Tetrahedron Letters 68 (2021) 152917

journal homepage: www.elsevier.com/locate/tetlet

Contents lists available at ScienceDirect

Tetrahedron Letters

Nucleophilic '8F-fluorination of phosphorofluoridates and
phosphonofluoridic acids via imidazole-activated precursors

Check for
updates

Zhaobiao Mou, Xueyuan Chen, Chao Wang, Tao Wang, Hongzhang Yang, Zijing Li *

Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen

University, Xiamen 361102, China

ARTICLE INFO ABSTRACT

Article history:

Received 19 December 2020
Revised 1 February 2021
Accepted 8 February 2021
Available online 16 February 2021

Keywords:
18E_Fluorination
Phosphorofluoridate
Phosphonofluoridic acid
Imidazole

Nucleophilic substitution

tracers.

18F_Labeled organofluorophosphates are important radiosynthons that have only been previously acces-
sible via '8/1%F-isotope-exchange with limited molar activities. Herein, a novel '®F-fluorination method-
ology has been developed to prepare '®F-labeled phosphorofluoridates and phosphonofluoridic acids
via the ['®F]F~ nucleophilic substitution of imidazole-activated precursors. The efficient one-step ' F-flu-
orination affords stable products in the presence of Zn(II) with high radiochemical yields and high molar
activities. This '®F-fluorination method could be used to prepare various phosphorofluoridate and phos-
phonofluoridic acid analogs for use as '®F-radiosynthons and potential positron emission tomography

© 2021 Elsevier Ltd. All rights reserved.

Introduction

Phosphate and phosphonic acid groups are privileged scaffolds
that are widespread in biologically and medicinally active com-
pounds [1]. Additionally, radiolabeled phosphates and phosphonic
acids are irreplaceable as radiosynthons and radiotracers for the
investigation of phosphate-related physiological processes and dis-
eases [2]. In prior studies, only 32P-labeled phosphates were avail-
able to monitor their physiological pathways in vitro [3], which
could not provide real-time dynamic images in vivo due to the
nuclide property of 32P (100% B~ decay). Instead, '8F (97% B* decay,
635 keV, t1; ~ 109.8 min), the most widely used positron emitting
isotope, allows wide bioisosteric replacement and in vivo imaging
with positron emission tomography (PET) [4]. However, 'SF-
labeled organofluorophosphates were only previously accessible
via '®/"9F-isotope-exchange with limited molar activities (Am, the
measured radioactivity per mole of compound, measured in
Bg/mol or GBq/pmol) [5,6].

Due to analogous van der Waals radius and valence electron
numbers between fluoro and hydroxyl groups, fluorination of the
phosphate or phosphonic acid moiety can produce a chemically
stable phosphorofluoridate or phosphonofluoridic acid derivative
which is isostructural and isoelectronic to the unmodified
substrate [7]. Additionally, nucleophilic fluorination on non-
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phosphorus moieties may involve individual synthesis of the pre-
cursors, multistep radiosynthesis [8], and potential change of
bioactivity of the substrate [9]. Therefore, the ideal fluorination
sites are the terminal positions of the phosphate and phosphonic
acid groups. Imidazole-activated phosphates prepared via a one-
step coupling reaction from phosphates [10] can be fluorinated
using aqueous fluoride [11]. This process can be accelerated by
the presence of Lewis acids [12], making these promising candi-
dates for precursors. It was hypothesized that the same fluorina-
tion and coupling reaction may also be applicable to phosphonic
acids.

Herein, a method for the '®F-fluorination of phosphorofluori-
dates and phosphonofluoridic acids via imidazole-activated pre-
cursors is described. Zn?* species were determined as the best
Lewis acid catalysts among the tested metal cations (e.g. Mg?*
and Mn?") to facilitate the elimination of imidazole via activation
of the P-N bond [13]. In addition, the in vitro and in vivo stabilities
of the '®F-labeled phosphorofluoridates and phosphonofluoridic
acids were evaluated for potential applications as radiosynthons
and PET tracers.

Results and discussion

Five imidazole-activated precursors, sodium (1H-imidazol-1-yl)
phosphonates (1a-4a) and sodium benzyl (1H-imidazol-1-yl)phos-
phinate (5a), were synthesized in 35-82% yield from the corre-
sponding phosphates or phosphonic acid via the one-step
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coupling with imidazole in the presence of triphenylphosphine and

2,2'-dithiodipyridine [10] (Scheme 1). Phosphorofluoridates (1-4)
and benzyl phosphonofluoridic acid (5) were synthesized as refer-
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Scheme 1. General synthetic route for imidazole-activated precursors 1a-5a.
Reagents and conditions: (i) (a) phosphate or phosphonic acid (1.0 equiv.),
imidazole (8.0 equiv.), PPh; (4.0 equiv.), 2,2'-dithiodipyridine (4.0 equiv.), DMF,
RT, 24-30 h; (b) Nal (8.0 equiv.), acetone, 0 °C, 2 h.
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Scheme 2. General synthetic route for phosphorofluoridates and phosphonofluo-
ridic acids 1-5 and the radiosynthetic route for ['®F]1-['®F]5. Reagents and
conditions: (i) (a) 1a-5a (1.0 equiv.), ZnCl, (8.0 equiv.), TBAF (3.0 equiv.), THF,
60 °C, 12 h; (b) 732 strong acid cation exchange resin, H,O, RT, 0.5 h; (ii) 1a-5a,
['8F]KF/Ky22, Zn(II) salts (Zn(OAc),, ZnCl,, or Zn(NO3),), DMSO.
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ence compounds in 58-78% yield from 1a-5a by ZnCl,-mediated
nucleophilic fluorination [12] (Scheme 2).

A solution of 1a and various Zn(II) salts (Zn(OAc),, ZnCl,, or Zn
(NO3),) dissolved in anhydrous DMSO were shaken with an
azeotropically dried ['F]KF/Ky:, complex, which was prepared
by mixing ['®F]F, Ku2, ([2.2.2]-cryptand), and K,COs, in order to
determine the optimized reaction conditions. A time-based study
(Fig. 1b) showed that the '8F-fluorination reaction was almost
complete after 20 min and afforded 67.5 + 1.2% radiochemical yield
(RCY). The RCY increased with an increase in temperature, and the
effect of increased temperature on RCY became negligible beyond
70 °C (Fig. 1c). In addition, the optimum precursor amount was
0.2 mg (Fig. 1d), and the optimal amount of the Zn(Il) salt
was > 5.0 equiv. with respect to the precursor (Fig. 1e). Although
86.9 + 0.9% and 82.0 £ 0.9% RCYs were respectively obtained in
the presence of Zn(NOs), and ZnCl, for ['®F]1, it is safer to use
ZnCl, as a catalyst because Zn(NOs), is a hazardous chemical
which can easily explode [14]. The A, of ['®F]1 was determined
as 7.5 GBq/umol and the characterization of ['®F]1 was performed

Table 1
Substrate scope for the synthesis of '®F-labeled phosphorofluoridates.?
Compound Additives (mg) RCY (%)°
5.5 K222 (0.8 mg) 57.1+25
\T—‘BF K»CO5 (0.1 mg)
o K222 (4.0 mg) 1.9+04
(%2 K>CO5 (0.5 mg)
9 K222 (0.8 mg) 69.1+114
o—l?—'EF K,CO5 (0.1 mg)
- o K222 (4.0 mg) 10.2+23
[16F]3 K>CO5 (0.5 mg)
K222 (4.0 mg) 90.7 + 4.7

K>CO5 (0.5 mg)

eFa

2 Reagents and conditions: 2a-4a (0.2 mg), ZnCl, (5.0 equiv.), DMSO, 70 °C,
20 min.
b RCYs were determined by radio-TLC (n = 2-3).
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Fig. 1. Optimization of the '®F-fluorination conditions for ['®F]1. (a) Radio-HPLC characterization of ['®F]1 via co-injection of ['®F]1 and 1; (b) effect of the reaction time: 1a
(0.2 mg, 0.77 pmol), Zn(OAc), (5.0 equiv.), 70 °C; (c) effect of the temperature: 1a (0.2 mg, 0.77 pumol), Zn(OAc); (5.0 equiv.), 20 min; (d) effect of the precursor amount: Zn
(OAc), (5.0 equiv.), 70 °C, 20 min; (e) effect of the equivalents of Zn(I): 1a (0.2 mg, 0.77 pmol), Zn(OAc),, 70 °C, 20 min; (f) effect of the utilized Zn(II) salt: 1a (0.2 mg,
0.77 pmol), Zn(II) (5.0 equiv.), 70 °C, 20 min. HPLC conditions: column: Nacalai Tesque Cosmosil 5C18-MS-II column (4.4 um, 4.6 mm x 250 mm); elution: isocratic, 70%
phosphate buffered saline (0.01 mol/L, pH = 7.40) and 30% CH3OH; flow rate: 1.0 mL/min. RCYs were determined by radio-TLC (n = 2-3).
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Fig. 2. Optimization for the '8F-fluorination conditions for ['®F]5. (a) Radio-HPLC characterization of ['®F]5 via co-injection of ['8F]5 and 5; (b) effect of the reaction time: 5a
(0.2 mg, 0.82 pmol), ZnCl; (5.0 equiv.), 70 °C; (c) effect of the temperature: 5a (0.2 mg, 0.82 umol), ZnCl, (5.0 equiv.), 5 min; (d) effect of the precursor amount: ZnCl, (5.0
equiv.), 70 °C, 5 min; (e) effect of the equivalents of Zn(I): 5a (0.2 mg, 0.82 pmol), ZnCly, 70 °C, 5 min; (f) effect of the utilized Zn(II) salts: 5a (0.2 mg, 0.82 pmol), Zn(II) (5.0
equiv.), 70 °C, 5 min. HPLC conditions: column: Nacalai Tesque Cosmosil 5C18-MS-II column (4.4 pm, 4.6 mm x 250 mm); elution: isocratic, 80% phosphate buffered saline
(0.01 mol/L, pH = 7.40) and 20% CH3OH; flow rate: 1.0 mL/min. RCYs were determined by radio-TLC (n = 2-3).
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Fig. 3. Stabilities of ['®F]1 and ['®F]5 in vitro and in vivo. (a) Radio-HPLC analysis of [*®F]1 after 90 min incubation in saline and mouse serum; (b) radio-HPLC analysis of ['®F]1
in mouse blood at 30 min post-injection; (c) radio-HPLC analysis of ['®F]1 in mouse urine at 30 min post-injection; (d) radio-HPLC analysis of [ '®F]5 after 90 min incubation in
saline and mouse serum; (e) radio-HPLC analysis of ['®F]5 in mouse blood at 30 min post-injection; (f) radio-HPLC analysis of ['®F]5 in mouse urine at 30 min post-injection.
HPLC conditions for the analysis of ['®F]1 and ['®F]5 are consistent with those used in Fig. 1 and Fig. 2, respectively.

using radio-high-performance liquid chromatography (radio-
HPLC) (Fig. 1a).

As shown in Table 1, precursor 2a was '®F-fluorinated in
57.1 = 2.5% RCY. Compound 3a with chlorine substitution at the
para-position of the benzene ring afforded 69.1 + 11.4% RCY. Hete-
rocyclic substituted precursor 4a was also suitable for this trans-
formation and afforded 90.7 + 4.7% RCY. However, the RCYs for
['8F]1-['8F]3 decreased significantly when the amounts of Ky,
and K,CO3; were increased five fold (Table 1 and Table S1) due to
a change in the pH caused by K,COs. Excess ZnCl, is used to ensure
weakly acidic pH conditions, which are important for this nucle-
ophilic fluorination. The necessary addition of 0.1 mg K,COs for
['8F]F~ activation affords a favorable pH (6.0-6.5). Nevertheless,

excess K;CO3 can result in a weakly alkaline pH (8.0-8.5), leading
to low RCYs.

The '8F-fluorination of sodium benzyl (1H-imidazol-1-yl)phos-
phinate (5a) was also explored. A RCY of 53.5 * 5.5% was observed
after only one minute at 70 °C in the presence of ZnCl, (5.0 equiv.),
and the '®F-fluorination reaction was almost complete after 20 min
(Fig. 2b). A RCY of 63.1 + 1.2% was obtained after 5 min at room
temperature (RT), which increased by only 15.8% when the tem-
perature was increased to 110 °C (Fig. 2c). Additionally, a RCY
higher than 69.4 + 4.4% was observed for ['8F]5 when > 0.2 mg
of 5a and > 5.0 equiv. (with respect to 5a) of Zn(Cl), were used.
(Fig. 2e). ['®F]5 was synthesized from 5a (0.2 mg) in the presence
of Zn(NOs), (5.0 equiv.) at 70 °C for 5 min with 87.0 + 1.6% RCY
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(Fig. 2f) and 2.2 GBq/umol Ap,. The characterization of ['®F]5 was
performed using radio-HPLC (Fig. 2a).

The stabilities of 'F-labeled phosphorofluoridates and phos-
phonofluoridic acids were also evaluated in vitro and in vivo. Model
compounds [*®F]1 and ['®F]5 (radiochemical purity (RCP) > 95.0%
after purification) were incubated with saline and mouse serum
at 37 °C for 90 min, and the stabilities were analyzed using
radio-HPLC. All the stability studies were repeated 3 times, and
the utilized mice were ICR female mice. No defluorination was
observed after 90 min in saline or serum (Fig. 3a and Fig. 3d), indi-
cating the strong in vitro stabilities of ['®F]1 and ['®F]5. The in vivo
metabolic stabilities of ['®F]1 and ['®F]5 were measured by analyz-
ing the radio-metabolites in mice blood and urine at 30 min post-
injection. For ['®F]1, the radioactivity in the blood could be barely
detected and no parent compound could be detected in mice urine
(Fig. 3b and Fig. 3c). This indicated that ['®F]1 was cleared from the
blood after 30 min, presumably due to its good water-solubility,
and the radiolabeled product was hydrolyzed during circulation.
After 30 min circulation of ['®F]5, the radioactivity in the blood
could barely be detected. However, a maximum 85.0% and an aver-
age 65.6 + 16.2% (n = 3) of the radioactive compound detected in
the urine was ['8F]5 (Fig. 3e and Fig. 3f), confirming less defluori-
nation than that of ['8F]1. It is hypothesized that the replacement
of the O—P bond by the C—P bond in ['®F]5 can reduce the recog-
nition of phosphonofluoridic acid by phosphatases and therefore
strengthen the in vivo metabolic stabilities [15].

Conclusion

In summary, an efficient method for the '8F-fluorination of
phosphorofluoridates and phosphonofluoridic acids has been
developed via imidazole-activated phosphate and phosphonic acid
precursors in the presence of Zn(II). This method affords >50% RCYs
for the phosphorofluoridate analogs and >80% RCYs for thebenzyl
phosphonofluoridic acid as well as high A, The '8F-labeled benzyl
phosphorofluoridate and benzyl phosphonofluoridic acid show
sufficient in vitro stabilities, and the latter exhibits better in vivo
metabolic stability. This nucleophilic '®F-fluorination method
could be applied to prepare various phosphorofluoridate and phos-
phonofluoridic acid analogs as '®F-radiosynthons and potential PET
tracers.
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