NJC

PAPER

Cite this: DOI: 10.1039/c8nj03868f

Short synthesis, X-ray and conformational analysis of a cyclic peracetylated L-sorbose-derived nitrone, a useful intermediate towards N–O-containing D-gluco-iminosugars[†]

Salia Tangara,^a Alice Kanazawa, (2)*^a Martine Fayolle,^a Christian Philouze,^a Jean-François Poisson, (2)^a Jean-Bernard Behr (2)^b and Sandrine Py (2)*^a

The synthesis of the peracetylated ketonitrone **4** is described in four steps from L-sorbose. This cyclic nitrone is crystalline and proved to preferentially adopt a ${}^{4}H_{3}$ conformation with all acetate groups in pseudo-axial orientation. Nitrone **4** undergoes regioselective cycloadditions with alkynes, affording tetra-*O*-acetyl-isoxazolines with good yields and stereoselectivities (4:1 to 9:1 diastereomeric ratio). Nitrone **4** and the obtained isoxazolines were smoothly deacetylated to produce the polyhydroxylated nitrone **5** and novel iminosugars containing an isoxazoline motif. Evaluation of their glycosidase inhibitory activity demonstrated their rather weak, but selective affinity for a variety of enzymes.

Received 1st August 2018, Accepted 6th September 2018

DOI: 10.1039/c8nj03868f

rsc.li/njc

Introduction

Carbohydrate-derived nitrones¹ are key intermediates for the synthesis of polyhydroxylated alkaloids and iminosugars, which are sugar analogues with a nitrogen atom in place of the endocyclic oxygen atom. Iminosugars are a major class of synthetic targets due to their therapeutic potential, generally associated with their ability to inhibit glyco-processing enzymes.²

Among the cyclic nitrones described to date, the vast majority is *O*-benzyl-protected due to the compatibility of benzyl ethers with the steps involved in their preparation from carbohydrates. Moreover, easy conversion of benzyl ethers into hydroxyls by hydrogenolysis is usually performed in the last stages of iminosugar syntheses. A few years ago, we applied tetra-*O*-benzylprotected ketonitrones (prepared from inexpensive D-fructose³ or L-sorbose⁴) to the synthesis of original iminosugars bearing a quaternary center α to their nitrogen atom. In particular, the L-sorbose benzylated ketonitrone **1** was successfully used in the synthesis of the polyhydroxylated indolizidine **2**⁴ and quinolizidine **3**,⁵ which were revealed to be potent and selective α -glucosidase inhibitors with nanomolar K_i values (Scheme 1). Such carbohydrate derived-nitrones could also give access to iminosugars containing a N–O bond, for which little is known concerning

Scheme 1 Ketonitrones as intermediates for new iminosugar synthesis.

glycosidase inhibition potency.⁶ Although such compounds could in principle be obtained through cleavage of benzyl ethers using BCl₃ to avoid N–O bond destructive hydrogenolysis,^{3,7} we thought that the use of *O*-acyl-protected nitrones could be advantageous to allow a hydroxyl-deprotection step under mild conditions. We thus intended to prepare nitrone **4**, the *O*-acetylated analogue of nitrone **1**, and to study its reactivity in cycloaddition reactions with alkynes to form 4-isoxazolines, a class of compounds for which glycosidase inhibition has yet not been reported. Noteworthily, examples of *O*-acylated nitrones are very scarce in the literature.⁸

Results and discussion

While three steps are necessary for the synthesis of tetra-*O*benzyl-L-sorbose from L-sorbose,⁴ only one step is required to prepare tetra-*O*-acetyl-L-sorbose (7). This protected ketose has been previously obtained in 65% yield by treating L-sorbose

CHEMISTRY

View Article Online

^a Univ. Grenoble Alpes, DCM, F-38000 Grenoble, France CNRS, DCM, F-38000 Grenoble, France. E-mail: Alice.Kanazawa@univ-grenoble-alpes.fr, Sandrine.Py@univ-grenoble-alpes.fr

^b Univ. Reims Champagne-Ardenne, ICMR, CNRS UMR 7312, 51687 Reims Cedex 2, France

[†] Electronic supplementary information (ESI) available. CCDC 1587933 (4). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8nj03868f

with acetic anhydride in pyridine.⁹ We found that acylation of L-sorbose in the presence of acetyl chloride yielded the protected derivative 7 (84%) with better efficiency (Scheme 2).¹⁰ In the next step, the *in situ* generation of the PPh₃·Br₂ brominating reagent was preferred to the commercially available complex as the latter exhibited variable efficiency depending on the batches. Thus, triphenylphosphine and pyridinium tribromide in the presence of pyridine were used to perform concomitant hemiketal ring opening and C-6 bromination of 7,¹¹ allowing the isolation of bromoketone 8 in excellent yield (89%). The direct transformation of 8 into nitrone 4 by using the same protocol used for the synthesis of 1 was not possible in this case. Treating bromoketone 8 with hydroxylamine only led to complex mixtures, in which the presence of 4 could not be detected by NMR analysis. A significant loss of material after extraction suggested deacetylation in the presence of hydroxylamine.¹² Bromoketone 8 was thus treated with tert-butyldimethylsilyloxyamine¹³ in the presence of MgSO₄ in refluxing toluene to yield the bromo-oxime 9 in 66% yield. Remarkably, only the E stereoisomer was formed in this case. Finally, the target nitrone 4 was obtained in 61% yield by a desilylation/cyclisation sequence induced by treatment with TBAF on silica at 0 °C.¹⁴ The crystalline and stable nitrone 4 was thus synthetized in 4 steps from L-sorbose in 30% overall yield. Its preparation can be applied to the multigram scale.

The analysis by X-ray diffraction of a monocrystal of nitrone 4 unambiguously confirmed its structure and depicted a halfchair conformation in which the acetate substituents are in pseudo-axial orientations (Fig. 1).¹⁵ NMR data also support the preference for pseudo-axial positioning of the acetate groups in solution (broad singlet for ³H, meaning that $J^{3}H$,⁴H < 2 Hz in CDCl₃). This conformation could be favored over the half-chair exhibiting pseudo-equatorial acetate groups due to throughspace electrostatic stabilization of the (C—N)⁺ function by axial acyloxy groups, as previously demonstrated for 6-membered cyclic oxocarbeniums.¹⁶ DFT calculations confirmed that the

Fig. 1 Views of the X-ray structure of nitrone 4.

half-chair conformation with all acetate substituents in pseudoaxial orientation is more stable than that bearing all-equatorial acetates, although the free energy difference is small ($\Delta G_{298} =$ 1 kcal mol⁻¹, see ESI†).¹⁷

Nitrone **4** was engaged in cycloaddition reactions with various alkynes to prepare isoxazolines (Table 1). The cycloadditions with phenylacetylene, cyclohexylacetylene, trimethylsilylacetylene, propargyl acetate, 1-pentyne and 1-hexyne were slow, but occurred smoothly at room temperature, and led to isoxazolines **10a–f** and **10'a–f** in good yields (78–97%). These reactions proved to be completely regioselective, yielding only the C-5 substituted isoxazolines **10a–f**. However, cycloadditions with nitrone **4** were not as diastereoselective as with nitrone **1**,¹⁸ and minor diastereoisomers **10'a–f** could not be separated by chromatography from **10a–f** (**10**:**10**' = **4**:**1** to **9**:**1**).

NJC

Interestingly, the major isoxazolines 10a-f (of R configuration at the quaternary center as deduced from nOe analyses, see ESI⁺) exhibit the D-gluco configuration that proved essential for the biological activities of 2 and 3.4,5 The dominant reaction pathway thus results from the preferential approach of the alkyne from the Si face of the nitrone. This is consistent with an axial approach of the alkyne on the minor ${}^{3}H_{4}$ conformer of nitrone 4, forming a favored chair-like transition (pathway a) state rather than the higher-energy twist boat that would result from addition of the alkyne through the other axial trajectory (pathway b), *i.e. anti* to the C-3 acetoxy substituent (Scheme 3). The axial approach favoring chair-like transition states is known to be favored in nucleophilic additions to both 6-membered oxonium¹⁹ and

The stereochemical outcome of the cycloaddition of alkynes to nitrone 4 thus suggests a fast equilibrium between its ${}^{4}H_{3}$ and ${}^{3}H_{4}$ conformers, and a faster cycloaddition of the latter, exhibiting pseudo-equatorial acetate groups, over the slightly more stable ${}^{4}H_{3}$ conformer. The formation of the minor diastereoisomers 10' could arise either from an axial approach of the alkyne to develop a chair-like transition state on the ${}^{4}H_{3}$ conformer of the nitrone (not shown), or from the disfavored twist-boat transition state occurring in pathway b from the ${}^{3}H_{4}$ conformer (Scheme 3). In contrast to the numerous studies on cycloadditions involving 5-membered ring nitrones and alkenes,²¹ cycloadditions to cyclic 6-membered ring nitrones are less common and their stereoselectivity has rarely been discussed.²² The model proposed here, involving addition of the dipolarophile to the nitrone via a favored axial trajectory, can also explain previous results reported by van den Broek²³ and by Peer and Vasella (with dipolarophiles different from alkynes).²⁴ In light of these results, DFT energy minimization calculations were also performed on the two half-chair conformations of nitrone **1** (see ESI⁺).^{17,18} The most stable conformer is also the ${}^{3}H_{4}$ conformer exhibiting pseudo axial benzyloxy groups, and in this case, the free energy difference ($\Delta G_{298} = 0.5 \text{ kcal mol}^{-1}$) between conformers is smaller.

According to NMR data, the major isoxazolines 10 formed from the cycloaddition of nitrone 4 with alkynes all adopt a chair ${}^{4}C_{1}$ conformation in the piperidine ring. Indeed, the ${}^{4}H^{-5}H$ coupling constants in these compounds exhibit typical values for diaxial proton coupling (10.1 Hz $< J^{4}H^{-5}H < 10.6$ Hz).

Scheme 3 Stereochemical model for alkyne cycloadditions to nitrone 4.

Scheme 4 Deacetvlation of nitrone 4 and isoxazolines 10

Nitrone 4 and isoxazolines 10.10' were next easily deprotected under mild conditions by treatment with a saturated solution of ammonia in methanol, affording the polyhydroxylated nitrone 5 in good yield (81%, Scheme 4).25 The polyhydroxylated isoxazolines 6a-f and 6'a-f could also be obtained in good yields under the same conditions. Gratifyingly, after deacetylation, the major diastereomer 6a could be isolated pure by recrystallization in methanol. Here again, the measured coupling constant $J^{4}H^{-5}H$ of 8.8 Hz (δ 3.92 ppm) for **6a** suggests that this compound adopts mostly a ${}^{4}C_{1}$ conformation in d4-methanol.

Biological activities

The polyhydroxylated nitrone 5 and isoxazolines 6 synthesized from nitrone 4 were next evaluated as glycosidase inhibitors using a panel of commercial enzymes.²⁶ Nitrone 5 and isoxazoline 6a were tested as pure compounds (single stereoisomer), whereas isoxazolines 6b and 6d-f were tested as mixtures of diastereomers. Inhibition of rice α -glucosidase, yeast α -glucosidase, almond β-glucosidase, β-glucosidase from Aspergillus niger, β-galactosidase from Aspergillus oryzae, Jack bean α-mannosidase, bovine liver α-fucosidase and α-rhamnosidase from Aspergillus niger was first evaluated at 1 mM concentration of inhibitor (Table 2). When almost complete inhibition (>95%) occurred at this concentration, IC₅₀ (the concentration of inhibitor affording half the initial rate of the considered glycosidase) was further determined. In the case of an inhibition rate between 90% and 95%, an additional assay was performed at a concentration of 100 μ M (see footnotes of Table 2).

Nitrone 5 and isoxazolines 6a,b,e,f are all inhibitors of α-glucosidase from rice at 1 mM concentration. Nitrone 5 and isoxazoline 6a are the most active, with IC₅₀ values of 16 and 50 µM, respectively. However, these values are three orders

Table 2 Glycosidase inhibition^{a,b}

Enzyme	5	6a	6b/6′b	6d/6′d	6e/6'e	6f/6′f
α-glucosidase (rice)	95% ^c	96% ^d	92% ^e	43%	92% ^f	91% ^g
α-glucosidase (Sac. cerevisiae)	5%	49%	74%	$-26\%^{j}$	11%	30%
β-glucosidase (almond)	16%	$94\%^h$	$-7\%^{j}$	$-7\%^{j}$	$-24\%^{j}$	$-8\%^{j}$
β -glucosidase (Asp. niger)	11%	$93\%^{i}$	NI	NI	NI	NI
β -galactosidase (Asp. orizae)	15%	37%	15%	NI	NI	NI
α-mannosidase (Jack bean)	8%	NI	$-13\%^{j}$	$-8\%^{j}$	$-6\%^{j}$	$-12\%^{j}$
α-rhamnosidase (Asp. niger)	33%	46%	8%	NI	10%	7%

^{*a*} % inhibition at 1 mM concentration of inhibitor (less than 5% inhibition/activation was regarded as no impact of the inhibitor on enzyme activity). ^{*b*} NI means no impact on enzyme activity. ^{*c*} $IC_{50} = 16 \mu$ M. ^{*d*} $IC_{50} = 50 \mu$ M. ^{*e*} 39% inhibition at 100 μ M. ^{*f*} 33% inhibition at 100 μ M. ^{*g*} 41% inhibition at 100 μ M. ^{*i*} 18% inhibition at 100 μ M. ^{*j*} Negative values mean increase of enzyme activity.

of magnitude higher than other D-gluco-configured bicyclic iminosugars bearing a hydroxymethyl substituent at the ring junction (IC₅₀ in the nanomolar range).^{4,5} Isoxazolines 6b,e,f are less efficient inhibitors, with IC_{50} values above 100 μ M, as reflected by the remaining α -glucosidase activity measured at this concentration. Compound 6d, which features an extra hydroxymethyl group, is only a moderate inhibitor of α -glucosidase from rice (43% at 1 mM) and it has no inhibition capacity towards all other tested enzymes. Such a detrimental impact of additional hydroxyl groups onto the fused cycle has already been observed previously with hydroxylated analogues of indolizidine 2⁴ and quinolizidine 3.⁵ Compounds 5 and 6b,d,e,f only marginally interfere with the other glycosidases. Only 6a, which features an aromatic moiety on the isoxazoline ring, proved active against β-glucosidases from almond and from Aspergillus niger (94% and 93% inhibition, respectively). However, a sharp decrease of inhibition potency occurred in a dose-dependent manner affording only 20% remaining inhibition at 100 µM for both enzymes. The weak basicity of the nitrogen atom in isoxazolines 6 (in comparison to that of iminosugars such as 2 and 3) probably disfavours protonation under the assay conditions, and could account for their limited performance as transition state mimics.

Unexpectedly, a significant increase in the activity of α -glucosidase (yeast) was observed in the presence of **6d** at 1 mM concentration (26% activation). Similarly, isoxazolines **6b,d,e,f** behave as activators of β -glucosidase and of α -mannosidase. This phenomenon is quite commonly encountered while performing glycosidase assays in the presence of carbohydrate analogues,²⁷ but it is not systematically included in the tables reporting inhibition values (for the sake of simplicity, it is sometimes referred to as NI, no inhibition). The mechanism of activation of glycosidases by saccharides or analogues is currently unknown but allosteric regulation or modification of the assay-solution properties by the activator has been suggested as a possible explanation.²⁸

Conclusions

In conclusion, a short synthetic route to the peracetylated ketonitrone **4** was developed from L-sorbose. The latter was used in cycloaddition reactions with alkynes, which afforded the corresponding bicyclic isoxazolines in high yields, with excellent regioselectivity and significant stereoselectivity in favour of the D-gluco-configured compounds. An easy deprotection

through methanolic aminolysis of acetates gave access to the polyhydroxylated nitrone **5** and to unprecedented iminosugars **6a–f** containing an isoxazoline motif. These compounds were evaluated as glycosidase inhibitors and most of them were found to be weak but selective inhibitors of rice α -glycosidase.

Experimental

General remarks

Reactions were performed under a positive pressure of dry argon in oven-dried glassware equipped with a magnetic stir bar. Standard inert atmosphere techniques were used in handling all air and moisture sensitive reagents. THF and toluene were freshly distilled from sodium; CH2Cl2 and pyridine were distilled from CaH₂. Purchased reagents were used without purification. Reactions were monitored by thin layer chromatography (TLC) using commercial aluminum-backed silica gel plates. TLC spots were viewed under ultraviolet light and by heating the plate after treatment with a 3% solution of potassium permanganate in 10% aqueous potassium hydroxide (w/v). Product purification by gravity column chromatography was performed using Silica Gel 60 (70-230 mesh). Optical rotations were measured on a Perkin Elmer 341 polarimeter. Infrared spectra were obtained from neat compounds on a Nicolet "Magna 550" spectrometer using an ATR (attenuated total reflexion) module. The data are reported in reciprocal centimeters (cm⁻¹). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 500 (¹H: 500 MHz, ¹³C: 125 MHz) spectrometer. Chemical shifts for ¹H spectra are values from residual chloroform in CDCl₃ (δ 7.26 ppm), residual acetone in (CD₃)₂CO (δ 2.05 ppm) or residual methanol in CD₃OD (δ 3.31 ppm). Chemical shifts for ¹³C spectra are values from CDCl₃ (δ 77.16 ppm), (CD₃)₂CO (δ 29.84 ppm) or CD₃OD (δ 49.00 ppm). ¹H NMR spectra are reported as following: chemical shift (ppm), multiplicity (br: broad; s: singlet; d: doublet; dd: doublet of doublets; ddd: dedoubled doublet of doublets; t: triplet; ps t: pseudo triplet; td: triplet of doublets; m: multiplet), coupling constants (Hz) and integration. Proton and carbon signal assignments were established using COSY, HSQC, and HMBC experiments. High-resolution mass spectra (HRMS) were recorded on a Waters G2-S Q-TOF mass spectrometer.

Experimental protocols

(2R,3S,4R,5S)-2-(Acetoxymethyl)-2-hydroxytetrahydro-2H-pyran-3,4,5-triyl triacetate (7). L-Sorbose (10.0 g, 55.5 mmol) was

dissolved in dry pyridine (150 mL) at room temperature. The solution was cooled to -10 °C and kept for 1 h at this temperature. Acetyl chloride (16.2 mL, 228 mmol) was then added dropwise (in around 45 min), the temperature of the mixture being kept at -5 °C. The final solution was stirred at -10 °C for 3 h and at room temperature for 40 min. After dilution in dichloromethane, the mixture was poured into a 2 M HCl aqueous solution. The organic phase was then separated and washed twice with HCl solution followed by washing with a saturated aqueous NaHCO3 solution. After drying over anhydrous MgSO₄, the organic phase was filtered and concentrated under vacuum to give a residue, which was purified by chromatography (pentane/ether 9:1) affording tetra-O-acetylated-L-sorbose 7 (16.16 g, 84%) as a white solid. M.p. 91–93 °C. $[\alpha]_{\rm D}^{20} = -21.6$ $(c = 1.02, \text{ CHCl}_3)$. IR $\nu = 3551, 2977, 1750, 1736, 1700, 1369,$ 1218, 1168, 1036 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ = 5.52 (ps t, J = 9.8 Hz, 1H, ⁴CH), 5.07 (d, J = 9.9 Hz, 1H, ³CH), 5.02 (ddd, J = 6.2, 9.8, 10.6 Hz, 1H, ⁵CH), 4.18 (d of AB system, J = 11.8 Hz, 1H, ${}^{1}CH_{2}$), 3.97 (d of AB system, J = 11.8 Hz, 1H, ${}^{1}CH_{2}$), 3.90-3.80 (m, 2H, ⁶CH₂), 3.41 (s, 1H, OH), 2.12 (s, 3H, ^{Ac}CH₃), 2.09 (s, 3H, ^{Ac}CH₃), 2.03 (s, 3H, ^{Ac}CH₃), 2.02 (s, 3H, ^{Ac}CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 171.1 (^{Ac}CO), 170.3 (^{Ac}CO), 170.1 (^{Ac}CO), 169.8 (^{Ac}CO), 95.8 (²Cq), 70.7 (⁴CH), 70.4 (³CH), 69.2 (⁵CH), 65.9 (¹CH₂), 59.5 (⁶CH₂), 20.8 (^{Ac}CH₃), 20.8 (^{Ac}CH₃), 20.7 (^{Ac}CH₃), 20.7 (^{Ac}CH₃). HRMS (ESI⁺): calcd for C₁₄H₂₀NaO₁₀ $[M + Na]^+$ 371.0954; found 371.0957.

(3S,4S,5R)-6-Bromo-2-oxohexane-1,3,4,5-tetrayl tetraacetate (8). To a solution of triphenylphosphine (9.09 g, 34.6 mmol) in THF (90 mL) was added pyridinium tribromide (11.04 g, 34.5 mmol) and the mixture was stirred for 20 minutes at room temperature. Compound 7 (6 g, 17.2 mmol) in THF (45 mL) and pyridine (5.5 mL, 69.0 mmol) were then added and the resultant mixture was heated at reflux for 1 h. After dilution in ethyl acetate, the organic phase was washed successively with a saturated Na₂S₂O₃ aqueous solution, aqueous 2 M HCl solution and with brine. After drying over MgSO₄, the organic phase was filtered and concentrated under vacuum. The crude solid was washed with ether and discarded. The ethereal solution was evaporated to give an oily residue that was purified by chromatography (pentane/ether 3:7) to afford bromoketone 8 (6.26 g, 89%) as a yellow oil. $[\alpha]_{D}^{20} = +21.1$ (*c* = 0.99, CHCl₃). IR ν = 2941, 1750, 1431, 1371, 1200, 1042 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ = 5.71 (dd, *J* = 3.7 Hz, *J* = 5.6 Hz, 1H, ⁴CH), 5.43 (d, *J* = 3.7 Hz, 1H, ³CH), 5.27 (ddd, *J* = 5.3, 5.3, 11.0 Hz, 1H, ⁵CH), 4.83 (d of AB system, J = 17.1 Hz, 1H, ¹CH₂), 4.77 (d of AB system, J = 17.1 Hz, 1H, ¹CH₂), 3.52 (dd of ABX system, J = 5.3, 11.0 Hz, 1H, ${}^{6}CH_{2}$), 3.41 (dd of ABX system, J = 5.3, 11.0 Hz, 1H, ⁶CH₂), 2.20 (s, 3H, ^{Ac}CH₃), 2.16 (s, 3H, ^{Ac}CH₃), 2.12 (s, 3H, ^{Ac}CH₃), 2.09 (s, 3H, $^{Ac}CH_3$) ppm. ^{13}C NMR (125 MHz, CDCl₃) δ = 197.1 (^{Ac}CO), 169.9 (^{Ac}CO), 169.8 (^{Ac}CO), 169.72 (^{Ac}CO), 169.66 (^{Ac}CO), 73.8 (³CH), 70.3 (⁵CH), 70.0 (⁴CH), 66.7 (¹CH₂), 29.3 (⁶CH₂), 20.7 (^{Ac}CH₃), 20.6 (^{Ac}CH₃), 20.56 (^{Ac}CH₃), 20.54 (^{Ac}CH₃) ppm. HRMS (ESI⁺): calcd for $C_{14}H_{19}BrNaO_9 [M + Na]^+ 433.0110$; found 433.0113.

(3R,4S,5R,E)-6-Bromo-2-(*tert*-butyldiphenylsilyloxyimino)-hexane-1,3,4,5-tetrayl tetraacetate (9). To a solution of bromoketone 8 (3.06 g, 7.44 mmol) in toluene (150 mL), MgSO₄ (25.5 g), *O-tert*butyldiphenylsilyl hydroxylamine (2.42 g, 8.93 mmol) and

pyridinium p-toluenesulfonate (374 mg, 1.49 mmol) were added successively. The mixture was heated at reflux for 1 h whereupon solid NaHCO3 was added to neutralise PPTS. After filtration over Celite, the solids were rinsed with dichloromethane and the filtrate was concentrated under vaccum to give a residue, which, upon chromatography (pentane/ether 9:1 to 7:3), yielded oxime 9 (3.24 g, 66%) as a brown oil. $[\alpha]_{D}^{20} = -9.2$ (c = 1.08, CHCl₃). IR $\nu = 3072, 2958, 2935, 2859, 1746, 1428, 1371, 1207, 1115, 1044, 966,$ 948 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ = 7.68–7.58 (m, 4H, ^{Ar}CH), 7.47-7.32 (m, 6H, ^{Ar}CH), 5.74-5.63 (m, 2H, ³CH and ⁴CH), 5.22 (d of AB system, J = 15.9 Hz, 1H, ¹CH₂), 5.16 (td, J = 5.5, 6.7 Hz, 1H, ⁵CH), 5.11 (d of AB system, J = 15.9 Hz, 1H, ¹CH₂), 3.28 (d, J = 5.6 Hz, 2H, ⁶CH₂), 2.16 (s, 3H, ^{Ac}CH₃), 2.04 (s, 3H, ^{Ac}CH₃), 1.92 (s, 3H, ^{Ac}CH₃), 1.89 (s, 3H, ^{Ac}CH₃), 1.10 (s, 9H, ^{t-Bu}CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 169.9 (^{Ac}CO), 169.9 (^{Ac}CO), 169.8 (^{Ac}CO), 169.8 (^{Ac}CO), 156.2 (²Cq), 135.6 (^{Ar}CH), 135.6 (^{Ar}CH), 132.8 (^{Ar}Cq), 132.8 (^{Ar}Cq), 130.1 (^{Ar}CH), 130.0 (^{Ar}CH), 127.9 (^{Ar}CH), 127.8 (^{Ar}CH), 70.7 (⁵CH), 70.5 (⁴CH), 69.1 (³CH), 58.5 (¹CH₂), 27.1 (⁶CH₂), 20.9 (^{Ac}CH₃), 20.7 (^{Ac}CH₃), 20.6 (^{Ac}CH₃), 20.5 (^{Ac}CH₃) ppm. HRMS (ESI⁺): calcd for $C_{30}H_{38}BrNaNO_9Si [M + Na]^+$ 686.1397; found 686.1385.

(3S,4R,5R)-3,4,5-Triacetoxy-6-(acetoxymethyl)-2,3,4,5-tetrahydropyridine 1-oxide (4). To a solution of bromide 9 (4.02 g, 6.05 mmol) in THF (135 mL), TBAF supported on silica gel (6.7 g, 8.28 mmol) was added at 0 °C, and the mixture was stirred for 1 h. After filtration, the solid was rinsed with THF. The filtrate was concentrated under vacuum and the residue was purified by chromatography (AcOEt/MeOH 95:5) to afford nitrone 4 (1.27 g, 61%) as a white solid. M.p. 106–107 °C. $[\alpha]_{D}^{20} = -63.5$ (*c* = 1.07, $CHCl_3$). IR ν = 2981, 2950, 1737, 1434, 1370, 1208, 1047, 1022 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ = 5.72 (br s, 1H, ³CH), 5.23 (d, J = 16.6 Hz, 1H, ¹CH₂), 5.22–5.16 (m, 2H, ⁴CH and ⁵CH), $4.95 (d, J = 16.6 Hz, 1H, {}^{1}CH_{2}), 4.23 (dd, J = 1.6, 16.1 Hz, 1H, {}^{6}CH_{2}),$ 4.01 (br d, J = 16.1 Hz, 1H, ⁶CH₂), 2.11 (s, 3H, ^{Ac}CH₃), 2.08 (s, 3H, ^{Ac}CH₃), 2.06 (s, 3H, ^{Ac}CH₃), 2.04 (s, 3H, ^{Ac}CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 170.2 (^{Ac}CO), 169.4 (^{Ac}CO), 169.0 (^{Ac}CO), 168.7 (^{Ac}CO), 138.5 (²Cq), 65.8 (⁴CH), 65.4 (⁵CH), 65.3 (³CH), 60.0 (¹CH₂), 59.4 (⁶CH₂), 20.7 (^{Ac}CH₃), 20.7 (^{Ac}CH₃), 20.6 (^{Ac}CH₃), 20.6 (^{Ac}CH₃) ppm. HRMS (ESI⁺): calcd for $C_{14}H_{20}NO_9$ $[M + H]^+$ 346.1138; found 346.1133.

(3aR,4R,5R,6S)-3a-(Acetoxymethyl)-2-phenyl-3a,4,6,7-tetrahydro-5H-isoxazolo[2,3-a]pyridine-4,5,6-triyl triacetate (10a). A mixture of nitrone 4 (264 mg, 0.76 mmol) and phenylacetylene (1.3 mL, 11.5 mmol) was stirred at room temperature for 3 days. After concentration under reduced pressure, the residue was purified by chromatography over silica gel (pentane/EtOAc 7:3) to give cycloadducts 10a and 10'a (310 mg, 90%) as a white foam (mixture of two unseparated diastereoisomers, dr = 4:1). M.p. 43-45 °C. IR *ν* = 2969, 1750, 1649, 1494, 1448, 1367, 1212, 1031 cm⁻¹. Major diastereoisomer: ¹H NMR (400 MHz, CDCl₃) δ = 7.55–7.47 (m, 2H, ^{Ar}CH), 7.37–7.31 (m, 3H, ^{Ar}CH), 5.48 (d, J = 10.1 Hz, 1H, ⁴CH), 5.31–5.24 (m, 2H, ³CH, ⁵CH), 5.05 (td, J = 4.6, 6.5 Hz, 1H, ⁶CH), 4.08 (d of AB system, J = 11.6 Hz, 1H, ${}^{8}CH_{2}$), 3.95 (d of AB system, J = 11.6 Hz, 1H, ${}^{8}CH_{2}$), 3.60 (dd o f ABX system, J = 4.5, 13.4 Hz, 1H, ⁷CH₂), 3.39 (dd of ABX system, $J = 6.5, 13.4 \text{ Hz}, 1\text{H}, {}^{7}\text{CH}_{2}$, 2.08 (s, 3H, ${}^{\text{Ac}}\text{CH}_{3}$), 2.06 (s, 3H, ${}^{\text{Ac}}\text{CH}_{3}$),

1.99 (s, 3H, ^{Ac}CH₃), 1.86 (s, 3H, ^{Ac}CH₃) ppm. ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 170.8$ (^{Ac}CO), 170.1 (^{Ac}CO), 170.0 (^{Ac}CO), 169.6 (^{Ac}CO), 157.0 (²C_a), 130.1 (^{Ar}CH), 128.6 (^{Ar}CH), 127.8 (^{Ar}C_a), 126.0 (^{Ar}CH), 91.7 (³CH), 74.7 (^{3a}C_a), 73.0 (⁵CH), 69.9 (⁶CH), 67.9 (⁴CH), 64.4 (⁸CH₂), 53.1 (⁷CH₂), 20.9 (^{Ac}CH₃), 20.8 (^{Ac}CH₃), 20.8 (^{Ac}CH₃), 20.7 (^{Ac}CH₃) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (400 MHz, CDCl₃) $\delta = 5.41-5.36$ (m, 1H, ^{5'}CH), 5.22–5.16 (m, 2H, ^{3'}CH, ^{6'}CH), 4.23 (d of AB system, J = 11.4, 1H, ^{8'}CH₂), 4.19 (d of AB system, J = 11.2, 1H, ^{8'}CH₂), 3.69 (dd, of ABX system, J = 4.8, 14.3 Hz, 1H, ^{7'}CH₂), 3.33 (dd of ABX system, J = 7.7, 14.3 Hz, 1H, ^{7'}CH₂), 2.09 (s, 3H, ^{Ac}CH₃), 2.05 (s, 3H, ^{Ac}CH₃), 2.00 (s, 3H, ^{Ac}CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 170.6 (^{Ac}CO), 170.2 (^{Ac}CO), 169.7 (^{Ac}CO), 169.6 (^{Ac}CO), 156.0 (^{2'}C_q), 130.0 (^{Ar}CH), 127.5 (^{Ar}C_q), 126.1 (^{Ar}CH), 94.7 (^{3'}CH), 73.4 (^{3a'}C_q), 72.3 (^{4'}CH), 71.8 (^{5'}CH), 68.5 (^{6'}CH), 65.6 (⁸'CH₂), 52.4 (⁷'CH₂), 21.1 (^{Ac}CH₃), 21.1 (^{Ac}CH₃), 21.0 (^{Ac}CH₃), 20.9 (^{Ac}CH₃) ppm. NOESY correlation between ^{8'}CH₂ and ^{5'}CH. HRMS (ESI⁺): calcd for $C_{22}H_{26}NO_9 [M + H]^+$ 448.1608; found 448.1608.

(3aR,4R,5R,6S)-3a-(Acetoxymethyl)-2-cyclohexyl-3a,4,6,7-tetrahydro-5H-isoxazolo[2,3-a]pyridine-4,5,6-triyl triacetate (10b). A mixture of nitrone 4 (44 mg, 0.13 mmol) and cyclohexylacetylene (0.5 mL, 3.7 mmol) was stirred at room temperature for 4 days. After concentration under reduced pressure, the residue was purified by column chromatography over silica gel (pentane/ EtOAc 9:1) to give cycloadducts 10b and 10'b (45 mg, 78%) as a colourless oil (mixture of diasteroisomers, dr = 9:1). IR ν = 2933, 2855, 1742, 1668, 1450, 1368, 1215, 1033 cm⁻¹. Major diastereoisomer: ¹H NMR (400 MHz, CDCl₃) δ = 5.32 (d, J = 10.5 Hz, 1H, ⁴CH), 5.29–5.21 (m, 1H, ⁵CH), 5.02 (dd, *J* = 5.8, 12.0, 1H, ⁶CH), 4.46 (s, 1H, ${}^{3}CH$), 3.90 (d of AB system, J = 11.6 Hz, 1H, ${}^{8}CH_{2}$), 3.76 (d of AB system, J = 11.6 Hz, 1H, ⁸CH₂), 3.45 (dd of ABX system, J = 4.9, 13.4 Hz, 1H, ⁷CH₂), 3.21 (dd of ABX system, J = 6.0, 13.4 Hz, 1H, ⁷CH₂), 2.15–2.05 (m, 1 H, ^{Cy}CH), 2.03 (s, 3H, ^{Ac}CH₃), 1.98 (s, 3H, ^{Ac}CH₃), 1.98 (s, 3H, ^{Ac}CH₃), 1.95 (s, 3H, ^{Ac}CH₃), 1.91–1.57 (m, 6H, ^{Cy}CH₂), 1.31–1.15 (m, 4H, ^{Cy}CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 170.6 (^{Ac}CO), 170.0 (^{Ac}CO), 169.9 (^{Ac}CO), 169.4 (n^{Ac}CO), 164.1 (^{2}C_{q}), 89.6 (^{3}CH), 73.6 (^{3a}C_{q}), 72.3 (⁵CH), 70.1 (⁴CH), 67.7 (⁶CH), 64.9 (⁸CH₂), 53.1 (⁷CH₂), 35.6 (^{Cy}CH), 30.6 (^{Cy}CH₂), 30.3 (^{Cy}CH₂), 25.9 (^{Cy}CH₂), 25.7 (^{Cy}CH₂), 25.6 (^{Cy}CH₂), 20.8 (^{Ac}CH₃), 20.8 (^{Ac}CH₃), 20.7 (^{Ac}CH₃), 20.5 (^{Ac}CH₃) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (400 MHz, CDCl₃) δ = 5.15–5.09 (m, 1H, ^{6'}CH), 4.38 (s, 1H, ^{3'}CH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 170.4 (^{Ac}CO), 170.1 (^{Ac}CO), 169.5 (^{Ac}CO), 169.3 (^{Ac}CO), 163.3 (^{2'}C_a), 92.3 (^{3'}CH), 72.7 (^{5'}CH), 71.7 (^{4'}CH), 68.1 (^{6'}CH), 66.0 (^{8'}CH₂), 52.2 (^{7'}CH₂), 35.3 (^{Cy}CH), 30.4 (^{Cy}CH₂), 30.4 (^{Cy}CH₂) ppm. HRMS (ESI⁺): calcd for $C_{22}H_{32}NO_9 [M + H]^+$ 454.2077; found 454.2072.

(3*a*R,4*R*,5*R*,6*S*)-3*a*-(Acetoxymethyl)-2-(trimethylsilyl)-3*a*,4,6,7tetrahydro-5*H*-isoxazolo[2,3-*a*]pyridine-4,5,6-triyl triacetate (10c). Nitrone 4 (204 mg, 0.59 mmol) and trimethylsilylacetylene (1.6 mL, 11.2 mmol) were dissolved in CH₂Cl₂ (1.5 mL) and stirred at room temperature for 2 days. After concentration under reduced pressure, the crude product was purified on silica gel (CH₂Cl₂) to afford cycloadducts **10c** and **10'c** (253 mg, 97%) as a yellow oil (mixture of diastereoisomers, dr = 9:1). IR ν = 2962, 1741, 1367,

1230, 1031 cm⁻¹. Major diastereoisomer: ¹H NMR (400 MHz, CDCl_3 $\delta = 5.44$ (d, J = 10.4 Hz, 1H, ⁴CH), 5.30–5.21 (m, 1H, ⁵CH), 5.13-5.05 (m, 1H, ⁶CH), 4.97 (s, 1H, ³CH), 3.96 (d of AB system, J = 11.6 Hz, 1H, ⁸CH₂), 3.75 (d of AB system, J = 11.6 Hz, 1H, ⁸CH₂), 3.52 (dd of ABX system, J = 5.0, 13.2 Hz, 1H, ⁷CH₂), 3.20 (dd of ABX system, I = 6.4, 13.2 Hz, 1H, ⁷CH₂), 2.09 (s, 3H, ^{Ac}CH₃), 2.06 (s, 3H, ^{Ac}CH₃), 2.03 (s, 3H, ^{Ac}CH₃), 2.01 (s, 3H, ^{Ac}CH₃), 0.22 (s, 9H, ^{TMS}CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.8 (^{Ac}CO), 170.2 (^{Ac}CO), 170.0 (^{Ac}CO), 169.6 (^{Ac}CO), 162.6$ (²C_q), 106.1 (³CH), 73.4 (^{3a}C_q), 72.4 (⁵CH), 69.9 (⁶CH), 67.7 (⁴CH), 64.8 (⁸CH₂), 53.2 (⁷CH₂), 21.0 (^{Ac}CH₃), 20.9 (^{Ac}CH₃), 20.8 (^{Ac}CH₃), 20.7 (^{Ac}CH₃), -2.3 (^{TMS}CH₃) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (400 MHz, CDCl₃) δ = 4.88 (s, 1H, ^{3'}CH), 4.12 (d of AB system, J = 11.1 Hz, 1H, ^{8'}CH₂), 4.00 (d of AB system, $J = 11.1 \text{ Hz}, 1\text{H}, {}^{8'}\text{CH}_2), 3.46 \text{ (dd}, J = 4.6, 14.3 \text{ Hz}, 1\text{H}, {}^{7'}\text{CH}_2), 3.26$ $(dd, J = 8.2, 14.3 Hz, 1H, {^{7'}CH_2}), 0.21 (s, 9H, {^{TMS}CH_3}) ppm.$ ¹³C NMR (100 MHz, CDCl₃) δ = 170.6 (^{Ac}CO), 170.2 (^{Ac}CO), 169.4 (^{Ac}CO), 161.9 (^{2'}C_q), 108.4 (^{3'}CH), 73.0 (^{5'}CH), 71.8 (^{3a'}Cq), 71.3 (⁶'CH), 68.2 (⁴'CH), 66.2 (⁸'CH₂), 52.3 (⁷'CH₂), 21.0 (^{Ac}CH₃), 21.0 ($^{Ac}CH_3$), -0.18 ($^{TMS}CH_3$) ppm. HRMS (ESI⁺): calcd for $C_{19}H_{30}NO_9Si [M + H]^+$ 444.1690; found 444.1699.

(3aR,4R,5R,6S)-3a-Bis(acetoxymethyl)-3a,4,6,7-tetrahydro-5Hisoxazolo[2,3-a]pyridine-4,5,6-triyl triacetate (10d). A mixture of nitrone 4 (98 mg, 0.28 mmol) and prop-2-yn-1-yl acetate (0.15 mL, 1.5 mmol) was stirred at room temperature for 2 days. After concentration under reduced pressure, the crude product was purified by column chromatography over silica gel (pentane/ EtOAc 7:3) to give cycloadducts 10d and 10'd (115 mg, 92%) as a colourless oil (mixture of diastereoisomers, dr = 4 : 1). IR ν =3054, 2957', 1740, 1431, 1372, 1213, 1033 cm⁻¹. Major diastereoisomer: ¹H NMR (500 MHz, CDCl₃) δ = 5.40 (d, J = 10.3 Hz, 1H, 4 CH), 5.27 (dd, J = 6.8, 10.2 Hz, 1H, 5 CH), 5.11–5.06 (m, 1H, ⁶CH), 4.94 (s, 1H, ³CH), 4.66 (br s, 2H, ⁹CH₂), 4.01 (d of AB system, J = 11.6 Hz, 1H, ⁸CH₂), 3.91 (d of AB system, J = 11.6 Hz, 1H, ${}^{8}CH_{2}$), 3.54 (dd of ABX system, J = 4.9, 13.8 Hz, 1H, ${}^{7}CH_{2}$), 3.35 (dd of ABX system, J = 5.7, 13.8 Hz, 1H, ⁷CH₂), 2.13 (s, 3H, ^{Ac}CH₃), 2.10 (s, 3H, ^{Ac}CH₃), 2.06 (s, 3H, ^{Ac}CH₃), 2.06 (s, 3H, ^{Ac}CH₃), 2.02 (s, 3H, ^{Ac}CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 170.8 (^{Ac}CO), 170.3 (^{Ac}CO), 170.2 (^{Ac}CO), 169.7 (^{Ac}CO), 169.6 (^{Ac}CO), 154.1 (²C_a), 96.4 (³CH), 74.1 (^{3a}C_a), 72.5 (⁵CH), 70.5 (⁶CH), 67.7 (⁴CH), 64.8 (⁸CH₂), 56.9 (⁹CH₂), 53.3 (⁷CH₂), 21.1 (^{Ac}CH₃), 21.0 (^{Ac}CH₃), 20.9 (^{Ac}CH₃), 20.9 (^{Ac}CH₃), 20.8 (^{Ac}CH₃) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (500 MHz, $CDCl_3$) δ = 5.21 (d, J = 5.9 Hz, 1H, ⁴CH), 5.19–5.16 (m, 1H, ⁶CH), 4.91 (s, 1H, ${}^{3'}$ CH), 4.71 (d of AB system, J = 13.5, 1H, ${}^{9'}$ CH₂), 4.58 (d of AB system, J = 13.5, 1H, ^{9'}CH₂), 4.17 (d of AB system, J = 11.2 Hz, 1H, ^{8'}CH₂), 4.12 (d of AB system, J = 11.2 Hz, 1H, ^{8'}CH₂), 3.57 (dd of ABX system, J = 4.6, 14.5 Hz, 1H, ^{7'}CH₂), 3.28 (dd of ABX system, J = 8.7, 14.5 Hz, 1H, ^{7'}CH₂), 2.11 (s, 3H, ^{Ac}CH₃), 2.11 (s, 3H, ^{Ac}CH₃), 2.08 (s, 3H, ^{Ac}CH₃), 2.07 (s, 3H, ^{Ac}CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃) δ = 170.6 (^{Ac}CO), 170.5 (^{Ac}CO), 170.2 (^{Ac}CO), 169.8 (^{Ac}CO), 169.4 (^{Ac}CO), 153.3 (^{2'}C_g), 99.6 (^{3'}CH), 72.7 (^{5'}CH), 71.5 (^{4'}CH), 67.9 (^{6'}CH), 65.8 (^{8'}CH₂), 56.5 (^{9'}CH₂), 52.4 (^{7'}CH₂), 21.2 (^{Ac}CH₃), 21.1 (^{Ac}CH₃), 21.1 (^{Ac}CH₃), 20.9 (^{Ac}CH₃)

ppm. HRMS calcd for $C_{19}H_{25}NO_{11}$ $[M + H]^+$ 444.1500; found 444.1495.

(3aR,4R,5R,6S)-3a-(Acetoxymethyl)-2-propyl-3a,4,6,7-tetrahydro-5H-isoxazolo[2,3-a]pyridine-4,5,6-triyl triacetate (10e). Nitrone 4 (38 mg, 0.11 mmol) and 1-pentyne (165 µL, 1.67 mmol) were disolved in CH₂Cl₂ (60 µL) and stirred at room temperature for 17 days. The reaction was monitored by TLC. When the conversion of nitrone was completed, the mixture was concentrated under reduced pressure. The diastereomeric cycloadducts 10e and 10'e (dr = 9:1) were obtained as a colourless oil. Note that these compounds are not stable and should be used immediately in the next step. IR ν = 2977, 2876, 1754, 1672, 1432, 1362, 1225, 1056 cm⁻¹. Major diastereoisomer: ¹H NMR $(500 \text{ MHz}, (\text{CD}_3)_2\text{CO}) \delta = 5.38 \text{ (d}, J = 10.5 \text{ Hz}, 1\text{H}, {}^4\text{CH}), 5.37-5.32$ (m, 1H, ⁵CH), 5.10–5.05 (m, 1H, ⁶CH), 4.67 (s, 1H, ³CH), 3.98 (d of AB system, J = 11.4 Hz, 1H, ⁸CH₂), 3.84 (d of AB system, J = 11.3 Hz, 1H, ⁸CH₂), 3.63 (dd of ABX system, J = 5.1, 14.3 Hz, 1H, 7 CH₂), 3.31 (dd of ABX system, J = 4.8, 14.3 Hz, 1H, 7 CH₂), 2.21-2.16 (m, 2H, ⁹CH₂), 2.03 (br s, 6H, ^{Ac}CH₃), 1.99 (s, 3H, ^{Ac}CH₃), 1.96 (s, 3H, ^{Ac}CH₃), 1.64–1.53 (m, 2H, ¹⁰CH₂), 1.00 (t, I = 7.4 Hz, ¹¹CH₃) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO) $\delta = 170.6$ (^{Ac}CO), 170.4 (^{Ac}CO), 170.1 (^{Ac}CO), 170.1 (^{Ac}CO), 159.7 (²C_a), 92.8 (³CH), 74.6 (^{3a}C_q), 72.9 (⁵CH), 71.9 (⁶CH), 68.7 (⁴CH), 66.2 (⁸CH₂), 53.8 (⁷CH₂), 28.7 (⁹CH₂), 20.8 (^{Ac}CH₃), 20.7 (¹⁰CH₂), 20.7 (^{Ac}CH₃), 20.6 (^{Ac}CH₃), 20.6 (^{Ac}CH₃), 14.0 (¹¹CH₃) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (500 MHz, (CD₃)₂CO) δ = 5.30–5.27 (m, 1H, ⁵CH), 5.22–5.17 (m, 2H, ⁴CH, ⁶CH), 4.69 (s, 1H, ^{3'}CH), 4.08 (d of AB system, *J* = 11.1 Hz, 1H, ^{8'}CH₂), 4.06 (d of AB system, J = 11.1 Hz, 1H, ^{8'}CH₂), 3.53 (dd of ABX system, J = 4.6, 14.3 Hz, 1H, ^{7'}CH₂), 3.22 (dd of ABX system, J = 8.6, 14.4 Hz, 1H, ^{7'}CH₂), 2.00 (s, 3H, ^{Ac}CH₃), 2.00 (s, 3H, $^{Ac}CH_3$), 0.97 (t, J = 7.4 Hz, $^{11'}CH_3$) ppm. ^{13}C NMR (125 MHz, $(CD_3)_2CO) \delta = 96.1 (^{3'}CH), 73.3 (^{5'}CH), 72.6 (^{4'}CH), 68.8 (^{6'}CH),$ 66.6 (^{8'}CH₂), 52.8 (^{7'}CH₂), 28.3 (^{9'}CH₂), 13.9 (^{11'}CH₃) ppm. HRMS (ESI⁺): calcd for $C_{19}H_{28}NO_9 [M + H]^+$ 414.1764; found 414.1760.

(3aR,4R,5R,6S)-3a-(Acetoxymethyl)-2-butyl-3a,4,6,7-tetrahydro-5H-isoxazolo[2,3-a]pyridine-4,5,6-triyl triacetate (10f). Nitrone 4 (40 mg, 0.115 mmol) and 1-hexyne (0.2 mL, 1.73 mmol) were dissolved in CH₂Cl₂ (60 µL) and stirred at room temperature for 12 days. The reaction was monitored by TLC. When the conversion of nitrone was completed, the mixture was concentrated under reduced pressure. The diastereomeric cycloadducts 10f and 10'f (dr = 9:1) were obtained as a colourless oil. Note that these compounds are not stable and should be used immediately in the next step. IR ν = 2955, 2927, 2866, 1758, 1679, 1435, 1369, 1230, 1024 cm⁻¹. Major diastereoisomer: ¹H NMR (500 MHz, $(CD_3)_2CO) \delta = 5.38 \text{ (d, } J = 10.6 \text{ Hz, } 1H, {}^4CH), 5.36-5.32 \text{ (m, } 1H,$ ⁵CH), 5.07 (td, *J* = 5.0, 6.4 Hz, 1H, ⁶CH), 4.66 (s, 1H, ³CH), 3.98 (d of AB system, J = 11.4 Hz, 1H, ⁸CH₂), 3.84 (d of AB system, J = 11.4 Hz, 1H, ${}^{8}CH_{2}$), 3.63 (dd of ABX system, J = 5.1, 14.3 Hz, 1H, ${}^{7}CH_{2}$), 3.31 (dd of ABX system, J = 4.7, 14.3 Hz, 1H, ⁷CH₂), 2.27–2.15 (m, 2H, ⁹CH₂), 2.03 (br s, 6H, ^{Ac}CH₃), 1.99 (s, 3H, ^{Ac}CH₃), 1.96 (s, 3H, ^{Ac}CH₃), 1.60–1.38 (m, 2H, ¹⁰CH₂), 1.47–1.38 (m, 2H, ¹¹CH₂), 0.93 (t, J = 7.3 Hz, ¹²CH₃) ppm. ¹³C NMR (125 MHz, (CD₃)₂CO)

$$\begin{split} \delta &= 170.7 \ (^{\rm Ac}{\rm CO}), \ 170.5 \ (^{\rm Ac}{\rm CO}), \ 170.2 \ (^{\rm Ac}{\rm CO}), \ 170.2 \ (^{\rm Ac}{\rm CO}), \\ 160.0 \ (^{2}{\rm C}_{\rm q}), \ 92.7 \ (^{3}{\rm CH}), \ 74.7 \ (^{3}{\rm a}{\rm C}_{\rm q}), \ 73.0 \ (^{5}{\rm CH}), \ 72.0 \ (^{6}{\rm CH}), \ 68.8 \\ (^{4}{\rm CH}), \ 66.3 \ (^{8}{\rm CH}_{2}), \ 53.9 \ (^{7}{\rm CH}_{2}), \ 29.7 \ (^{10}{\rm CH}_{2}), \ 26.5 \ (^{9}{\rm CH}_{2}), \ 23.0 \\ (^{11}{\rm CH}_{2}), \ 20.9 \ (^{\rm Ac}{\rm CH}_{3}), \ 20.8 \ (^{\rm Ac}{\rm CH}_{3}), \ 20.7 \ (^{\rm Ac}{\rm CH}_{3}), \ 20.9 \ (^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 3H, \ ^{\rm Ac}{\rm CH}_{3}), \ 20.0 \ ({\rm s}, \ 20.0 \ ({\rm s}, \$$

(3S,4R,5R)-3,4,5-Trihydroxy-6-(hydroxymethyl)-2,3,4,5-tetrahydropyridine 1-oxide (5). Nitrone 4 (82 mg, 0.24 mmol) was dissolved in 3.0 mL of methanol saturated with ammonia. The reaction mixture was stirred at room temperature for 30 minutes. The solvent was evaporated under reduced pressure and the residue was purified by chromatography (silica gel, CH₂Cl₂/ MeOH 4:1) to afford 5 (35 mg, 81%) as a colourless oil. $\left[\alpha\right]_{D}^{20}$ = -49.2 (c, 0.16, MeOH). IR $\nu = 3253$, 2904, 1616, 1426, 1160, 1065, 1005 cm⁻¹. ¹H NMR (500 MHz, CD₃OD) δ = 4.66 (d of AB system, J = 16.6 Hz, 1H, ¹CH₂), 4.46 (d of AB system, J = 16.9 Hz, 1H, ¹CH₂), 4.43-4.38 (m, 1H, ³CH), 4.08-3.98 (m, 2H, ⁵CH, ⁶CH₂), 3.89–3.82 (m, 1H, ⁴CH), 3.72 (br d of AB system, *J* = 13.1 Hz, 1H, ${}^{6}CH_{2}$) ppm. ${}^{13}C$ NMR (125 MHz, CD₃OD) δ = 153.3 (²Cq), 70.7 (⁴CH), 69.8 (³CH), 68.0 (⁵CH), 62.6 (⁶CH₂), 59.6 $(^{7}CH_{2})$. HRMS (ESI⁺): calcd for C₆H₁₂NO₅ [M + H]⁺ 178.0715; found 178.0716.

(3aR,4R,5R,6S)-3a-(Hydroxymethyl)-2-phenyl-3a,4,6,7-tetrahydro-5H-isoxazolo[2,3-a]pyridine-4,5,6-triol (6a). Cycloadducts 10a and 10'a (120 mg, 0.268 mmol) were dissolved in methanol saturated with ammonia (4 mL) and the solution was stirred at room temperature. After 2 hours, the solvent was evaporated under reduced pressure and the residue was purified by chromatography (silica gel, CH₂Cl₂/MeOH 4:1) to afford compounds 6a and 6a' (62 mg, 83%) as a white solid (dr = 4 : 1). By recrystalisation in methanol, iminosugar 6a (8 mg, 11%) was obtained as a single diastereoisomer. M.p. 123–125 °C. $[\alpha]_{D}^{20}$ = +42.0 (*c* 0.52, MeOH). IR ν = 3373, 2929, 2887, 1447, 1390, 1123, 1016 cm⁻¹. ¹H NMR (500 MHz, CD₃OD) δ = 7.57–7.50 (m, 2H, ^{Ar}CH), 7.40–7.31 (m, 3H, ^{Ar}CH), 5.53 (s, 1H, ³CH), 3.92 (d, *J* = 8.8 Hz, 1H, ⁴CH), 3.56 (d of AB system, J = 11.2 Hz, 1H, ⁸CH₂), 3.47 (dd, J = 2.7, 10.0 Hz, 1H, ⁷CH₂), 3.42-3.38 (m, 2H, ⁵CH, ⁶CH), 3.36 (d of AB system, J = 11.3 Hz, 1H, ⁸CH₂), 2.91–2.83 (m, 1H, ⁷CH₂) ppm. ¹³C NMR (125 MHz, CD₃OD) $\delta = 156.3$ (²Cq), 130.4 (^{Ar}Cq), 130.4 (^{Ar}CH), 129.5 (^{Ar}CH), 126.6 (^{Ar}CH), 96.4 (³CH), 79.6 (^{3a}Cq), 77.4 (⁵CH), 70.5 (⁴CH), 67.7 (⁶CH), 63.8 (⁸CH₂), 57.6 (⁷CH₂) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. HRMS (ESI⁺): calcd for $C_{14}H_{18}NO_5 [M + H]^+$ 280.1185; found 280.1185.

(3*aR*,4*R*,5*R*,6*S*)-2-Cyclohexyl-3*a*-(hydroxymethyl)-3*a*,4,6,7-tetrahydro-5*H*-isoxazolo[2,3-*a*]pyridine-4,5,6-triol (6b). Cycloadducts 10b and 10'b (60 mg, 0.132 mmol) were dissolved in methanol saturated with ammonia (3 mL) and the solution was stirred at

View Article Online

room temperature. After 6 hours, the solvent was evaporated under reduced pressure and the residue was purified by chromatography (silica gel, CH2Cl2/MeOH 4:1) to afford 6b and 6'b (22 mg, 58%) as a colourless oil (dr = 9:1). IR ν = 3313, 2927, 2857, 1663, 1448, 1093, 1040, 1027 cm⁻¹. Major diastereoisomer: ¹H NMR (500 MHz, CD₃OD) δ = 4.72 (s, 1H, ³CH), 3.83 (d, J = 9.0 Hz, 1H, ⁴CH), 3.43 (d of AB system, J = 11.2 Hz, 1H, ⁸CH₂), 3.36–3.28 (m, 3H, ⁵CH, ⁶CH, ⁷CH₂), 3.19 (d of AB system, J = 11.2 Hz, 1H, ⁸CH₂), 2.82–2.74 (m, 1H, ⁷CH₂), 2.16–2.06 (m, 1H, ^{Cy}CH), 1.92–1.15 (m, 10H, ^{Cy}CH₂) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 163.5 (²Cq), 93.7 (³CH), 78.5 (^{3a}Cq), 77.3 (⁵CH), 70.3 (⁴CH), 67.7 (⁶CH), 64.2 (⁸CH₂), 57.4 (⁷CH₂), 36.9 (^{Cy}CH), 31.8 (^{Cy}CH₂), 31.8 (^{Cy}CH₂), 27.1 (^{Cy}CH₂), 26.8 (^{Cy}CH₂) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (500 MHz, CD₃OD) δ = 3.80–3.63 (m, 5H, ⁴'CH, ⁵'CH, ⁶'CH, ⁸'CH₂), 3.15–3.09 (m, 1H, ⁷'CH₂) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 77.9 (^{5'}CH), 76.7 (^{4'}CH), 70.1 $\binom{6}{CH}$, 65.0 $\binom{8}{CH_2}$, 56.0 $\binom{7}{CH_2}$ ppm. HRMS (ESI⁺): calcd for $C_{14}H_{24}NO_5 [M + H]^+$ 286.1649; found 286.1653.

(3aR,4R,5R,6S)-2,3a-bis(Hydroxymethyl)-3a,4,6,7-tetrahydro-5H-isoxazolo[2,3-a]pyridine-4,5,6-triol (6d). Cycloadducts 10d and 10'd (70 mg, 0.158 mmol) were dissolved in methanol saturated with ammonia (2.5 mL) and the solution was stirred at room temperature. After 2.5 hours, the solvent was evaporated under reduced pressure and the residue was purified by chromatography (silica gel, CH₂Cl₂/MeOH 4:1) to afford 6d and 6'd (27 mg, 73%) as a yellow oil (dr = 4 : 1). IR ν = 3304, 2923, 2868, 1671, 1421, 1102, 1015 cm⁻¹. Major diastereoisomer: ¹H NMR (500 MHz, CD₃OD) δ = 5.01 (s, 1H, ³CH), 4.12 (d of AB system, J = 14.3 Hz, 1H, ${}^{9}CH_{2}$), 4.08 (d of AB system, J = 14.3 Hz, 1H, ${}^{9}CH_{2}$), 3.84 (d, J = 8.9 Hz, 1H, ⁴CH), 3.47 (d of AB system, J = 11.2 Hz, 1H, ⁸CH₂), 3.39-3.33 (m, 3H, ⁵CH, ⁶CH, ⁷CH₂), 3.27 (d of AB system, J = 11.2 Hz, 1H, ⁸CH₂), 2.90–2.83 (m, 1H, ⁷CH₂) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 158.2 (²Cq), 97.7 (³CH), 78.6 (^{3a}Cq), 77.2 (⁵CH), 70.3 (⁴CH), 67.9 (⁶CH), 64.0 (⁸CH₂), 57.5 (⁷CH₂), 56.8 (⁹CH₂) ppm. Minor diastereoisomer significative signals: ¹H NMR (500 MHz, CD₃OD) δ = 5.00 (s, 1H, ^{3'}CH), 4.08 (d of AB system, J = 14.5 Hz, 1H, ⁹CH₂), 4.05 (d of AB system, J = 14.5 Hz, 1H, ⁹CH₂), 3.82–3.66 (m, 5H, ^{4'}CH, ^{5'}CH, ^{6'}CH, ^{8'}CH₂), 3.16 (dd, *J* = 8.6, 14.1 Hz, 1H, ^{7'}CH₂) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 101.8 (^{3'}CH), 77.5 (^{5'}CH), 76.7 (^{4'}CH), 75.6 (^{3a'}Cq), 70.0 (^{6'}CH), 64.7 (^{8'}CH₂), 56.6 (^{9'}CH₂), 56.0 (^{7'}CH₂) ppm. HRMS (ESI⁺): calcd for $C_9H_{16}NO_6 [M + H]^+$ 234.0972; found 234.0973.

(3*a*R,4*R*,5*R*,6*S*)-3*a*-(Hydroxymethyl)-2-propyl-3*a*,4,6,7-tetrahydro-5*H*-isoxazolo[2,3-*a*]pyridine-4,5,6-triol (6e). Cycloadducts 10e and 10'e (44 mg, 0.106 mmol) were disolved in methanol saturated with ammonia (2 mL) and the solution was stirred at room temperature. After 5 hours, the solvent was evaporated under reduced pressure and the residue was purified by chromatography (silica gel, CH₂Cl₂/MeOH 4:1) to afford 6e and 6'e (23 mg, 85%) as a colourless oil (dr = 9:1). IR ν = 3341, 1651, 1466, 1433, 1102, 1017 cm⁻¹. Major diastereoisomer: ¹H NMR (500 MHz, CD₃OD) δ = 4.76 (s, 1H, ³CH), 3.83 (d, *J* = 9.0 Hz, 1H, ⁴CH), 3.44 (d of AB system, *J* = 11.2 Hz, 1H, ⁸CH₂), 3.37–3.33 (m, 3H, ⁵CH, ⁶CH, ⁷CH₂), 3.22 (d of AB system, *J* = 11.2 Hz, 1H, ⁸CH₂), 2.84–2.77 (m, 1H, ⁷CH₂), 2.14 (t, *J* = 7.3 Hz, 2H, ⁹CH₂), 1.59–1.47 (m, 2H, ¹⁰CH₂), 0.96 (t, *J* = 7.3 Hz, 3H, ¹¹CH₃) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 158.9 (²Cq), 95.8 (³CH), 78.7 (^{3a}Cq), 77.2 (⁵CH), 70.4 (⁴CH), 67.7 (⁶CH), 64.1 (⁸CH₂), 57.6 (⁷CH₂), 29.3 (⁹CH₂), 21.1 (¹⁰CH₂), 14.0 (¹¹CH₃) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (500 MHz, CD₃OD) δ = 3.80–3.64 (m, 5H, ^{4'}CH, ^{5'}CH, ^{6'}CH, ^{8'}CH₂), 3.13 (dd, *J* = 8.5, 14.1 Hz, 1H, ^{7'}CH₂) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 157.5 (^{2'}Cq), 100.2 (^{3'}CH), 78.0 (^{5'}CH), 76.6 (^{4'}CH), 76.6 (^{3a'}Cq), 70.1 (^{6'}CH), 64.9 (^{8'}CH₂), 56.0 (^{7'}CH₂), 29.0 (^{9'}CH₂), 21.0 (^{10'}CH₂) ppm. HRMS (ESI⁺): calcd for C₁₁H₂₀NO₅ [M + H]⁺ 246.1336; found 246.1337.

(3aR,4R,5R,6S)-2-Butyl-3a-(hydroxymethyl)-3a,4,6,7-tetrahydro-5H-isoxazolo[2,3-a]pyridine-4,5,6-triol (6f). Cycloadducts 10f and 10'f (43 mg, 0.1 mmol) were dissolved in methanol saturated with ammonia (2.5 mL) and the solution was stirred at room temperature. After 5 hours, the solvent was evaporated under reduced pressure and the residue was purified by chromatography (silica gel, CH_2Cl_2 /MeOH 4:1) to afford 6f and 6'f (25 mg, 83%) as a colourless oil (dr = 9:1). IR ν = 3320, 2968, 2932, 2862, 1667, 1152, 1039, 1002 cm⁻¹. Major diastereoisomer: ¹H NMR (500 MHz, CD_3OD) $\delta = 4.75$ (s, 1H, ³CH), 3.83 (d, J = 8.6 Hz, 1H, ⁴CH), 3.44 (d of AB system, J = 11.3 Hz, 1H, ⁸CH₂), 3.37-3.32 (m, 3H, ⁵CH, ⁶CH, ⁷CH₂), 3.22 (d of AB system, J = 11.2 Hz, 1H, ⁸CH₂), 2.85–2.75 (m, 1H, ⁷CH₂), 2.22–2.10 (m, 2H, ⁹CH₂), 1.54–1.44 (m, 2H, ¹⁰CH₂), 1.43–1.33 (m, 2H, ¹¹CH₂), 0.92 (t, J = 7.3 Hz, 3H, ¹²CH₃) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 159.1 (²Cq), 95.6 (³CH), 78.7 (^{3a}Cq), 77.2 (⁵CH), 70.4 (⁴CH), 67.7 (⁶CH), 64.1 (⁸CH₂), 57.6 (⁷CH₂), 30.0 (⁹CH₂), 27.0 (¹⁰CH₂), 23.3 (¹¹CH₂), 14.1 (¹²CH₃) ppm. NOESY correlation between ⁸CH₂ and ⁴CH. Minor diastereoisomer significative signals: ¹H NMR (500 MHz, CD₃OD) δ = 3.80–3.64 (m, 5H, ${}^{4'}$ CH, ${}^{5'}$ CH, ${}^{6'}$ CH, ${}^{8'}$ CH₂), 3.13 (dd, J = 8.4, 14.1 Hz, 1H, $^{7'}$ CH₂) ppm. 13 C NMR (125 MHz, CD₃OD) δ = 157.7 ($^{2'}$ Cq), 100.0 (^{3'}CH), 77.5 (^{5'}CH), 75.6 (^{4'}CH), 70.1 (^{6'}CH), 64.9 (^{8'}CH₂), 56.0 (^{7'}CH₂), 29.9 (^{9'}CH₂), 26.6 (^{10'}CH₂) ppm. HRMS (ESI⁺): calcd for $C_{12}H_{21}NO_5Na [M + H]^+$ 282.1312; found 282.1310.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Pr A. Martel (Université du Maine, Le Mans) for helpful discussions on DFT calculations. This work is supported by the CNRS, the Université Grenoble Alpes, and by the French National Research Agency in the framework of the "Investissements d'avenir" program Glyco@Alps (ANR-15-IDEX-02) and of the Labex ARCANE program (ANR-11-LABX-0003-01). S. T. is grateful to Campus France for an "Excellence Doctoral Fellowship". We also acknowledge support from the ICMG Chemistry Nanobio Platform (FR 2607), Grenoble, through which crystallographic, NMR and MS analyses have been performed.

Notes and references

- 1 (a) J. Revuelta, S. Cicchi, A. Goti and A. Brandi, Synthesis, 2007, 485-504; (b) E.-L. Tsou, Y.-T. Yeh, P.-H. Liang and W.-C. Cheng, Tetrahedron, 2009, 65, 93-100; (c) W.-B. Wang, M.-H. Huang, Y.-X. Li, P.-X. Rui, X.-G. Hu, W. Zhang, J.-K. Su, Z.-L. Zhang, J.-S. Zhu, W.-H. Xu, X.-Q. Xie, Y.-M. Jia and C.-Y. Yu, Synlett, 2010, 488-492; (d) Y.-F. Chang, C.-W. Guo, T.-H. Chan, Y.-W. Pan, E.-L. Tsou and W.-C. Cheng, Mol. Diversity, 2011, 15, 203-214; (e) W.-B. Zhao, S. Nakagawa, A. Kato, I. Adachi, Y.-M. Jia, X.-G. Hu, G. W. J. Fleet, F. X. Wilson, G. Horne, A. Yoshihara, K. Izumori and C.-Y. Yu, J. Org. Chem., 2013, 78, 3208-3221; (f) J.-S. Zhu, S. Nakagawa, W. Chen, I. Adachi, Y.-M. Jia, X.-G. Hu, G. W. J. Fleet, F. X. Wilson, T. Nitoda, G. Horne, R. vanWell, A. Kato and C.-Y. Yu, J. Org. Chem., 2013, 78, 10298-10309; (g) D. Martella, G. D'Adamio, C. Parmeggiani, F. Cardona, E. Moreno-Clavijo, I. Robina and A. Goti, Eur. J. Org. Chem., 2016, 1588-1598.
- 2 (a) Iminosugars: From synthesis to therapeutic applications, ed. P. Compain and O. R. Martin, John Wiley & Sons, Chichester, England, 2007; (b) B. G. Winchester, Tetrahedron: Asymmetry, 2009, 20, 645–651; (c) R. J. Nash, A. Kato, C.-Y. Yu and G. W. J. Fleet, Future Med. Chem., 2011, 3, 1513–1521; (d) G. Horne, F. X. Wilson, J. Tinsley, D. H. Williams and R. Storer, Drug Discovery Today, 2011, 16, 107–118; (e) N. F. Bras, N. M. F. S. A. Cerqueira, J. Ramos and P. A. Fernandes, Expert Opin. Ther. Pat., 2014, 24, 857–874.
- 3 E. Racine, C. Bello, S. Gerber-Lemaire, P. Vogel and S. Py, *J. Org. Chem.*, 2009, **74**, 1766–1769.
- 4 J. Boisson, A. Thomasset, E. Racine, P. Cividino, T. Banchelin Sainte-Luce, J.-F. Poisson, J.-B. Behr and S. Py, *Org. Lett.*, 2015, 17, 3662–3665.
- 5 A. Vieira Da Cruz, A. Kanazawa, J.-F. Poisson, J.-B. Behr and S. Py, *J. Org. Chem.*, 2017, **82**, 9866–9872.
- 6 (a) P.-Z. Zhang, X.-L. Li, H. Chen, Y.-N. Li and R. Wang, *Tetrahedron Lett.*, 2007, 48, 7813–7816; (b) P. Zhang, C. Wei,
 E. Wang, W. Wang, M. Liu, Q. Yin, H. Chen, K. Wang, X. Li and J. Zhang, *Carbohydr. Res.*, 2012, 351, 7–16.
- 7 S. Desvergnes, Y. Vallee and S. Py, *Org. Lett.*, 2008, **10**, 2967–2970.
- 8 (a) J. Golik, H. Wong, B. Krishnan, D. M. Vyas and T. W. Doyle, *Tetrahedron Lett.*, 1991, 32, 1851–1854; (b) E. Racine, O. L. Burchak and S. Py, *Eur. J. Org. Chem.*, 2016, 4003–4012.
- 9 (a) H. H. Schlubach and G. Graefe, *Liebigs Ann. Chem.*, 1937, 532, 211–227; (b) F. W. Lichtenthaler, *Carbohydr. Res.*, 1998, 313, 69–89.
- 10 M. C. Teglia and R. A. Cadenas, *Carbohydr. Res.*, 1971, **19**, 223–230.
- 11 F. Chery, L. Cronin, J. L. O'Brien and P. V. Murphy, *Tetrahedron*, 2004, **60**, 6597–6608.
- 12 G. Pistia and R. I. Hollingsworth, *Carbohydr. Res.*, 2000, **328**, 467–472.

- 13 (a) J. C. Battaro, C. D. Bedford and A. Dodge, Synth. Commun., 1985, 15, 133–135; (b) S. E. Denmark, M. S. Dappen, N. L. Sear and R. T. Jacobs, J. Am. Chem. Soc., 1990, 112, 3466–3474.
- 14 J. H. Clark, J. Chem. Soc., Chem. Commun., 1978, 789-791.
- 15 See Supporting Information for X-ray diffraction data; CCDC 1587933 (for 4) contains the supplementary crystallographic data for this paper†.
- 16 (a) R. J. Woods, C. W. Andrews and J. P. Bowen, J. Am. Chem. Soc., 1992, 114, 859–864; (b) M. Miljković, D. Yeagley, P. Deslongchamps and Y. L. Dory, J. Org. Chem., 1997, 62, 7597–7604.
- 17 Calculations were performed on the Gaussian suite of programs: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, *et al.*, *Gaussian 09, revision 4.2.0*, Gaussian, Inc., Wallingford, CT, 2009. See ESI[†] for complete citation and results.
- 18 For cycloaddition reactions of the benzylated nitrone 1, see: S. Tangara, C. Aupic, A. Kanazawa, J.-F. Poisson and S. Py, *Org. Lett.*, 2017, 19, 4842–4845.
- (a) J. A. C. Romero, S. A. Tabacco and K. A. Woerpel, *J. Am. Chem. Soc.*, 2000, 122, 168–169; (b) S. Chamberland, J. W. Ziller and K. A. Woerpel, *J. Am. Chem. Soc.*, 2005, 127, 5322–5323.
- 20 R. V. Stevens, Acc. Chem. Res., 1984, 17, 289-296.
- 21 (a) A. Brandi, F. Cardona, S. Cicchi, F. M. Cordero and A. Goti, *Chem. Eur. J.*, 2009, 15, 7808–7821; (b) A. Brandi, F. Cardona, S. Cicchi, F. M. Cordero and A. Goti, *Org. React.*, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2017, pp. 1–321.
- 22 (a) D. François, A. Maden and W. V. Murray, Org. Lett., 2004, 6, 1931–1934; (b) A. Siriwardena, D. P. Sonawane, O. P. Bande, P. R. Markad, S. Yonekawa, M. B. Tropak, S. Ghosh, B. A. Chopade, D. J. Mahuran and D. D. Dhavale, J. Org. Chem., 2014, 79, 4398–4404.
- 23 L. A. G. van den Broek, Tetrahedron, 1996, 52, 4467-4478.
- 24 A. Peer and A. Vasella, Helv. Chim. Acta, 1999, 82, 1044–1065.
- 25 J. F. Sproviero, A. Salinas and E. S. Bertiche, *Carbohydr. Res.*, 1971, **19**, 81–86.
- 26 D. Gossan, A. Alabdul Magid, P. Kouassi-Yao, J.-B. Behr, A. Ahibo, L. Djakoure, D. Harakat and L. Voutquenne-Nazabadioko, *Phytochemistry*, 2015, **109**, 76–83.
- 27 (a) M. Malinowski, T. Rowicki, P. Guzik, M. Wielechowska, A. Sobiepanek and W. Sas, *Eur. J. Org. Chem.*, 2016, 3642–3649;
 (b) Y. Brissonnet, S. Ladevèze, D. Tezé, E. Fabre, D. Deniaud, F. Daligault, C. Tellier, S. Šesták, M. Remaud-Simeon, G. Potocki-Veronese and S. G. Gouin, *Bioconjugate Chem.*, 2015, 26, 766–772;
 (c) M. Sandbhor, M. Bhasin, D. T. Williams, M. Hsieh, S.-H. Wub and W. Zou, *Carbohydr. Res.*, 2008, 343, 2878–2886.
- (a) T. Matsuzawa and K. Yaoi, *Appl. Microbiol. Biotechnol.*, 2017, 101, 633–646; (b) A. V. Samoshin, I. A. Dotsenko, N. M. Samoshina, A. H. Franz and V. V. Samoshin, *Int. J. Carbohydr. Chem.*, 2014, 941059/1; (c) Y. Nakagawa, S. Sehata, S. Fujii, H. Yamamoto, A. Tsuda and K. Koumoto, *Tetrahedron*, 2014, 70, 5895–5903.