.92; H, 7.15. Found: C, 61.83; H, 7.07.

3.10. 1,2-Di-*O*-acetyl-3-*O*-benzyl-α-L-rhamnopyranose (15)

Mp 76 °C (from ethyl acetate–heptane); $[\alpha]_D^{25}$ +2.9 (*c* 1.1, CHCl₃); $R_f = 0.52$ (solvent A); ¹H NMR (300.13 MHz, CDCl₃): δ 1.24 (d, 3H, ³J_{5,6} = 6.1 Hz, H-6), 2.00, 2.08 (2s, 6H, OCOCH₃), 2.37 (br d, 1H, OH), 3.52 (t, 1H, H-4), 3.64 (dd, 1H, ³J_{3,4} = 9.5 Hz, H-3), 3.68 (m, 1H, H-5), 4.36, 4.66 (2d, 2H, ²J = 11.0 Hz, CH₂C₆H₅), 5.26 (dd, 1H, ³J_{2,3} = 3.5 Hz, H-2), 5.94 (d, 1H, ³J_{1,2} =

1.9 Hz, H-1), 7.20–7.29 (m, 5H, $CH_2C_6H_5$); ¹³C NMR (75.47 MHz, CDCl₃): δ 17.75 (C-6), 20.85, 20.92 (2 × OCOCH₃), 66.91 (C-2), 70.44 (C-5), 71.16 (C-4), 71.64 (CH₂C₆H₅), 77.25 (C-3), 91.40 (C-1), 128.18, 128.21, 128.64, 137.28 (CH₂C₆H₅, two signals are iso-chronic), 170.04 (OCOCH₃). Anal. Calcd for C₁₇H₂₂-O₇ (338.35): C, 60.35; H, 6.55. Found: C, 60.43; H 6.61.

3.11. Methyl 2-*O*-acetyl-4-*O*-benzoyl-3-*O*-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(methyl 2,3-di-*O*-benzyl- α -D-galactopyranosyluronate)- $(1 \rightarrow 2)$ -4-*O*-benzoyl-3-*O*-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(allyl 2,3-di-*O*-benzyl- β -D-galactopyranosid)uronate (21)

Glycosyl acceptor 20^{20} (384 mg, 0.5 mmol), donor 19^{15} (458 mg, 0.5 mmol) and molecular sieves (4 Å, ca. 7.0 g) were dried under high vacuum for 1 h at ambient temperature. Then, the solids were suspended in dry CH₂Cl₂ (15 mL), and the reaction mixture was stirred for 2 h at room temperature under an inert atmosphere in the dark. After cooling to -70 °C, trimethylsilyl trifluoromethanesulfonate (100 µL, 0.6 mmol) was added, and the suspension was stirred 3 h at that temperature. The reaction mixture was allowed to warm-up to room temperature and stirring was continued for an additional 18 h. After complete reaction (monitored by TLC), the mixture was passed through a layer of alkaline alumina by elution with chloroform. Filtrate and eluent (ca. 50 mL) were combined, dried and concentrated. Purification by HPLC (eluent gradient ethyl acetate $0\% \rightarrow 50\%$ in heptane) provided tetrasaccharide 21 (447 mg, 60%) as a colourless foam: $[\alpha]_D^{22}$ +65.9 (c 1.0, CHCl₃); $R_f = 0.39$ (solvent A); ¹H NMR (500.13 MHz, CDCl₃): δ 1.15 (d, 3H, ${}^{3}J_{5''',6''} = 6.2$ Hz, H-6'''), 1.27 (d, 3H, ${}^{3}J_{5',6'} = 6.5$ Hz, H-6'), 2.07 (s, 3H, OCOCH₃), 3.35 (s, 3H, OCH_{3"}), 3.52 (dd, 1H, ${}^{3}J_{3,4} = 3.3$ Hz, H-3). 3.76 (dd, 1H, ${}^{3}J_{2,3} = 9.7$ Hz, H-2), 3.76 (m, 1H, H-5""), 3.80 (m, 1H, H-5'), 3.80 (dd, 1H, ${}^{3}J_{2'',3''} = 9.8$ Hz, H-2"), 3.80 (s, 3H, OCH₃), 3.83 (dd, 1H, ${}^{3}J_{3''}{}_{4''}$ 9.9 Hz, H-3^{'''}), 3.99 (dd, 1H, ${}^{3}J_{3',4'} = 9.9$ Hz, H-3'), 4.03 (d, 1H, H-5), 4.13 (dd, 1H, ${}^{3}J_{3''4''} = 3.5$ Hz, H-3"), 4.16 (m, 1H, CH₂CH=CH₂), 4.21-4.98 (s and d, 12H, $6 \times CH_2C_6H_5$), 4.30 (dd, 1H, ${}^{3}J_{2',3'} = 3.1$ Hz, H-2'), 4.38 (d, 1H, ${}^{3}J_{1,2} = 7.6$ Hz, H-1), 4.40 (dd, 1H, ${}^{3}J_{4.5} = 0.9$ Hz, H-4), 4.42 (dd, 1H, ${}^{3}J_{4'',5''} = 1.6$ Hz, H-4"), 4.55 (m, 1H, CH₂CH=CH₂), 4.92 (d, 1H, H-5"), 5.00 (d, 1H, ${}^{3}J_{1'' 2''} = 3.5$ Hz, H-1"), 5.07 (dd, 1H, ${}^{3}J_{1'',2'''} = 1.4$ Hz, H-1'''), 5.18 (t, 1H, ${}^{3}J_{4''',5'''} =$ 9.9 Hz, H-4'''), 5.22, 5.34 (2m, 2H, CH₂CH=CH₂), 5.40 (d, 1H, ${}^{3}J_{1',2'} = 1.4$ Hz, H-1'), 5.40 (t, 1H, ${}^{3}J_{4',5'} = 9.9$ Hz, H-4'), 5.54 (dd, 1H, ${}^{3}J_{2''',3'''} = 3.3$ Hz, H-2"), 5.96 (m, 1H, CH₂CH=CH₂), 7.00-7.37 (m, 30H, $6 \times CH_2C_6H_5$), 7.42, 7.56, 7.97 (3m, 10H, $2 \times OCOC_6H_5$; ¹³C NMR (125.76 MHz, CDCl₃): δ 17.59 (C-6""), 17.64 (C-6'), 21.08 (OCOCH₃), 51.91 (OCH_{3"}), 52.43 (OCH₃), 67.12 (C-5"), 67.45 (C-5'),

68.16 (C-2"), 70.42 (C-5"), 70.78 (CH₂CH=CH₂), 70.92, 71.65, 71.85, 72.88, 72.96, 73.10, $(6 \times CH_2C_6H_5)$, 72.70 (C-4^{'''}), 73.17 (C-4'), 73.59 (C-5), 74.05 (C-4''), 74.22 (C-2"), 74.10 (C-3"), 74.61 (C-2'), 76.02 (C-3'), 76.72 (C-4), 77.20 (C-3"), 78.76 (C-2), 79.95 (C-3), 97.60 (C-1"), 99.10 (C-1""), 99.70 (C-1'), 102.73 (C-1), 117.74 $(CH_2CH=CH_2)$, 126.83, 127.14, 127.35, 127.38, 127.58, 127.75, 127.87, 127.89, 128.08, 128.11, 128.18, 128.22, 128.29, 128.32, 128.36, 128.40, 128.43, 128.51, 128.53, 128.92, 129.68, 129.75, 129.80, 129.83, 129.97, 133.10, 133.03, 137.50, 137.72, 137.83, 137.91, 138.33, 138.67 ($6 \times CH_2C_6H_5$, $2 \times COC_6H_5$, 15 signals are isochronic), 133.74 (CH₂CH=CH₂), 165.69, 165.83 $(2 \times OCOC_6H_5)$, 168.16, 168.86, (C-6, C-6"), 169.88 (OCOCH₃). Anal. Calcd for C₈₇H₉₂O₂₂ (1489.67): C, 70.15; H 6.23. Found: C, 70.18; H, 6.22.

3.12. Methyl 4-*O*-benzoyl-3-*O*-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(methyl 2,3-di-*O*-benzyl- α -D-galactopyranosyluronate)- $(1 \rightarrow 2)$ -4-*O*-benzoyl-3-*O*-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(allyl 2,3-di-*O*-benzyl- β -D-galactopyranosid)uronate (22)

Compound 21 (149 mg, 0.1 mmol) was added under stirring to a methanolic HCl solution [0.28 M, 10 mL, prepared by adding of 0.2 mL acetyl chloride to 10 mL ice-cold dry MeOH], and the mixture was kept under an argon atmosphere for 48–72 h at room temperature (monitored by TLC). The reaction solution was then filtered through a layer of alkaline alumina by elution with chloroform. The filtrate and eluent (ca. 40 mL) were combined, dried and concentrated. The crude product was purified by MPLC (eluent solvent B) to give **22** (140 mg, 97%) as a colourless foam: $[\alpha]_D^{20}$ +70.0 (*c* 1.0, CHCl₃); $R_f = 0.33$ (solvent A); ¹H NMR (500.13 MHz, CDCl₃): δ 1.15 (d, 3H, ${}^{3}J_{5'',6''} = 6.1$ Hz, H-6'''), 1.28 (d, 3H, H-6'), 3.38 (s, 3H, OCH_{3"}), 3.51 (dd, 1H, ${}^{3}J_{3,4} = 3.1$ Hz, H-3). 3.72 (dd, 1H, ${}^{3}J_{2,3} = 9.5$ Hz, H-2), 3.77 (dd, 1H, ${}^{3}J_{2''3''} = 10.1$ Hz, H-2"), 3.79 (m, 1H, H-5^{'''}), 3.80 (m, 1H, ${}^{3}J_{5',6'} = 6.4$ Hz, H-5'), 3.80 (s, 3H, OCH₃), 3.81 (dd, 1H, ${}^{3}J_{3'',4''} = 9.8$ Hz, H-3'''), 4.00 (dd, 1H, ${}^{3}J_{3',4'} = 10.1$ Hz, H-3'), 4.02 (d, 1H, H-5), 4.12 (dd, 1H, ${}^{3}J_{3''4''} = 3.4$ Hz, H-3"), 4.15 (dd, 1H, ${}^{3}J_{2''',3'''} = 3.4 \text{ Hz}, \text{ H-2'''}), 4.17 \text{ (m, 1H, CH}_2\text{CH}=\text{CH}_2),$ 4.32–5.00 (s and d, 12H, $6 \times CH_2C_6H_5$), 4.32 (dd, 1H, ${}^{3}J_{2',3'} = 3.1$ Hz, H-2'), 4.38 (d, 1H, ${}^{3}J_{1,2} = 7.6$ Hz, H-1), 4.40 (dd, 1H, ${}^{3}J_{4,5} = 0.9$ Hz, H-4), 4.43 (dd, 1H, ${}^{3}J_{4'',5''} = 1.6 \text{ Hz}, \text{ H-4''}), 4.53 \text{ (m, 1H, CH}_2\text{CH}=\text{CH}_2),$ 4.91 (d, 1H, H-5"), 5.03 (d, 1H, ${}^{3}J_{1'',2''} = 3.1$ Hz, H-1"), 5.14 (dd, 1H, ${}^{3}J_{1''',2'''} = 1.5$ Hz, H-1'''), 5.24 (t, 1H, ${}^{3}J_{3'''4''} = 10.1 \text{ Hz}, \text{ H-4'''}, 5.22, 5.34 (2m, 2H, 2H)$ CH₂CH=CH₂), 5.39 (d, 1H, ${}^{3}J_{1',2'} = 1.8$ Hz, H-1'), 5.40 (t, 1H, ${}^{3}J_{3',4'} = {}^{3}J_{4',5'} = 10.1$ Hz, H-4'), 5.97 (m, 1H, CH₂CH=CH₂), 7.00–7.36 (m, 30H, $6 \times CH_2C_6H_5$), 7.46, 7.56, 7.97 (3m, 10H, $2 \times OCOC_6H_5$); ¹³C NMR $(125.76 \text{ MHz}, \text{ CDCl}_3): \delta 17.49 \text{ (C-6''')}, 17.64 \text{ (C-6')},$ 51.92 (OCH₂["]), 52.44 (OCH₃), 66.83 (C-5[']), 67.43 (C-5'''), 68.11 (C-2'''), 70.51 (C-5''), 70.76 $(CH_2CH=$ CH₂), 71.31, 71.65, 71.69, 72.86, 73.09, 73.15 $(6 \times CH_2C_6H_5)$, 72.86 (C-4^{'''}), 73.15 (C-4[']), 73.57 (C-5), 73.94 (C-4"), 74.26 (C-2"), 76.17 (C-3"), 74.45 (C-2'), 76.00 (C-3'), 77.20 (C-4), 77.26 (C-3"), 78.73 (C-2), 80.02 (C-3), 97.41 (C-1"), 99.00 (C-1""), 101.29 (C-1'), 102.72 (C-1), 117.74 (CH₂CH=CH₂), 126.86, 127.13, 127.26, 127.67, 127.70, 127.78, 128.01, 128.10, 128.13, 128.17, 128.25, 128.33, 128.39, 128.42, 128.50, 129.66, 129.75, 129.86, 129.95, 133.03, 133.12, 133.03, 133.09, 137.50, 137.72, 137.83, 137.91, 138.33, 138.67 $(6 \times CH_2C_6H_5 \quad 2 \times OCOC_6H_5 \quad 19$ signals are isochronic), 133.74 (CH₂CH=CH₂), 165.73, 165.81 $(2 \times OCOC_6H_5)$, 168.16, 168.86, (C-6, C-6"). Anal. Calcd for $C_{85}H_{90}O_{21}$ (1447.63): C, 70.52; H, 6.27. Found: C, 70.54; H 6.23.

3.13. Methyl 2-*O*-acetyl-4-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(methyl α -D-galactopyranosyluronate)- $(1 \rightarrow 2)$ -4-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(propyl β -D-galactopyranosid)uronate (23)

To a solution of compound **21** (149 mg, 0.1 mmol) in ethanol (8 mL) 10% palladium-on-charcoal (ca. 20 mg) was added. The suspension was stirred for 18 h at room temperature under an atmosphere of hydrogen (monitored by TLC). Then, the mixture was filtered over Celite, eluted with ethanol and the combined filtrates were concentrated. The residue was dissolved in water and lyophilized to yield compound 23 (95 mg, 97%) as a colourless powder. For NMR investigations the product was evaporated several times together with CD₃OD: $[\alpha]_{D}^{25}$ +1.2 (c 1.0, CHCl₃); $R_{f} = 0.34$ (solvent E); ¹H NMR (500.13 MHz, CDCl₃): δ 0.89 (t, 3H, CH₂CH₂- CH_3), 1.17 (d, 3H, ${}^{3}J_{5''',6'''} = 6.2$ Hz, H-6'''), 1.22 (d, 3H, ${}^{3}J_{5'6'} = 6.4$ Hz, H-6'), 1.65 (dt, 2H, CH₂CH₂CH₃), 2.11 (s, 3H, OCOCH₃), 3.44 (m, 2H, CH₂CH₂CH₃), 3.72 (s, 3H, OCH_{3"}), 3.77 (dd, 1H, ${}^{3}J_{2,3} = 9.7$ Hz, H-2), 3.78 (s, 3H, OCH₃), 3.86 (dd, 1H, ${}^{3}J_{3,4} = 3.7$ Hz, H-3), 3.88 (2m, 2H, H-5', H-5"'), 3.94 (dd, 1H, ${}^{3}J_{3',4'} = 10.1 \text{ Hz}, \text{ H-3'}, 4.09 \text{ (dd, } 1\text{H}, {}^{3}J_{2',3'} = 3.1 \text{ Hz},$ H-2'), 4.12 (dd, 1H, ${}^{3}J_{3''4''} = 3.6$ Hz, H-3''), 4.17 (dd, 1H, ${}^{3}J_{2'',3''} = 9.8$ Hz, H-2"), 4.25 (d, 1H, ${}^{3}J_{1,2} = 7.3$ Hz, H-1), 4.26 (dd, 1H, ${}^{3}J_{3'',4''} = 9.8$ Hz, H-3'''), 4.22 (d, 111, H-5), 4.43 (dd, 1H, ${}^{3}J_{4,5} = 0.9$ Hz, H-4), 4.50 (dd, 1H, ${}^{3}J_{4''5''} = 0.9$ Hz, H-4"), 4.93 (d, 1H, H-5"), 5.17 (d, 1H, ${}^{3}J_{1'',2''} = 3.1$ Hz, H-1"), 5.43 (dd, 1H, ${}^{3}J_{1''',2'''} =$ 1.4 Hz, H-1"'), 5.12 (t, 1H, ${}^{3}J_{4'',5''} = 9.8$ Hz, H-4"'), 5.26 (d, 1H, ${}^{3}J_{1',2'} = 1.4$ Hz, H-1'), 4.92 (t, 1H, ${}^{3}J_{4',5'} =$ 10.1 Hz, H-4'), 5.37 (dd, 1H, ${}^{3}J_{2''',3'''} = 3.6$ Hz, H-2'''), 7.39, 7.51, 7.96 (3m, 10H, $2 \times OCOC_6H_5$); ¹³C NMR (125.76 MHz, CDCl₃): δ 10.80 (CH₂CH₂CH₃), 18.02 (C-6"), 18.07 (C-6'), 20.94 (OCOCH₃), 23.91 (CH₂CH₂-CH₃), 52.75 (OCH_{3"}), 52.89 (OCH₃), 68.20 (C-5"), 68.31 (C-5'), 68.43 (C-3""), 69.86 (C-2"), 68.94 (C-2'),

71.13 (C-3"), 71.75 (C-2), 71.76 (C-5"), 72.21 (C-3'), 72.24 (CH₂CH₂CH₃), 72.95 (C-2""), 73.86 (C-5, C-3, one signal is isochronic), 74.50 (C-4""), 74.95 (C-4'), 78.51 (C-4), 79.26 (C-4"), 99.73 (C-1"), 100.65 (C-1""), 101.03 (C-1'), 104.70 (C-1'), 129.60, 129.72, 130.66, 130.69, 131.27, 131.33, 134.40, 134.42 (2 × OCOC₆H₅, four signals are isochronic), 167.50, 167.72 (2 × COC₆H₅), 170.51, 171.37, (C-6, C-6"), 171.97 (OCOCH₃). Anal. Calcd for C₄₅H₅₈O₂₄ (982.94): C, 54.99; H 5.95. Found: C, 54.89; H 5.98.

3.14. Propyl α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ - α -D-galactopyranosyluronic acid- $(1 \rightarrow 2)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranosiduronic acid (24)

To a suspension of compound 23 (49 mg, 0.05 mmol) in MeOH and water (2:1, v/v, 10 mL) lithium hydroxide (24 mg, 0.1 mmol) was added. After stirring for 15 min at room temperature (monitored by TLC), the solution was passed through a column of Dowex-50 (H^+) resin. In the following, MeOH was removed from the filtrate by evaporation in vacuo, and the residue was repeatedly dissolved in water and lyophilized to give compound 24 (30 mg, 86%) as a colourless powder. For NMR investigations the product was evaporated several times together with CH₃OD: $[\alpha]_{D}^{25}$ +2.3 (*c* 0.5, Me₂SO); $R_{\rm f} = 0.21$ (solvent G); ¹H NMR (500.13 MHz, Me₂SO d_6): δ 0.83 (t, 3H, CH₂CH₂CH₃), 1.14, 1.16 (2d, 6H, H-6', H-6"'), 1.53 (dt, 2H, CH₂CH₂CH₃), 3.24 (m, 2H, $CH_2CH_2CH_3$), 3.32 (dd, 1H, ${}^3J_{2,3} = 9.7$ Hz, H-2), 3.40-4.02 (4m, 11H, H-3, H-2', H-3', H-4', H-5', H-2", H-3", H-2"", H-3"", H-4"", H-5""), 4.26 (d, 1H, ${}^{3}J_{1,2} = 7.3$ Hz, H-1), 3.92 (d, 1H, H-5), 4.22 (dd, 1H, ${}^{3}J_{4,5} = 0.9$ Hz, H-4), 4.32 (dd, 1H, ${}^{3}J_{4'',5''} = 0.9$ Hz, H-4"), 4.33 (d, 1H, H-5"), 4.94 (d, 1H, ${}^{3}J_{1'',2''} = 3.1$ Hz, H-1"), 5.13 (dd, 1H, ${}^{3}J_{1''',2'''} = 1.4$ Hz, H-1""), 5.15 (d, 1H, ${}^{3}J_{1'2'} = 1.4$ Hz, H-1'); ${}^{13}C$ NMR (125.76, Me₂SOd₆): δ 10.83 (CH₂CH₂CH₃), 18.10, 18.17 (C-6', C-6'''), 23.89 (CH₂CH₂CH₃), 70.30, 70.95, 71.49, 71.82, 72.01, 72.14, 73.03, 73.80, 74.52, 75.04, 78.11, 78.74, 79.18 (C-2, C-3, C-4, C-5, C-2', C-3', C-4', C-5', C-2", C-3", C-4", C-5", CH₂CH₂CH₃), 99.49 (C-1"), 99.65 (C-1"), 100.10 (C-1'), 103.41 (C-1), 170.38, 171.32 (C-6, C-6"). Anal. Calcd for C₂₇H₄₄O₂₁ (704.63): C, 46.02; H, 6.29. Found: C: 45.99; H, 6.35.

3.15. Methyl 2-*O*-acetyl-4-*O*-benzoyl-3-*O*-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(methyl 2,3-di-*O*-benzyl- α -D-galactopyranosyluronate)- $(1 \rightarrow 2)$ -4-*O*-benzoyl-3-*O*-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(methyl 2,3-di-*O*-benzoyl-3-*O*-benzyl- α -D-galactopyranosyluronate)- $(1 \rightarrow 2)$ -4-*O*-benzoyl-3-*O*-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(allyl 2,3-di-*O*-benzyl- β -D-galactopyranosid)uronate (25)

Glycosyl acceptor **22** (145 mg, 0.1 mmol), donor 19^{15} (92 mg, 0.1 mmol) and molecular sieves (4 Å, 800 mg)

were dried 1 h at ambient temperature under high vacuum. Then, the solids were suspended in dry CH₂Cl₂ (8 mL), and the reaction mixture was stirred for 2 h at room temperature under an inert atmosphere in the dark. After cooling to -70 °C, trimethylsilvl trifluoromethanesulfonate (83 µL, 0.5 mmol) was added, and stirring was continued for 3 h at that temperature. Subsequently, the reaction mixture was allowed to warm-up to room temperature and stirring was continued for an additional 18 h. After complete reaction (monitored by TLC), the mixture was passed through a layer of alkaline alumina by elution with chloroform. Filtrate and eluent (ca. 30 mL) were combined, dried and concentrated. The crude product was purified by HPLC (eluent gradient ethyl acetate $0\% \rightarrow 50\%$ in heptane) to afford hexasaccharide 25 (133 mg, 59%) as a colourless foam: $[\alpha]_{D}^{20}$ +77.7 (c 1.0, CHCl₃); $R_{f} = 0.32$ (solvent A); ¹H NMR (500.13 MHz, CDCl₃): δ 1.17, 1.20, 1.21 (3d, 9H, H-6', H-6", H-6""), 2.09 (s, 3H, OCOCH₃), 3.37, 3.39 (2s, 6H, OCH_{3"}, OCH_{3"}"), 3.79 (s, 3H, OCH₃), 3.53 (dd, 1H, ${}^{3}J_{2,3} = 10.1$ Hz, H-2), 3.72 (dd, 1H, ${}^{3}J_{3.4} = 3.6$ Hz, H-3), 3.76 (m, 1H, H-5""), 3.87 (dd, 1H, ${}^{3}J_{3''',4'''} = 9.8$ Hz, H-3'''), 3.70–5.40 (m, H-2', H-3', H-4', H-5', H-2'', H-3'', H-4'', H-5'', H-2''', H-3''', H-4''', H-5^{'''}, H-2^{''''}, H-3^{''''}, H-4^{''''}, H-5^{''''}, CH₂CH=CH₂, $CH_2CH=CH_2$, 9 × $CH_2C_6H_5$), 4.04 (d, 1H, H-5), 4.27 (dd, 1H, ${}^{3}J_{4,5} = 0.9$ Hz, H-4), 4.36 (d, 1H, ${}^{3}J_{1,2} =$ 7.5 Hz, 1-H), 4.91, 5.02, 5.05, 5.29 (4d, 4H, H-1', H-1", H-1^{'''}, H-1^{''''}), 5.21 (t, 1H, ${}^{3}J_{3'''',4''''} = 10.1$ Hz, H-4^{'''''}), 5.40 (d, 1H, ${}^{3}J_{1''''_{2''''}} = 1.9$ Hz, H-1''''), 5.56 (dd, 1H, ${}^{3}J_{2^{mm}}{}^{3}J_{2}{}^{mm} = 3.1, \text{ H-}2^{mm}), 5.96 \text{ (m, 1H, CH}_{2}CH=CH_{2}),$ 7.05–7.17 (m, 15H, $3 \times CH_2C_6H_{5Rha}$), 7.18–7.39 (m, 30H, $6 \times CH_2C_6H_{5GalA}$), 7.42, 7.56, 8.00 (3m, 15H, $3 \times OCOC_6H_5$); ¹³C NMR (125.76 MHz, CDCl₃): δ 17.59, 17.67, 17.69 (C-6', C-6"", C-6""), 22.63 (OCH₃), 51.74, 51.76 (OCH''_3, OCH''_3) , 52.28 (OCH_3) , 67.18, 67.41, 67.52 (C-5', C-5''', C-5''''), 68.34 (C-2'''''), 70.41, 70.57, 70.73, 70.99, 71.43, 71.75, 71.77, 71.91, 72.45, 72.51, 72.88, 73.04, 73.27, 73.31, 73.43, 73.64, 73.83, 74.33, 74.38, 74.47, 74.57, 75.08, 75.22, 75.50, 75.99, 76.19, 76.79, 77.20 (C-4, C-5, C-2', C-3', C-4', C-2", C-3", C-4", C-5", C-2", C-3", C-4", C-2", C-3" C-4^{*i*}, C-5^{*i*}, C-3^{*i*}, C-4^{*i*}, 9 × $CH_2C_6H_5$, $CH_2CH=$ CH₂), 78.79 (C-2), 80.44 (C-3), 97.05, 97.42 (C-1", C-1""), 98.81, 99.77 (C-1', C-1""), 98.93 (C-1"""), 102.84 (C-1), 117.60 (CH₂CH=CH₂), 126.83, 126.95, 127.08, 127.13, 127.27, 127.35, 127.42, 127.53, 127.68, 127.73, 127.82, 127.96, 128.08, 128.19, 128.28, 128.34, 128.50, 128.61, 128.86, 129.67, 129.78, 130.00, 130.14, 132.94, 132.98, 137.56, 137.66, 137.77, 137.83, 137.89, 137.97, 138.05, 138.42, 138.70, 138.75, 138.89 ($9 \times CH_2C_6H_5$, $3 \times OCOC_6H_5$),133.84 (CH₂CH=CH₂), 165.68, 165.70, $165.72 (3 \times OCOC_6H_5)$, 168.09 (C-6), 168.81, 168.89(C-6", C-6""), 169.79 (COCH₃). Anal. Calcd for C₁₂₉H₁₃₄O₃₅ (2244.46): C, 69.03; H, 6.02. Found: C, 69.10; H, 6.00.

3.16. Glycosylation of the rhamnose derivatives 12 and 15 with 2,3,4,6-tetra-*O*-benzoyl-α-D-galactopyranosyl bromide (26)

Rhamnose acceptor 12 or 15 (0.5 mmol), bromide 26^{23-25} (330 mg, 0.5 mmol) and molecular sieves (4 Å, 4.0 g) were dried for 1 h at ambient temperature under high vacuum in the dark. Then, the solids were suspended in dry CH₂Cl₂ (10 mL), 2,6-di-tert-butyl-4methyl-pyridine (123 mg, 0.6 mmol) was added and the suspension was stirred 30 min at room temperature under an argon atmosphere in the dark. After chilling to $-65 \,^{\circ}\text{C}$, silver trifluoromethansulfonate (141 mg, 0.55 mmol) was added, and the reaction mixture was stirred for 2 h at that temperature. Subsequently, the mixture was allowed to attain room temperature and stirring was continued for further 18 h. At completion (monitored by TLC), the reaction mixture was passed through a layer of alkaline alumina by elution with chloroform. The combined filtrate and eluent (ca. 50 mL) were extracted with cold aq 3% hydrochloric acid $(2 \times 20 \text{ mL})$, ice water (20 mL), cold ag NaHCO₃ $(2 \times 20 \text{ mL})$, ice water $(2 \times 20 \text{ mL})$, dried and concentrated. Finally, the residue was purified by HPLC (eluent solvent B) to give the desired disaccharides 27 (293 mg, 66%) and **29** (312 mg, 68%), respectively, both as colourless foam.

3.17. Methyl 2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-O-acetyl-3-O-benzyl- α -L-rhamnopyranoside (27)

 $[\alpha]_{D}^{23}$ +12.5 (c 1.0, CHCl₃); $R_{f} = 0.42$ (solvent A); ¹H NMR (300.13 MHz, CDCl₃): δ 1.46 (d, 3H, ${}^{3}J_{5,6} = 5.7$ Hz, H-6), 2.05 (s, 3H, OCOCH₃), 3.34 (s, 3H, OCH₃), 3.77 (m, 3H, H-3, H-4, H-5), 4.21, 4.41 (2d, 2H, ${}^{2}J = 11.4$ Hz, $CH_{2}C_{6}H_{5}$), 4.34 (t, 1H, ${}^{3}J_{5',6'a} = {}^{3}J_{5',6'b} = 6.6$ Hz, H-5'), 4.44, 4.71 (2dd, 2H, ${}^{2}J_{6'a,6'b} = 11.2$ Hz, H-6'), 4.60 (d, 1H, ${}^{3}J_{1,2} = 1.6$ Hz, H-1), 5.20 (dd, 1H, ${}^{3}J_{2,3} = 3.3$ Hz, H-2), 5.35 (d, 1H, ${}^{3}J_{1',2'} = 8.2$ Hz, H-1'), 5.63 (dd, 1H, ${}^{3}J_{3',4'} = 3.6 \text{ Hz}, \text{ H-3'}), 5.82 \text{ (dd, 1H, } {}^{3}J_{2',3'} = 10.4 \text{ Hz},$ H-2'), 6.05 (d, 1H, H-4'), 7.21-8.12 (m, 25H, $4 \times OCOC_6H_5$, CH₂C₆H₅); ¹³C NMR (75.47 MHz, CDCl₃): *δ* 17.98 (C-6), 20.92 (OCOCH₃), 54.84 (OCH₃), 61.79 (C-6'), 66.68 (C-5), 68.25 (C-4'), 68.32 (C-2), 70.23 (C-2'), 70.76 (C-5'), 71.51 (CH₂C₆H₅), 71.67 (C-3'), 76.92 (C-4), 77.77 (C-3), 98.40 (C-1), 101.00 (C-1'), 127.32, 127.70, 128.23, 128.29, 128.32, 128.40, 128.61, 129.12, 129.62, 129.67, 129.70, 129.88, 133.17, 133.22, 133.22, 133.52 $(4 \times OCOC_6H_5)$ $CH_2C_6H_5$, 14 signals are isochronic) 165.39, 165.47, $165.53 (4 \times OCOC_6H_5)$, 170,23 (OCOCH₃). Anal. Calcd for C₅₀H₄₈O₁₅ (888.91): C, 67.56; H 5.44. Found: C, 67.52; H 5.37.

3.18. 2,3,4,6-Tetra-O-benzoyl- β -D-galactopyranosyl-(1 \rightarrow 4)-1,2-di-O-acetyl-3-O-benzyl- α -L-rhamnopyranose (29)

 $[\alpha]_{D}^{21}$ +45.2 (c 1.0, CHCl₃); $R_{f} = 0.44$ (solvent A); ¹H NMR (300.13 MHz, CDCl₃): δ 1.41 (d, 3H, ${}^{3}J_{5.6} =$ 5.8 Hz, H-6), 1.96, 2.05 (2s, 6H, 2 × OCOCH₃), 3.65 (dd, 1H, ${}^{3}J_{3,4} = 9.5$ Hz, H-3), 3.76 (m, 2H, H-4, H-5), 4.16, 4.36 (2d, 2H, ${}^{2}J = 11$ Hz, $CH_{2}C_{6}H_{5}$), 4.25 (t, 1H, ${}^{3}J_{5',6'a} = 6.7$ Hz, $J_{5',6'b}$ 6.6 Hz, H-5'), 4.35 (d, 1H, ${}^{2}J_{6'a,6'b} = 11$ Hz, H-6'a), 4.60 (dd, 1H, H-6'b), 5.09 (dd, 1H, ${}^{3}J_{2,3} = 3.6$ Hz, H-2), 5.24 (d, 1H, ${}^{3}J_{1',2'} = 7.9$ Hz, H-1'), 5.53 (dd, 1H, ${}^{3}J_{3'4'} = 3.4$ Hz, H-3'), 5.73 (dd, 1H, ${}^{3}J_{2'3'} = 10.4$ Hz, H-2'), 5.88 (d, 1H, ${}^{3}J_{12} = 1.8$ Hz, H-1), 5.91 (d, 1H, H-4'), 7.09–8.04 (m, 25H, $4 \times OCOC_6H_5$, $CH_2C_6H_5$); ¹³C NMR (75.47 MHz, CDCl₃): δ 18.25 (C-6), 21.03, 21.16 (2 × OCOCH₃), 62.04 (C-6'), 67.62 (C-2), 68.46 (C-4'), 69.50 (C-5), 70.55 (C-2'), 71.12 (C-5'), 71.97 (C-3'), 71.97 (CH₂C₆H₅), 76.72 (C-4), 77.72 (C-3), 91.09 (C-1), 101.27 (C-1'), 127.62, 128.11, 128.50, 128.64, 128.70. 128.89, 129.33, 129.58, 129.90, 129.93, 129.96, 130.14, 133.53, 133.82 ($4 \times OCOC_6H_5$, $CH_2C_6H_5$, 16 signals are isochronic), 168.76, 170.14 ($2 \times OCOCH_3$). Anal. Calcd for C₅₁H₄₈O₁₆ (916.92): C, 66.80; H 5.28. Found: C, 66.73; H 5.20.

3.19. Methyl 2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3-O-benzyl- α -L-rhamnopyranoside (28)

Compound 27 (149 mg, 0.1 mmol) was dissolved in methanolic HCl (0.28 M, 10 mL, prepared by adding 0.2 mL acetyl chloride to 10 mL ice-cold dry MeOH), and the solution was stirred for 12 h at room temperature under an argon atmosphere (monitored by TLC). The solution was neutralized by filtration through a layer of alkaline alumina using chloroform as an eluent. Filtrate and eluent (ca. 40 mL) were combined, concentrated and the crude product was purified by HPLC (eluent solvent C) to yield 28 (98 mg, 58%) as a colourless foam: $[\alpha]_D^{24}$ +29.1 (c 1.0, CHCl₃); $R_f = 0.42$ (solvent A); ¹H NMR (300.13 MHz, CDCl₃): δ 1.40 (s, 3H, ${}^{3}J_{5.6} = 6.0$ Hz, H-6), 1.85 (br d, 1H, OH), 3.30 (s, 3H, OCH₃), 3.61 (dd, 1H, ${}^{3}J_{3,4} = 9.1$ Hz, H-3), 3.72 (m, 1H, H-5), 3.76-3.82 (m, 2H, H-2, H-4), 4.27 (m, 1H, ${}^{3}J_{5',6'} = 6.6$ Hz, H-5'), 4.29, 4.34 (2d, 2H, ${}^{2}J = 11.7$ Hz, $CH_2C_6H_5$), 4.39, 4.60 (2m, 2H, ${}^{3}J_{6'a,6'b} = 11.0$ Hz, H-6'a, H-6'b), 4.63 (d, 1H, ${}^{3}J_{1,2} = 1.9$ Hz, H-1), 5.27 (d, 1H, ${}^{3}J_{1',2'} = 8.2$ Hz, H-1'), 5.61 (dd, 1H, ${}^{3}J_{3',4'} =$ 3.5 Hz, H-3'), 5.77 (dd, 1H, ${}^{3}J_{2',3'} = 10.4$ Hz, H-2'), 5.96 (dd, 1H, H-4'), 7.11–8.09 (m, 25H, $4 \times \text{OCOC}_6H_5$, CH₂C₆ H_5); ¹³C NMR (75.47 MHz, CDCl₃): δ 17.94 (C-6), 54.81 (OCH₃), 61.88 (C-6'), 66.40 (C-5), 67.90 (C-4), 68.25 (C-4'), 70.28 (C-2'), 70.99 (C-5'), 71.72 (C-3'), 71.84 $(CH_2C_6H_5)$, 77.15 (C-2), 80.13 (C-3), 99.89 (C-1), 101.29 (C-1'), 127.18, 127.96, 128.00,

128.26, 128.34, 128.40, 128.47, 128.64, 129.14, 129.22, 129.35, 129.66, 129.72, 129.75, 129.93, 129.96, 133.20, 133.26, 133.54, 133.77 (CH₂C₆H₅, $4 \times OCOC_6H_5$, 10 signals are isochronic), 165.32, 165.50, 165.58, 166.03 ($4 \times OCOC_6H_5$). Anal. Calcd for C₄₈H₄₆O₁₄ (846.87): C, 68.08.; H 5.47. Found: C, 68.14; H 5.52.

3.20. 2,3,4,6-Tetra-O-benzoyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-O-acetyl-3-O-benzyl- α -L-rhamnopyranosyl bromide (30)

Trimethylsilyl bromide (31 µL, 0.24 mmol) was added to a stirred solution of 29 (147 mg, 0.16 mmol) in dry CH_2Cl_2 (3 mL) at -10 °C under an argon atmosphere. After stirring for 1 h at that temperature, the mixture was allowed to attain room temperature and stirring was continued for further 24 h (TLC solvent A). Then, the reaction mixture was concentrated and dried to yield **30** (135 mg, 90%) as a colourless foam: $R_{\rm f} = 0.48$ (solvent A); ¹H NMR (250.13 MHz, CDCl₃): δ 1.45 (d, 3H, ${}^{3}J_{5,6} = 6.1$ Hz, H-6), 2.03 (s, 3H, OCOCH₃), 3.77-4.06 (m, 2H, H-4, H-5), 4.11 (dd, 1H, ${}^{3}J_{3,4} = 3.4$ Hz, H-3), 4.18–4.45 (m, 5H, H-5', H-6'a, H-6'b, $CH_2C_6H_5$), 5.28 (dd, 1H, ${}^{3}J_{2,3} = 9.5$ Hz, H-2), 5.32 (d, 1H, ${}^{3}J_{1'2'} = 7.6$ Hz, H-1'), 5.59 (dd, 1H, ${}^{3}J_{3',4'} = 3.4$ Hz, H-3'), 5.81 (dd, 1H, ${}^{3}J_{2',3'} = 10.7$ Hz, H-2'), 5.97 (d, 1H, H-4'), 6.03 (d, 1H, ${}^{3}J_{1,2} = 1.2$ Hz, H-1), 7.14–8.12 (m, 25H, $4 \times OCOC_6H_5$, CH₂- C_6H_5).

3.21. Methyl 2-*O*-acetyl-4-*O*-benzoyl-3-*O*-benzyl- α -Lrhamnopyranosyl- $(1 \rightarrow 4)$ -(methyl 2,3-di-*O*-benzyl- α -Dgalactopyranosyluronate)- $(1 \rightarrow 2)$ -[2,3,4,6-tetra-*O*benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$]-3-*O*-benzyl- α -Lrhamnopyranoside (31)

Glycosyl acceptor 28 (95 mg, 0.11 mmol), donor 19^{15} (103 mg, 0.11 mmol) and molecular sieves (4 Å, 900 mg) were dried 1 h at ambient temperature under high vacuum. Then, the solids were suspended in dry CH₂Cl₂ (8 mL), and the reaction mixture was stirred for 2 h at room temperature under an inert atmosphere in the dark. After cooling to -70 °C, trimethylsilyl trifluoromethanesulfonate (36 µL, 0.2 mmol) was added and stirring was continued for 3 h at that temperature. At that point, the reaction mixture was allowed to warm-up to room temperature and stirring was continued for an additional 18 h. At completion (monitored by TLC), the reaction mixture was passed through a layer of alkaline alumina by elution with chloroform. Filtrate and eluent (ca. 30 mL) were combined, dried and concentrated. The crude product was purified by HPLC (eluent gradient EtOAc $0\% \rightarrow 50\%$ in heptane) to give tetrasaccharide 31 (109 mg, 62%) as a colourless foam: $[\alpha]_{D}^{22}$ +61.9 (c 0.53, CHCl₃); $R_{f} = 0.45$ (solvent A);

¹H NMR (500.13 MHz, CDCl₃): δ 1.35 (d, 3H, ${}^{3}J_{5,6} = 6.0 \text{ Hz}, \text{ H-6}, 1.45 \text{ (d, } 3\text{H}, {}^{3}J_{5'',6''} = 6.0 \text{ Hz},$ H-6"), 2.05 (s, 3H, OCOCH₃), 3.22 (s, 3H, OCH₃), 3.30 (s, 3H, OCH₃), 3.35-3.90 (m, 7H, H-2', H-3', H-3, H-4, H-5, H-3", H-5"), 3.91-5.00 (m, 13H, $4 \times$ CH₂C₆H₅, H-4', H-5', H-5''', H-6'''a, H-6'''b), 4.65 (d, 1H, ${}^{3}J_{1,2} = 2.5$ Hz, H-1), 4.93 (d, 1H, ${}^{3}J_{1',2'} = 3.5$ Hz, H-1'), 5.00-5.80 (m, 3H, H-2, H-2", H-4"), 5.07 (d, 1H, ${}^{3}J_{1'',2''} = 1.8$ Hz, H-1"), 5.38 (d, 1H, ${}^{3}J_{1'',2''} =$ 7.9 Hz, H-1""), 5.55 (dd, 1H, ${}^{3}J_{3''',4'''} = 2.8$ Hz, H-3""), 5.77 (dd, 1H, ${}^{3}J_{2'',3''} = 10.4$ Hz, H-2'''), 5.99 (dd, 1H, H-4^{'''}), 7.00–8.10 (m, 45H, $4 \times CH_2C_6H_5$, $5 \times OCOC_6$ - H_5); ¹³C NMR (125.76 MHz, CDCl₃): δ 17.40 (C-6), 17.58 (C-6"), 21.03 (OCOCH₃), 51.99 (OCH₃), 54.79 (OCH₃), 61.70 (C-6"), 72.89, 73.02, 73.10, 73.56 $(4 \times CH_2C_6H_5)$, 67.10, 67.36, 68.39, 68.81, 70.24, 71.43, 71.99, 74.37, 74.47, 74.65, 75.54, 76.39, 78.06, 78.15, 79.24, 79.35 (C-2, C-3, C-4, C-5, C-2", C-3", C-4", C-5", C-2', C-3', C-4', C-5', C-2", C-3", C-4", C-5"), 98.09 (C-1), 98.36 (C-1'), 99.72 (C-1"), 101.22 (C-1^{'''}), 125.56, 126.38, 127.04, 127.17, 127.37, 127.47, 127.63, 127.83, 127.93, 128.09, 128.13, 128.31, 128.44, 128.63, 128.69, 128.82, 128.88, 129.00, 129.15, 129.21, 129.27, 129.37, 129.47, 129.70, 129.80, 132.89, 133.03, 133.19, 133.41, 133.51, 137.71, 137.92, 138.01, 138.32 $(4 \times CH_2C_6H_5, 5 \times OCOC_6H_5, 20 \text{ signals are isochro-}$ nic), 165.34, 165.48, 165.51, 165.64, 166.14 (5 × OCOC₆H₅), 168.45 (C-6'), 170.14 (OCOCH₃). Anal. Calcd for C₉₁H₉₀O₂₆ (1599.67): C, 68.32; H 5.67. Found: C, 68.14; H 5.53.

3.22. Glycosylation of acceptors 16 and 32 with donor 30

Acceptor 16 or 32 (0.3 mmol), bromide 30 (281 mg, 0.3 mmol) and molecular sieves (4 Å, 2.4 g) were dried for 1 h at ambient temperature under high vacuum in the dark. The solids were suspended in dry CH₂Cl₂ 2,6-di-*tert*-butyl-4-methyl-pyridine (74 mg, (8 mL), 0.36 mmol) was added, and the suspension was stirred for 30 min at room temperature under an argon atmosphere in the dark. After chilling to $-65 \,^{\circ}$ C, silver trifluoromethansulfonate (85 mg, 0.33 mmol) was added, and the reaction mixture was stirred 2 h at that temperature. At this point, the mixture was allowed to attain room temperature and stirring was continued for further 18 h. At completion (monitored by TLC), the reaction mixture was passed through a layer of alkaline alumina by elution with chloroform. The filtrate and eluent (ca. 50 mL) were extracted with cold aq 3% hydrochloric acid $(2 \times 20 \text{ mL})$, ice water (20 mL), cold ag NaHCO₃ $(2 \times 20 \text{ mL})$, ice water $(2 \times 20 \text{ mL})$, dried and concentrated. Finally, the residue was purified by HPLC (eluent solvent B) to give the desired trisaccharides 33 (262 mg, 68%) and **34** (302 mg, 74%), respectively, both as colourless foam.

3.23. Methyl 2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2-O-acetyl-3-O-benzyl- α -L-rhamnopyranosyl-(1 \rightarrow 4)-(allyl 2,3-di-O-benzyl- β -D-galactopyranosid)uronate (33)

 $[\alpha]_{D}^{24}$ +43.6 (c 1.0, CHCl₃); $R_{f} = 0.46$ (solvent A); ¹H NMR (500.13 MHz; CDCl₃): δ 1.40 (d, 3H, ${}^{3}J_{5'6'}$ = 6.3 Hz, H-6'), 1.92 (s, 3H, OCOCH₃), 3.52 (dd, 1H, ${}^{3}J_{3',4'} = 9.8 \text{ Hz}, \text{ H-3'}, 3.55 \text{ (m, 1H, H-5')}, 3.68-3.74$ (m, 3H, H-4', H-2, H-3), 3.76 (s, 3H, OCH₃), 4.03 (s, 1H, H-5), 4.08–4.49 (m, 7H, $2 \times CH_2C_6H_5$, $CH_2CH=CH_2$, H-4), 4.34 (d, 1H, ${}^{3}J_{1,2} = 7.6$ Hz, H-1), 4.41 (dd, 1H, ${}^{3}J_{5'',6''} = 6.3$ Hz, H-6"a), 4.44 (s, 1H, H-5"), 4.63 (dd, 1H, ${}^{2}J_{6''a,6''b} = 11.0$ Hz, H-6"b), 4.70 (s, 2H, $CH_2C_6H_5$), 4.71, 4.86 (2d, 2H, $^2J = 10.7$ Hz, CH₂C₆H₅), 5.18, 5.30 (2m, 2H, CH₂CH=CH₂), 5.28 (d, 1H, ${}^{3}J_{1'',2''} = 7.9$ Hz, H-1"), 5.32 (d, 1H, ${}^{3}J_{1',2'} =$ 1.9 Hz, H-1'), 5.39 (dd, 1H, ${}^{3}J_{2',3'} = 2.8$ Hz, H-2'), 5.52 (dd, 1H, ${}^{3}J_{3'',4''} = 3.5$ Hz, H-3"), 5.79 (dd, 1H, ${}^{3}J_{2'',3''} =$ 10.4 Hz, H-2"), 5.94 (dd, 1H, H-4"), 5.91 (m, 1H, $CH_2CH=CH_2$), 7.15–8.10 (m, 35H, $3 \times CH_2C_6H_5$, $4 \times OCOC_6H_5$; ¹³C NMR (125.76 MHz, CDCl₃); δ 17.89 (C-6'), 20.90 (OCOCH₃), 52.78 (OCH₃), 61.90 (C-6"), 67.36 (C-5'), 68.13 (C-2'), 68.34 (C-4), 70.20 (C-2''), 70.76, 73.06, 75.22 $(3 \times CH_2C_6H_5)$, 70.87 (C-4"), 71.56 (CH₂CH=CH₂), 71.85 (C-5"), 71.90 (C-3"), 73.87 (C-5), 76.33 (C-4'), 77.50 (C-3), 78.15 (C-2), 81.11 (C-3'), 98.21 (C-1'), 100.89 (C-1"), 102.71 (C-1), 117.62 (CH₂CH=CH₂), 132.50 (CH₂CH=CH₂), 127.37, 127.42, 127.48, 127.61, 127.64, 128.21, 128.23, 128.26, 128.33, 128.39, 128.41, 128.44, 128.50, 128.65, 128.80, 128.84, 129.26, 129.30, 129.49, 129.67, 129.71, 129.76, 129.92, 130.83, 133.17, 133.20, 133.48, 133.79, 137.80, 138.07, 138.35 ($3 \times CH_2C_6H_5$, $4 \times OCOC_6H_5$, 11 signals are isochronic), 165.35, 165.53, 166.02, 167.71. $(4 \times OCOC_6H_5),$ 168.28 (C-6), 169.64 (OCOCH₃). Anal. Calcd for C₇₃H₇₂O₂₁ (1285.34): C, 68.21; H 5.65. Found: C, 68.30; H 5.72.

3.24. Benzyl 2,3,4,6-tetra-O-benzoyl- β -D-galactopyrano-syl- $(1 \rightarrow 4)$ -2-O-acetyl-3-O-benzyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$ -(allyl 2,3-di-O-benzyl- β -D-galactopyranosid)uronate (34)

$$\begin{split} & [\alpha]_{2}^{21} + 54.3 \ (c \ 1.0, \ CHCl_3); \ R_{\rm f} = \ 0.48 \ ({\rm solvent}\ A); \ ^1{\rm H} \\ & {\rm NMR} \ (500.13\ {\rm MHz}, \ CDCl_3); \ \delta \ 1.37 \ ({\rm d}, \ 3{\rm H}, \ ^3J_{5',6'} = \\ & 5.8\ {\rm Hz}, \ {\rm H-6'}), \ 1.95 \ ({\rm s}, \ 3{\rm H}, \ OCOCH_3), \ 3.51 \ ({\rm dd}, \ 1{\rm H}, \\ ^3J_{3,4} = 2.7\ {\rm Hz}, \ {\rm H-3}), \ 3.72 \ ({\rm d}, \ 1{\rm H}, \ ^3J_{2,3} = 9.8\ {\rm Hz}, \ {\rm H-2}), \\ & 3.65-3.78 \ ({\rm m}, \ 3{\rm H}, \ {\rm H-3'}, \ {\rm H-4'}, \ {\rm H-5'}), \ 4.03 \ ({\rm d}, \ 1{\rm H}, \\ ^3J_{4,5} = 1.2\ {\rm Hz}, \ {\rm H-5}), \ 4.06-4.16 \ ({\rm m}, \ 2{\rm H}, \ C{\rm H}_2{\rm C}_6{\rm H}_5, \\ & CH_2{\rm CH=CH}_2), \ 4.29 \ ({\rm t}, \ 1{\rm H}, \ ^3J_{5'',6''a} = 6.6\ {\rm Hz}, \ ^3J_{5'',6''b} = \\ & 6.7\ {\rm Hz}, \ {\rm H-5''}), \ 4.35 \ ({\rm d}, \ 1{\rm H}, \ ^3J_{1,2} = 7.6\ {\rm Hz}, \ {\rm H-1}), \ 4.38- \\ & 4.51 \ ({\rm m}, \ 4{\rm H}, \ {\rm H-6''a}, \ {\rm H-4}, \ CH_2{\rm C}_6{\rm H}_5, \ CH_2{\rm CH=CH}_2), \\ & 4.61-4.87 \ ({\rm m}, \ 5{\rm H}, \ {\rm H-6''b}, \ 2 \times CH_2{\rm C}_6{\rm H}_5), \ 5.14-5.36 \\ & ({\rm m}, \ 2{\rm H}, \ C{\rm H}_2{\rm CH=CH}_2), \ 5.24 \ ({\rm s}, \ 2{\rm H}, \ CH_2{\rm C}_6{\rm H}_5), \ 5.30 \\ & ({\rm d}, \ 1{\rm H}, \ ^3J_{1',2''} = 7.9\ {\rm Hz}, \ {\rm H-1''}), \ 5.34 \ ({\rm d}, \ 1{\rm H}, \ ^3J_{1',2'} = \\ \end{split}$$

0.9 Hz, H-1'), 5.56 (dd, 1H, ${}^{3}J_{3''4''} = 3.4$ Hz, H-3"), 5.80 (dd, 1H, ${}^{3}J_{2''}{}_{3''} = 10.4$ Hz, H-2"), 5.85–6.00 (m, 1H, CH₂CH=CH₂), 5.96 (d, 1H, H-4"), 7.15-8.08 (m, 40 H, $4 \times CH_2C_6H_5$, $4 \times OCOC_6H_5$); ¹³C NMR (125.76 MHz, CDCl₃): δ 18.08 (C-6'), 20.91 (OCOCH₃), $61.94 (C-6''), 67.35, 70.69, 71.52, 73.09 (4 \times CH_2C_6H_5),$ 67.48 (C-5'), 68.20 (C-2'), 68.45 (C-4"), 70.11 (C-2"), 70.92 (C-5"), 71.83 (C-3"), 72.00 (C-4), 73.61 (C-5), 75.24 (CH₂CH=CH₂), 76.74 (C-4'), 77.43 (C-3'), 78.15 (C-2), 81.27 (C-3), 98.19 (C-1'), 101.13 (C-1"), 102.73 (C-1), 117.53 (CH₂CH=CH₂), 127.51, 127.57, 127.61, 127.64, 127.73, 128.23, 128.25, 128.31, 128.33, 128.36, 128.43, 128.58, 128.63, 128.84, 129.27, 129.36, 129.52, 129.69, 129.71, 129.76, 129.92, 133.03, 133.19, 133.25, 133.46, 135.36, 137.84, 138.08, 138.35 $(4 \times CH_2C_6H_5,$ $4 \times OCOC_6H_5$, 19 signals are isochronic), 133.87 $(CH_2CH=CH_2),$ 165.41, 165.56, 166.03 $(4 \times$ OCOC₆H₅), 167.02 (C-6), 169.65 (OCOCH₃). Anal. Calcd for C₇₉H₇₆O₂₁ (1361.44): C, 69.69; H 5.63. Found: C. 69.63; H 5.69.

References

- Ridley, B. L.; O'Neill, A. M.; Mohnen, D. *Phytochemistry* 2001, 57, 929–967.
- Paulsen, B. S.; Barsett, H. Adv. Polym. Sci. 2005, 186, 69– 101.
- McNeil, M.; Darvil, A. G.; Fry, S. C.; Albersheim, P. Ann. Rev. Biochem. 1984, 53, 625–663.
- Schols, H. A.; Vorhagen, A. G. J. In *Progress in Biotechnology, Pectins and Pectinases*; Visser, J., Vorhagen, A. G. J., Eds.; Elsevier: Amsterdam, 1996; pp 3–19.
- Vorhagen, A. G. J.; Pilnik, W.; Thibault, J.-F.; Axelos, M. A. V.; Renard, C. M. G. C. In *Food Polysaccharides and their Application*; Stephen, A. M., Ed.; Marcel Dekker: New York, 1995; pp 287–339.
- (a) Geshi, N.; Jørgensen, B.; Scheller, H. V.; Ulvskov, P. *Planta* 2000, 210, 622–629; (b) Geshi, N.; Jørgensen, B.; Ulvskov, P. *Planta* 2004, 218, 862–868.
- Scheller, H. V.; Jensen, J. K.; Oxenbøll Sørensen, S.; Harholt, J.; Geshi, N. Physiol. Plant. 2007, 129, 283–295.
- (a) Maruyama, M.; Takeda, T.; Shimizu, N.; Hada, N.; Yamada, H. *Carbohydr. Res.* 2000, 325, 83–92; (b) Clausen, M. H.; Jorgensen, M. R.; Thorsen, J.; Madsen, R. J. Chem. Soc., Perkin Trans. 1 2001, 543–551; (c) Clausen, H. M.; Madsen, R. Carbohydr. Res. 2004, 339, 2159–2169; (d) Rao, Y.; Boons, G.-J. Angew. Chem., Int. Ed. 2007, 46, 6148–6151.
- 9. Vogel, C. *Abstract of invited lecture IL23*, 13th European Carbohydrate Symposium, Bratislava, Slovakia, August, 2005.
- Vogel, C.; Farouk, M.; Michalik, M.; Reinke, H.; Jarosz, S. Pol. J. Chem. 2005, 79, 251–265.
- 11. Clode, D. M.; Horton, D.; Weckerle, W. Carbohydr. Res. **1976**, *49*, 305–314.
- Betaneli, V. I.; Ovchinnikov, M. V.; Backinowsky, L. V.; Kochetkov, N. K. Carbohydr. Res. 1979, 76, 252–256.
- Liptak, A.; Nanasi, P.; Neszmelyi, A.; Wagner, H. *Tetrahedron* 1980, 36, 1261–1268.
- King, J. F.; Allbut, A. D. Can. J. Chem. 1970, 48, 1754– 1769.

- 15. Nolting, B.; Boye, H.; Vogel, C. J. Carbohydr. Chem. 2001, 20, 585–610.
- 16. Iversen, T.; Bundle, D. R. J. Chem. Soc., Chem. Commun. 1981, 1240–1241.
- 17. Wessel, H.-P.; Bundle, D. R. J. Chem. Soc., Perkin Trans. 1 1985, 2251–2260.
- 18. Kasai, R.; Okihara, M.; Asakawa, J.; Mizutani, K.; Tanaka, O. *Tetrahedron* **1979**, *35*, 1427–1432.
- 19. Ogawa, T.; Nakabayashi, S. *Carbohydr. Res.* **1981**, *93*, C1–C5.
- 20. Nolting, B.; Boye, H.; Vogel, C. J. Carbohydr. Chem. 2000, 19, 923–938.
- 21. Reiffarth, D.; Reimer, K. B. Carbohydr. Res. 2008, 343, 179–188.
- 22. Vogel, C.; Nolting, B.; Kramer, S.; Steffan, W.; Ott, A.-J. Synthesis of Pectin Fragments by Modular Design

Principle. In Advances in Pectin and Pectinase Research; Voragen, F., Schols, H., Visser, R., Eds.; Kluwer Academic: Dordrecht, Boston, London, 2003; pp 209–220.

- 23. de Lederkremer, R. M.; Deferrari, J. O. J. Org. Chem. **1962**, 27, 2561–2563.
- 24. Mota, J. F.; Mostowicz, D.; Ortiz, C.; Pradera, M. A.; Robina, I. *Carbohydr. Res.* **1994**, *257*, 305–316.
- Betaneli, V. I.; Ovchinnikov, M. V.; Backinowsky, L. V.; Kochetkov, N. K. Carbohydr. Res. 1980, 84, 211–224.
- Gillard, J. W.; Israel, M. *Tetrahedron Lett.* 1981, 22, 513– 516.
- 27. Kramer, S.; Nolting, B.; Ott, A.-J.; Vogel, C. J. Carbohydr. Chem. 2000, 19, 891–921.
- Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988.