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18F-Labeled organofluorophosphates are important radiosynthons that have only been previously acces-
sible via 18/19F-isotope-exchange with limited molar activities. Herein, a novel 18F-fluorination method-
ology has been developed to prepare 18F-labeled phosphorofluoridates and phosphonofluoridic acids
via the [18F]F� nucleophilic substitution of imidazole-activated precursors. The efficient one-step 18F-flu-
orination affords stable products in the presence of Zn(Ⅱ) with high radiochemical yields and high molar
activities. This 18F-fluorination method could be used to prepare various phosphorofluoridate and phos-
phonofluoridic acid analogs for use as 18F-radiosynthons and potential positron emission tomography
tracers.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

Phosphate and phosphonic acid groups are privileged scaffolds
that are widespread in biologically and medicinally active com-
pounds [1]. Additionally, radiolabeled phosphates and phosphonic
acids are irreplaceable as radiosynthons and radiotracers for the
investigation of phosphate-related physiological processes and dis-
eases [2]. In prior studies, only 32P-labeled phosphates were avail-
able to monitor their physiological pathways in vitro [3], which
could not provide real-time dynamic images in vivo due to the
nuclide property of 32P (100% b– decay). Instead, 18F (97% b+ decay,
635 keV, t1/2 � 109.8 min), the most widely used positron emitting
isotope, allows wide bioisosteric replacement and in vivo imaging
with positron emission tomography (PET) [4]. However, 18F-
labeled organofluorophosphates were only previously accessible
via 18/19F-isotope-exchange with limited molar activities (Am, the
measured radioactivity per mole of compound, measured in
Bq/mol or GBq/lmol) [5,6].

Due to analogous van der Waals radius and valence electron
numbers between fluoro and hydroxyl groups, fluorination of the
phosphate or phosphonic acid moiety can produce a chemically
stable phosphorofluoridate or phosphonofluoridic acid derivative
which is isostructural and isoelectronic to the unmodified
substrate [7]. Additionally, nucleophilic fluorination on non-
phosphorus moieties may involve individual synthesis of the pre-
cursors, multistep radiosynthesis [8], and potential change of
bioactivity of the substrate [9]. Therefore, the ideal fluorination
sites are the terminal positions of the phosphate and phosphonic
acid groups. Imidazole-activated phosphates prepared via a one-
step coupling reaction from phosphates [10] can be fluorinated
using aqueous fluoride [11]. This process can be accelerated by
the presence of Lewis acids [12], making these promising candi-
dates for precursors. It was hypothesized that the same fluorina-
tion and coupling reaction may also be applicable to phosphonic
acids.

Herein, a method for the 18F-fluorination of phosphorofluori-
dates and phosphonofluoridic acids via imidazole-activated pre-
cursors is described. Zn2+ species were determined as the best
Lewis acid catalysts among the tested metal cations (e.g. Mg2+

and Mn2+) to facilitate the elimination of imidazole via activation
of the P-N bond [13]. In addition, the in vitro and in vivo stabilities
of the 18F-labeled phosphorofluoridates and phosphonofluoridic
acids were evaluated for potential applications as radiosynthons
and PET tracers.
Results and discussion

Five imidazole-activated precursors, sodium (1H-imidazol-1-yl)
phosphonates (1a–4a) and sodium benzyl (1H-imidazol-1-yl)phos-
phinate (5a), were synthesized in 35–82% yield from the corre-
sponding phosphates or phosphonic acid via the one-step
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coupling with imidazole in the presence of triphenylphosphine and
2,20-dithiodipyridine [10] (Scheme 1). Phosphorofluoridates (1–4)
and benzyl phosphonofluoridic acid (5) were synthesized as refer-
Scheme 1. General synthetic route for imidazole-activated precursors 1a–5a.
Reagents and conditions: (i) (a) phosphate or phosphonic acid (1.0 equiv.),
imidazole (8.0 equiv.), PPh3 (4.0 equiv.), 2,20-dithiodipyridine (4.0 equiv.), DMF,
RT, 24–30 h; (b) NaI (8.0 equiv.), acetone, 0 �C, 2 h.

Scheme 2. General synthetic route for phosphorofluoridates and phosphonofluo-
ridic acids 1–5 and the radiosynthetic route for [18F]1–[18F]5. Reagents and
conditions: (i) (a) 1a–5a (1.0 equiv.), ZnCl2 (8.0 equiv.), TBAF (3.0 equiv.), THF,
60 �C, 12 h; (b) 732 strong acid cation exchange resin, H2O, RT, 0.5 h; (ii) 1a–5a,
[18F]KF/K222, Zn(Ⅱ) salts (Zn(OAc)2, ZnCl2, or Zn(NO3)2), DMSO.

Fig. 1. Optimization of the 18F-fluorination conditions for [18F]1. (a) Radio-HPLC charact
(0.2 mg, 0.77 lmol), Zn(OAc)2 (5.0 equiv.), 70 �C; (c) effect of the temperature: 1a (0.2 m
(OAc)2 (5.0 equiv.), 70 �C, 20 min; (e) effect of the equivalents of Zn(Ⅱ): 1a (0.2 mg, 0.
0.77 lmol), Zn(Ⅱ) (5.0 equiv.), 70 �C, 20 min. HPLC conditions: column: Nacalai Tesque
phosphate buffered saline (0.01 mol/L, pH = 7.40) and 30% CH3OH; flow rate: 1.0 mL/m
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ence compounds in 58–78% yield from 1a-5a by ZnCl2-mediated
nucleophilic fluorination [12] (Scheme 2).

A solution of 1a and various Zn(II) salts (Zn(OAc)2, ZnCl2, or Zn
(NO3)2) dissolved in anhydrous DMSO were shaken with an
azeotropically dried [18F]KF/K222 complex, which was prepared
by mixing [18F]F–, K222 ([2.2.2]-cryptand), and K2CO3, in order to
determine the optimized reaction conditions. A time-based study
(Fig. 1b) showed that the 18F-fluorination reaction was almost
complete after 20 min and afforded 67.5 ± 1.2% radiochemical yield
(RCY). The RCY increased with an increase in temperature, and the
effect of increased temperature on RCY became negligible beyond
70 �C (Fig. 1c). In addition, the optimum precursor amount was
0.2 mg (Fig. 1d), and the optimal amount of the Zn(II) salt
was � 5.0 equiv. with respect to the precursor (Fig. 1e). Although
86.9 ± 0.9% and 82.0 ± 0.9% RCYs were respectively obtained in
the presence of Zn(NO3)2 and ZnCl2 for [18F]1, it is safer to use
ZnCl2 as a catalyst because Zn(NO3)2 is a hazardous chemical
which can easily explode [14]. The Am of [18F]1 was determined
as 7.5 GBq/lmol and the characterization of [18F]1 was performed
erization of [18F]1 via co-injection of [18F]1 and 1; (b) effect of the reaction time: 1a
g, 0.77 lmol), Zn(OAc)2 (5.0 equiv.), 20 min; (d) effect of the precursor amount: Zn
77 lmol), Zn(OAc)2, 70 �C, 20 min; (f) effect of the utilized Zn(Ⅱ) salt: 1a (0.2 mg,
Cosmosil 5C18-MS-Ⅱ column (4.4 mm, 4.6 mm � 250 mm); elution: isocratic, 70%
in. RCYs were determined by radio-TLC (n = 2–3).

Table 1
Substrate scope for the synthesis of 18F-labeled phosphorofluoridates.a

Compound Additives (mg) RCY (%)b

K222 (0.8 mg)
K2CO3 (0.1 mg)

57.1 ± 2.5

K222 (4.0 mg)
K2CO3 (0.5 mg)

1.9 ± 0.4

K222 (0.8 mg)
K2CO3 (0.1 mg)

69.1 ± 11.4

K222 (4.0 mg)
K2CO3 (0.5 mg)

10.2 ± 2.3

K222 (4.0 mg)
K2CO3 (0.5 mg)

90.7 ± 4.7

a Reagents and conditions: 2a–4a (0.2 mg), ZnCl2 (5.0 equiv.), DMSO, 70 �C,
20 min.

b RCYs were determined by radio-TLC (n = 2–3).



Fig. 2. Optimization for the 18F-fluorination conditions for [18F]5. (a) Radio-HPLC characterization of [18F]5 via co-injection of [18F]5 and 5; (b) effect of the reaction time: 5a
(0.2 mg, 0.82 lmol), ZnCl2 (5.0 equiv.), 70 �C; (c) effect of the temperature: 5a (0.2 mg, 0.82 lmol), ZnCl2 (5.0 equiv.), 5 min; (d) effect of the precursor amount: ZnCl2 (5.0
equiv.), 70 �C, 5 min; (e) effect of the equivalents of Zn(Ⅱ): 5a (0.2 mg, 0.82 lmol), ZnCl2, 70 �C, 5 min; (f) effect of the utilized Zn(Ⅱ) salts: 5a (0.2 mg, 0.82 lmol), Zn(Ⅱ) (5.0
equiv.), 70 �C, 5 min. HPLC conditions: column: Nacalai Tesque Cosmosil 5C18-MS-Ⅱ column (4.4 mm, 4.6 mm � 250 mm); elution: isocratic, 80% phosphate buffered saline
(0.01 mol/L, pH = 7.40) and 20% CH3OH; flow rate: 1.0 mL/min. RCYs were determined by radio-TLC (n = 2–3).

Fig. 3. Stabilities of [18F]1 and [18F]5 in vitro and in vivo. (a) Radio-HPLC analysis of [18F]1 after 90 min incubation in saline and mouse serum; (b) radio-HPLC analysis of [18F]1
in mouse blood at 30 min post-injection; (c) radio-HPLC analysis of [18F]1 in mouse urine at 30 min post-injection; (d) radio-HPLC analysis of [18F]5 after 90 min incubation in
saline and mouse serum; (e) radio-HPLC analysis of [18F]5 in mouse blood at 30 min post-injection; (f) radio-HPLC analysis of [18F]5 in mouse urine at 30 min post-injection.
HPLC conditions for the analysis of [18F]1 and [18F]5 are consistent with those used in Fig. 1 and Fig. 2, respectively.
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using radio-high-performance liquid chromatography (radio-
HPLC) (Fig. 1a).

As shown in Table 1, precursor 2a was 18F-fluorinated in
57.1 ± 2.5% RCY. Compound 3a with chlorine substitution at the
para-position of the benzene ring afforded 69.1 ± 11.4% RCY. Hete-
rocyclic substituted precursor 4a was also suitable for this trans-
formation and afforded 90.7 ± 4.7% RCY. However, the RCYs for
[18F]1–[18F]3 decreased significantly when the amounts of K222

and K2CO3 were increased five fold (Table 1 and Table S1) due to
a change in the pH caused by K2CO3. Excess ZnCl2 is used to ensure
weakly acidic pH conditions, which are important for this nucle-
ophilic fluorination. The necessary addition of 0.1 mg K2CO3 for
[18F]F– activation affords a favorable pH (6.0–6.5). Nevertheless,
3

excess K2CO3 can result in a weakly alkaline pH (8.0–8.5), leading
to low RCYs.

The 18F-fluorination of sodium benzyl (1H-imidazol-1-yl)phos-
phinate (5a) was also explored. A RCY of 53.5 ± 5.5% was observed
after only one minute at 70 �C in the presence of ZnCl2 (5.0 equiv.),
and the 18F-fluorination reaction was almost complete after 20 min
(Fig. 2b). A RCY of 63.1 ± 1.2% was obtained after 5 min at room
temperature (RT), which increased by only 15.8% when the tem-
perature was increased to 110 �C (Fig. 2c). Additionally, a RCY
higher than 69.4 ± 4.4% was observed for [18F]5 when � 0.2 mg
of 5a and � 5.0 equiv. (with respect to 5a) of Zn(Cl)2 were used.
(Fig. 2e). [18F]5 was synthesized from 5a (0.2 mg) in the presence
of Zn(NO3)2 (5.0 equiv.) at 70 �C for 5 min with 87.0 ± 1.6% RCY
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(Fig. 2f) and 2.2 GBq/lmol Am. The characterization of [18F]5 was
performed using radio-HPLC (Fig. 2a).

The stabilities of 18F-labeled phosphorofluoridates and phos-
phonofluoridic acids were also evaluated in vitro and in vivo. Model
compounds [18F]1 and [18F]5 (radiochemical purity (RCP) � 95.0%
after purification) were incubated with saline and mouse serum
at 37 �C for 90 min, and the stabilities were analyzed using
radio-HPLC. All the stability studies were repeated 3 times, and
the utilized mice were ICR female mice. No defluorination was
observed after 90 min in saline or serum (Fig. 3a and Fig. 3d), indi-
cating the strong in vitro stabilities of [18F]1 and [18F]5. The in vivo
metabolic stabilities of [18F]1 and [18F]5 were measured by analyz-
ing the radio-metabolites in mice blood and urine at 30 min post-
injection. For [18F]1, the radioactivity in the blood could be barely
detected and no parent compound could be detected in mice urine
(Fig. 3b and Fig. 3c). This indicated that [18F]1was cleared from the
blood after 30 min, presumably due to its good water-solubility,
and the radiolabeled product was hydrolyzed during circulation.
After 30 min circulation of [18F]5, the radioactivity in the blood
could barely be detected. However, a maximum 85.0% and an aver-
age 65.6 ± 16.2% (n = 3) of the radioactive compound detected in
the urine was [18F]5 (Fig. 3e and Fig. 3f), confirming less defluori-
nation than that of [18F]1. It is hypothesized that the replacement
of the OAP bond by the CAP bond in [18F]5 can reduce the recog-
nition of phosphonofluoridic acid by phosphatases and therefore
strengthen the in vivo metabolic stabilities [15].

Conclusion

In summary, an efficient method for the 18F-fluorination of
phosphorofluoridates and phosphonofluoridic acids has been
developed via imidazole-activated phosphate and phosphonic acid
precursors in the presence of Zn(Ⅱ). This method affords >50% RCYs
for the phosphorofluoridate analogs and >80% RCYs for thebenzyl
phosphonofluoridic acid as well as high Am. The 18F-labeled benzyl
phosphorofluoridate and benzyl phosphonofluoridic acid show
sufficient in vitro stabilities, and the latter exhibits better in vivo
metabolic stability. This nucleophilic 18F-fluorination method
could be applied to prepare various phosphorofluoridate and phos-
phonofluoridic acid analogs as 18F-radiosynthons and potential PET
tracers.
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