New Building Blocks Based on Truxene Cores: Synthesis of Functionalized syn-Tri- and -Hexasubstituted Derivatives

Esther González-Cantalapiedra,^[a] Marta Ruiz,^[b] Berta Gómez-Lor,^[b] Beatriz Alonso,^[c] Domingo García-Cuadrado,^[d] Diego J. Cárdenas,^[a] and Antonio M. Echavarren*^[a,d]

Keywords: Arenes / Strained molecules / Truxenes / Isomerization / Quinones

Hexasubstituted truxenes are obtained in one step by alkylation of the potassium anion of truxene. Subsequent derivatization provides truxene derivatives with six carboxy, amino, or hydroxy groups at their peripheries. Alkylation of *syn*-5,10,15tribenzyl derivatives with a different benzyl bromide derivative affords mixtures of *anti*- and *syn*-hexasubstituted truxenes. Truxenes with phenols or benzoquinone groups have also been synthesized by starting from truxenetrione. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Introduction

Truxene (10,15-dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (1, see Scheme 1) has been used for the construction of larger polyarenes^[1-5] and for the synthesis of new materials.^[6-9] For the synthesis of polyarenes with the topology of the fullerenes,^[10–12] we have previously developed a synthesis of derivatives **3** based on treatment of the trianion of **1** with a variety of alkylating agents followed by *anti* to *syn*

Scheme 1.

- [a] Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- [b] Instituto de Ciencia de Materiales de Madrid (ICMM),
- Cantoblanco, 28049 Madrid, Spain
 [c] Departamento de Química Inorgánica, Universidad Autónoma de Madrid.
- Cantoblanco, 28049 Madrid, Spain
- [d] Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain Fax: +34-977920225 E-mail: aechavarren@iciq.es

Table 1. Synthesis of symmetrical hexasubstituted benzyltruxenes 5a-j.

[a] This yield refers to the two-step alkylation.

isomerization with KOtBu in tBuOH (Scheme 1).^[13,14] We also reported that *syn*-5,10,15-triaryltruxenes **2** (\mathbf{R} = aryl)

FULL PAPER

can be obtained from truxenetrione **4** by addition of aryllithium compounds, reduction of the alcohols with Et₃SiH and BF₃, and *anti* to *syn* equilibration.^[15]

Here we report a one-pot synthesis of 5,5,10,10,15,15hexasubstituted derivatives by simple alkylation of **1** in the presence of excess of base. Several sterically crowded derivatives can be readily prepared by this method. We also report the synthesis of new derivatives substituted at their peripheries with carboxy, amino, or hydroxy groups. A derivative bearing three benzoquinone units as well as the truxene scaffold has also been synthesized. These derivatives could be useful as core structures for the synthesis of dendrimers, as well as in molecular tectonics and for the building of complex supramolecular structures.^[16]

Results and Discussion

Synthesis of Hexabenzyltruxenes by Alkylation

Treatment of truxene (1) with KOtBu (6 equiv.) gives a green suspension corresponding to a mixture of deprotonated species, which reacts with a variety of alkyl halides to furnish 5,5,10,10,15,15-hexasubstituted truxenes **5a–j** in moderate to good yields (Table 1). The synthesis of hexaalkylated truxenes with *n*BuLi (7 equiv.) as the base was also assayed, but mixtures of *syn-* and *anti*-trialkylated truxenes were obtained.^[9] Some hexasubstituted derivatives of truxene were synthesized in two steps by initial preparation of *syn-*trialkylated truxenes **3** and subsequent deprotonation with KOtBu (3 equiv.) and addition of RX, but yields were lower by this method. Alkylation with 9-(3-bromopropyl) anthracene^[17] failed to provide the corresponding hexasubstituted derivative, and instead gave 9-(prop-1-enyl)anthracene and a mixture of unidentified truxenes.

Derivative **5a** is almost insoluble in common NMR solvents and could be characterized only by FAB mass spectrometry. Similarly, treatment of **1** with 2-(bromomethyl) benzonitrile gave a bluish solid (in ca. 60% yield) that could not be characterized due to its insolubility in all solvents. Interestingly, nitriles **5e** and **5f** are blue in solution and in the solid state. Crystals of nitriles **5e** and **5f** could be grown from DMF/Et₂O solution, and their X-ray diffraction structures show the benzyl groups generally approximately perpendicular to the central truxene plane (Figure 1), although one of the benzyl groups in derivative **5f** adopts a

(a)

(b)

Figure 1. X-ray diffraction structures of nitriles 5e (a) and 5f (b).

Figure 2. PM3 minimum structure for 5h.

different conformation as the crystal shelters a disordered DMF molecule.

It is interesting to note that the chemical shifts of the truxene hydrogen signals in the hexaalkylated truxenes are concentration-independent in all cases, in contrast with what has been observed with *syn*-trialkylated derivatives 3,^[13] which indicates that hexasubstitution inhibits the self-association. The ¹H NMR spectrum of hexakis(9-an-thracenyl)methyltruxene **5h** shows signals for Ha ($\delta = 4.57$ ppm) and Hb ($\delta = 5.39$ ppm) shifted upfield relative to those of other truxene derivatives. This effect is the result of the shielding of the hydrogen atoms of the truxene scaffold by the two nearly perpendicular anthracenyl systems, as shown in the PM3-minimized structure of **5h** (Figure 2).

Truxenes with different substituents at their benzylic positions can be obtained by treatment of *syn*-trialkylated truxenes with KO*t*Bu in THF, followed by the addition of alkyl halides to give 1.5:1 to 2:1 mixtures of *anti-* (**6**) and *syn*-hexaalkylated (**7**) truxenes in very good yields (Table 2). The *synlanti* ratios were determined by ¹H NMR in the crude reaction mixtures. Hexaalkylated truxenes **6** and **7** could be separated by flash column chromatography.

Synthesis of Symmetrical Hexaalkyltruxenes by Functionalization in the Side Chains

Reduction of hexacyano derivative **5e** with LiAlH₄ in THF gave the hexaamine **8** in 51% yield (Scheme 2). Compound **5e** also reacted with NaOH in aqueous MeOH under reflux to give derivative **9** in 78% yield. This hexacarboxylic acid shows very broad signals in the ¹H NMR spectrum in

Table 2. Synthesis of asymmetrical hexabenzyltruxenes.

 $CDCl_3$ at room temperature, while the resonances were still not well resolved in 1,1,2,2-tetrachloro[D₂]ethane at 110 °C. The structure of **9** was confirmed by its esterification with MeOH and H₂SO₄ under reflux to give hexaester **10**, showing the expected NMR spectroscopic data, in 74% yield.

Triptycenes have attracted interest as "spacers" providing crystalline compounds containing channels capable of occluding a variety of other molecules.^[18] In consequence, we decided to synthesize a triptycene derivative from hexaan-thracenyltruxene **5h** by treatment with anthranilic acid and isoamyl nitrite in 1,2-dichloroethane and benzene under re-

Scheme 2.

flux.^[19,20] However, the resulting yellow solid product could not be characterized, due to its extraordinarily low solubility.

FULL PAPER

The synthesis of a truxene with six hydroxy substituents was carried out from compound **5i**. Firstly, as a model, *syn*-

triallyltruxene $11^{[13a]}$ was allowed to react with catecholborane in THF under reflux, followed by oxidative workup, to give trialcohol 12 in 60% yield (Scheme 3). Similarly, 5i was converted into the hexahydroxy derivative 13, albeit in lower overall yield. As would be expected from the hydro-

Scheme 3.

Series	Ar	Yield of $4 \rightarrow 14/15$	14a-d/15a-d ratio	Yield of 14/15 → 16/17	16a–d/17a–d ratio	Yield of 16a–d → 17a–d
а	MeO	96	1:2.8	70	2.6:1	69
b	OMe	65	1.1:1	88	10:1	70
C	-z-OMe	95	2:1	72	10:1	55
d	OMe	90	1:1.1	74	3:1	-

Scheme 4.

philic periphery of 13, this truxene is more soluble in $[D_4]$ MeOH than in CDCl₃.

Synthesis of Functionalized syn-Triaryltruxenes

The synthesis of truxenes bearing phenol groups at positions 5, 10, and 15 was carried out by the general approach developed for the preparation of overcrowded *syn*-5,10,15trisubstituted truxenes.^[15b] Thus, truxenetrione **4** was allowed to react with the corresponding aryllithium reagents to give mixtures of *anti* (**14a–d**) and *syn* (**15a–d**) derivatives (Scheme 4). Reduction of the resulting benzylic alcohols with Et₃SiH and BF₃·OEt₂ afforded ca. 3–10:1 mixtures of *anti* (**16a–d**) and *syn* (**17a–d**) derivatives. Finally, base-catalyzed isomerization of *anti* isomers **16a–c** furnished pure *syn*-5,10,15-truxenes **17a–c**.

Correspondingly, demethylation of compounds 17a and 17b with BBr₃ in CH₂Cl₂ at -78 °C provided triphenols 18a and 18b in 62–72% yields. No isomerization to the *anti* derivatives was observed under these conditions. Demethylation of a 10:1 mixture of 16c and 17c gave a 10:1 mixture of *syn*-18c and *anti*-19c. Phenols 18a–c are soluble in MeOH and acetone. The ¹H NMR spectra of 18b and 18c showed concentration-dependent chemical shifts for the benzylic hydrogen signals, which is characteristic of self-association of *syn*-5,10,15-trisubstituted truxenes.^[13] In contrast, the ¹H NMR spectrum of 18a was not concentration-dependent (Scheme 5).

Oxidation of a mixture of **16d** and **17d** with ceric ammonium nitrate (CAN) or phenyliodonium bis(trifluoroacetate) (PIFA) failed to give quinones **20** or **21**. However, demethylation of **16d** and **17d** provided **18d** and **19d**, respectively, in satisfactory yields (Scheme 6). These tris(hydroquinones) were oxidized with PIFA in a mixture of MeOH and CH_2Cl_2 to give *anti-***20** and *syn-***21** as orange compounds.

Cyclic voltammetry of **20** and **21** (Figure 3) showed two reversible reduction waves corresponding to the formation of the radical anion and the hydroquinone anion. No sig-

Scheme 5.

nificant difference in the reduction potentials of stereoisomers **20** and **21** was observed, and they are also very similar to those of 2-methyl- and 2-phenyl-1,4-benzoquinones (Table 3).

Summary

Simple alkylation of the potassium anion of truxene with alkyl halides affords hexasubstituted truxenes in one step.

Scheme 6.

FULL PAPER

Figure 3. Cyclic voltammogram of tris(quinones) **20** (---) and **21** (-) (room temperature, in CH_2Cl_2 solutions containing 0.1 M TBAPF₆ as a supporting electrolyte; scan rate = 100 mV·s⁻¹).

Table 3. Reduction potentials of 20, 21 and reference compounds.

Quinone	Solvent, electrolyte	$E^0_{\rm I}$ [V]	<i>Е</i> ⁰ _{II} [V]
20	CH ₂ Cl ₂ , (TBA) PF∢	-0.94	-1.51
21	CH_2Cl_2 , (TBA) PF_6	-0.95	-1.53
1,4-Benzoquinone ^[21]	CH ₂ Cl ₂ , (TBA) PF ₆	-0.89	-1.80
2-Methyl-1,4-benzoqui- none ^[22]	MeCN, TEAP	-1.04	-1.58
2-Phenyl-1,4-benzoqui- none ^[23]	MeCN, TEAP	-0.95	-1.57

Further derivatization gives rise to truxene derivatives with six carboxy, amino, or hydroxy groups at their peripheries, which could be useful as scaffolds for the construction of larger structures. As expected, alkylation of *syn*-5,10,15-tribenzyl derivatives with a different benzyl bromide affords mixtures of *anti*- and *syn*-hexasubstituted truxenes that can be separated by chromatography. Furthermore, truxenes bearing three pendant phenol, anisole, and benzoquinone units at C5, C10, and C15 have also been synthesized, by starting from truxenetrione. Oxidation of tris(hydroquinone) derivatives affords the corresponding *anti*- and *syn*tris(benzoquinone) derivatives, which show similar reduction potentials.

Experimental Section

General Remarks: The NMR spectra were determined at 23 °C, unless otherwise stated. The FAB-MS were obtained with *m*-nitrobenzyl alcohol as the matrix. Only the most significant MS fragmentations are given. R_f values were determined on TLC aluminium sheets coated with 0.2 mm GF₂₅₄ silica gel. All reactions were carried out under Ar. Solvents were purified and dried by standard methods. The saturated aqueous NH₄Cl solution was buffered with NH₄OH (pH = 8). Chromatographic purifications were carried out with flash grade silica gel. "Usual workup" means pouring the crude reaction mixture into saturated aqueous NH₄Cl solution, followed by extraction with the stated solvent, drying (MgSO₄), and evaporation of the solvent. Truxene (1) and truxenetrione **4**,^[24] as

well as 3a-c and $11^{[13]}$ were prepared by the described procedures.

General Procedure for the Synthesis of 5,5',10,10',15,15'-Hexaalkyl-10,15-dihydro-5H-diindeno[1,2-*a*;1',2'-*c*]fluorenes: A mixture of truxene (1, 0.58 mmol) and KOtBu (3.48 mmol) in THF (20 mL) was heated under reflux for 30 min. The alkyl bromide (3.48 mmol) in THF (10 mL) was then added to the green suspension. After 16 h, the mixture was cooled and diluted with CH_2Cl_2 , washed with saturated aqueous NaCl solution, and dried (Na₂SO₄), and the solvents were evaporated. The residue was usually triturated with CH_2Cl_2 to give pure 5a–i.

5,5,10,10,15,15-Hexakis(phenylmethyl)-10,15-dihydro-5H-diindeno-[1,2-*a*;1',2'-*c*]fluorene (5a): In this case, the solid was filtered off and washed with CH₂Cl₂, acetone, and Et₂O to give 5a (436 mg, 86%); white solid; m.p. >300 °C. FAB-MS: *m*/*z* (%) = 921 (48) [M + K]⁺. HR-FAB-MS: *m*/*z* for C₆₉H₅₄K: calcd. 921.3863; found 921.3868.

5,5,10,10,15,15-Hexakis[(2-bromophenyl)methyl]-10,15-dihydro-5*H*diindeno[1,2-*a*;1',2'-*c*]fluorene (5b): Yellow solid (440 mg, 56%): m.p. >300 °C; $R_{\rm f} = 0.18$ (10:1 hexane/CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): $\delta = 4.17$ (d, J = 13.7 Hz, 6 H), 4.30 (d, J = 13.7 Hz, 6 H), 6.49 (d, J = 6.1 Hz, 6 H), 6.59 (t, J = 7.3 Hz, 6 H), 6.70 (t, J = 8.1 Hz, 6 H), 7.07 (t, J = 7.7 Hz, 3 H), 7.21–7.25 (m, 9 H), 7.38 (d, J = 8.1 Hz, 3 H), 8.36 (d, J = 7.7 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 40.27$ (2 C), 56.74, 124.91, 125.64, 126.00, 126.25, 126.73, 127.62, 129.96, 132.44, 137.52, 146.28, 148.93 (several signals were not observed) ppm. FAB-MS: m/z (%) = 1395 (34) [M + K]⁺. HR-FAB-MS: m/z for C₆₉H₄₈⁷⁹Br₃⁸¹Br₃K: calcd. 1394.8448; found 1394.8432.

5,5,10,10,15,15-Hexakis[(3-bromophenyl)methyl]-10,15-dihydro-5Hdiindeno[1,2-a;1',2'-c]fluorene (5c): The residue was triturated with Et₂O to give **5c** (638 mg, 81%); yellow solid; m.p. 140–141 °C; $R_{\rm f}$ = 0.36 (3:1 hexane/CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ = 3.50 (d, J = 13.3 Hz, 6 H), 3.85 (d, J = 13.3 Hz, 6 H), 6.04 (d, J =7.9 Hz, 6 H), 6.63 (t, J = 7.9 Hz, 6 H), 6.76 (m, 6 H), 7.04 (dd, J = 8.1, 1.0 Hz, 6 H), 7.22 (dd, J = 7.5, 1.2 Hz, 3 H), 7.40 (t, J =7.5 Hz, 3 H), 7.48 (t, J = 7.3 Hz, 3 H), 8.40 (d, J = 8.1 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 125 MHz, DEPT): δ = 40.50 (2 CH₂), 56.85 (C), 121.12 (C), 125.26 (CH), 125.95 (CH), 126.30 (CH), 127.42 (CH), 128.17 (2 CH), 128.94 (CH), 129.08 (CH), 133.31 (CH), 138.52 (C), 139.09 (C), 139.43 (C), 144.35 (C), 145.51 (C) (several signals were not observed, due to overlapping) ppm. MALDI-MS (dithranol + AgTFA): m/z (%) = 1395 (20) [M + K]⁺, 1465 (100) [M + Ag]⁺. HR-MALDI-MS: *m*/*z* for C₆₉H₄₈⁷⁹Br₃⁸¹Br₃K: calcd. 1394.8448; found 1394.8483.

5,5,10,10,15,15-Hexakis[(4-bromophenyl)methyl]-10,15-dihydro-5*H*diindeno[1,2-*a*;1',2'-*c*]fluorene (5d): Yellow solid (721 mg, 92%): m.p. >300 °C; $R_{\rm f} = 0.35$ (2:1 hexane/CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): $\delta = 3.41$ (d, J = 13.7 Hz, 6 H), 3.87 (d, J = 13.7 Hz, 6 H), 6.03 (d, J = 8.4 Hz, 12 H), 6.92 (d, J = 8.1 Hz, 12 H), 7.40– 7.48 (m, 9 H), 8.39 (d, J = 8.9 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 40.95$ (2 C), 57.17, 120.02, 130.53, 131.39, 135.75 (several signals were not observed) ppm. APCI-MS: m/z (%) = 1357 (60) [M + 1]⁺.

5,5,10,10,15,15-Hexakis[(3-cyanophenyl)methyl]-10,15-dihydro-5*H*diindeno[1,2-*a*;1',2'-*c*]fluorene (5e): The residue was purified by flash chromatography (CH₂Cl₂) and was then triturated with Et₂O to give 5e (450 mg, 75%); blue solid; m.p. 154–156 °C; $R_f = 0.14$ (CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): $\delta = 3.56$ (d, J = 13.3 Hz, 6 H), 3.86 (d, J = 13.3 Hz, 6 H), 6.33 (dt, J = 8.1, 1.2 Hz, 6 H), 6.80 (t, J = 1.6 Hz, 6 H), 6.88 (t, J = 8.1 Hz, 6 H), 7.23 (dt, J =7.7, 1.2 Hz, 9 H), 7.46 (t, J = 7.7 Hz, 3 H), 7.52 (td, J = 7.7, 1.2 Hz, 3 H), 8.36 (d, J = 7.7 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 40.60 (2 C), 56.70, 111.44, 118.50, 125.25, 125.81, 127.31, 128.23, 130.10, 133.45, 138.05, 138.44, 138.86, 143.82, 148.82 (several signals were not observed, due to overlapping) ppm. FAB-MS: m/z(%) 1071 (100) [M + K]⁺, 1033 (15) [M + 1]⁺. HR-FAB-MS: m/zfor C₇₅H₄₉N₆: calcd. 1033.4019; found 1033.4037; for C₇₅H₄₈N₆K: calcd. 1071.3602; found 1071.3577.

5,5,10,10,15,15-Hexakis[(4-cyanophenyl)methyl]-10,15-dihydro-5*H*diindeno[1,2-*a*;1',2'-*c*]fluorene (5f): The solid was filtered off and washed with CH₂Cl₂, acetone, and Et₂O to give 5f (566 mg, 94%); blue solid; m.p. >300 °C; $R_f = 0.08$ (CH₂Cl₂). ¹H NMR (1,1,2,2tetrachloro[D₂]ethane, 300 MHz, 80 °C): $\delta = 3.52$ (d, J = 12.8 Hz, 6 H), 3.85 (d, J = 12.8 Hz, 6 H), 6.34 (d, J = 6.5 Hz, 12 H), 7.04 (d, J = 5.7 Hz, 12 H), 7.24 (d, J = 7.7 Hz, 3 H), 7.39 (t, J = 7.3 Hz, 3 H), 7.47 (t, J = 6.9 Hz, 3 H), 8.27 (d, J = 7.3 Hz, 3 H) ppm. ¹³C NMR (1,1,2,2-tetrachloro[D₂]ethane, 125 MHz, 80 °C): $\delta = 29.88$, 41.91, 110.85, 115.01, 130.65, 131.25, 139.65, 142.40, 172.23 (several signals were not observed) ppm. FAB-MS: *m/z* (%) = 1071 (100) [M + K]⁺, 1033 (8) [M + 1]⁺. MALDI-MS (dithranol): *m/z* = 1071 [M + K]⁺. HR-FAB-MS: *m/z* for C₇₅H₄₉N₆: calcd. 1033.4019; found 1033.4029; for C₇₅H₄₈N₆K: calcd. 1071.3571; found 1071.3577.

5,5,10,10,15,15-Hexakis(2-methylanthracenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (5g): The residue was purified by flash chromatography (hexane/CH2Cl2, 2:1) and was then triturated with Et₂O to give 5g (313 mg, 37%); yellow solid; m.p. 200–201 °C; $R_{\rm f}$ = 0.10 (2:1 hexane/CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ = 3.68 (d, J = 13.3 Hz, 6 H), 4.06 (d, J = 13.3 Hz, 6 H), 6.09 (dd, J = 8.9, 1.6 Hz, 6 H), 6.36 (d, J = 8.9 Hz, 6 H), 7.24 (s, 3 H), 7.26–7.45 (m, 27 H), 7.57 (s, 3 H), 7.72-7.81 (m, 12 H), 8.03 (s, 6 H), 8.58 (d, J = 8.1 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 41.83, 57.53 (2 C), 124.79, 124.99, 125.30, 125.50, 125.74, 125.92, 125.96, 126.11, 126.62, 127.01, 127.73, 127.99, 128.11, 128.47, 129.49, 130.23, 130.26, 130.29, 130.33, 130.49, 130.77, 131.16, 131.38, 131.41, 131.45, 131.48, 131.80, 134.61, 134.66, 134.75, 134.79, 138.85, 139.69, 145.01, 150.50, 150.53 ppm. FAB-MS: m/z (%) = 1483 (18) $[M + 1]^+$. HR-FAB-MS: m/z for C₁₁₇H₇₉: calcd. 1483.6161; found 1483.6181.

5,5,10,10,15,15-Hexakis(9-methylanthracenyl)-10,15-dihydro-5*H***-diindeno[1,2-***a***;1',2'-c]fluorene (5h): Yellow solid (647 mg, 75%): m.p. 249–250 °C; R_{\rm f} = 0.30. ¹H NMR (CDCl₃, 300 MHz): \delta = 4.57 (d, J = 7.3 Hz, 3 H), 4.86 (d, J = 14.6 Hz, 6 H), 5.39 (t, J = 7.3 Hz, 3 H), 5.58 (d, J = 14.6 Hz, 6 H), 6.88 (t, J = 7.3 Hz, 3 H), 7.05–7.18 (m, 24 H), 7.80–7.77 (m, 15 H), 8.17 (s, 6 H), 8.75–7.94 (m, 9 H), 8.98 (d, J = 8.1 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): \delta = 34.86, 60.18, 123.77, 125.11, 125.52, 126.03, 127.06, 129.46, 131.85, 132.27, 133.47, 138.91 (the rest of signals were not observed) ppm. MALDI-MS (dithranol): m/z = 1482 [M]⁺.**

5,5,10,10,15,15-Hexakis(3-buten-1-yl)-10,15-dihydro-5*H***-diindeno-[1,2-***a***;1',2'-***c***]fluorene (5i): The residue was purified by flash chromatography (hexane/CH₂Cl₂, 8.5:1.5) to give 5i** (283 mg, 83%); white solid; m.p. 162–163 °C; $R_f = 0.30$ (hexane/CH₂Cl₂, 8.5:1.5). ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.95$ (dd, J = 13.6, 7.2 Hz, 6 H), 3.66 (dd, J = 13.6, 7.6 Hz, 6 H), 4.44 (dd, J = 10.4, 2.0 Hz, 6 H), 4.51 (dd, J = 17.2, 1.6 Hz, 6 H), 4.92–5.02 (m, 6 H), 7.37–7.45 (m, 6 H), 7.56 (dd, J = 7.2, 1.6 Hz, 3 H), 8.32 (d, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 100 MHz, APT): $\delta = 39.82$ (CH₂), 55.15 (C), 116.76 (CH₂), 123.08 (CH), 124.99 (CH), 126.36 (CH), 126.39 (CH), 133.29 (CH), 138.24 (C), 139.76 (C), 143.83 (C), 151.95 (C) ppm. MALDI-MS: m/z = 582 [M]⁺.

 $5\alpha,10\alpha,15\beta$ -Tris[(2-bromophenyl)methyl]- $5\beta,10\beta,15\alpha$ -tris[(3-meth-oxyphenyl)methyl]-10,15-dihydro-5H-diindeno[$1,2-\alpha;1',2'$ -c]fluorene

FULL PAPER

(6a) and 5α,10α,15α-Tris[(2-bromophenyl)methyl]-5β,10β,15β-tris[(3methoxyphenyl)methyl]-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (7a): A mixture of 5,10,15-tris(2-bromophenylmethyl)-10,15dihydro-5*H*-diindeno[1,2-a;1',2'-c]fluorene (**3a**, 80 mg, 0.09 mmol) and KOtBu (34 mg, 0.28 mmol) in THF (10 mL) was heated under reflux for 30 min. 3-Methoxybenzyl bromide (62 mg, 0.31 mmol) in THF (5 mL) was then added to the green suspension. After 16 h, the mixture was cooled to 23 °C and diluted with CH₂Cl₂, washed with saturated aqueous NaCl solution, and dried (Na₂SO₄). The solvent was evaporated and the residue was triturated with hexane to yield a ca. 2:1 mixture of anti-6a and syn-7a. The mixture of isomers could be separated by flash column chromatography (hexane/CH2Cl2, 1:1). anti-6a: 77 mg, 68%; yellow solid; m.p. 200-201 °C; $R_f = 0.32$ (1:1 hexane/CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ = 3.28 (s, 3 H), 3.34 (s, 3 H), 3.48 (s, 3 H), 3.52–4.03 (m, 8 H), 4.08 (d, J = 15.4 Hz, 1 H), 4.18 (d, J = 14.8 Hz, 1 H), 4.32 (d, J = 12.1 Hz, 1 H), 4.46 (d, J = 13.1 Hz, 1 H), 5.42 (d, J = 7.7 Hz, 1 H), 5.62 (dd, J = 7.9, 1.8 Hz, 1 H), 5.90 (d, J = 1.6 Hz, 2 H), 6.06 (d, J = 7.5 Hz, 1 H), 6.18–6.27 (m, 3 H), 6.42 (dd, J =13.9, 7.7 Hz, 2 H), 6.56-6.68 (m, 2 H), 6.81-7.11 (m, 5 H), 7.51 (dd, J = 7.9, 1.4 Hz, 1 H), 7.17-7.44 (m, 14 H), 7.59 (d, J = 6.5 Hz)1 H), 8.43 (dd, J = 7.5, 4.6 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz, DEPT): δ = 39.23 (CH₂), 39.31 (CH₂), 39.61 (CH₂), 42.34 (CH₂), 42.45 (CH₂), 42.81 (CH₂), 54.58 (CH₃), 54.70 (CH₃), 54.78 (CH₃), 56.88 (C), 57.13 (C), 57.14 (C), 111.68 (CH), 111.83 (CH), 112.02 (CH), 115.07 (CH), 115.12 (CH), 115.42 (CH), 121.88 (CH), 121.97 (CH), 122.33 (CH), 124.83 (CH), 124.95 (CH), 125.02 (CH), 125.53 (C), 125.61 (CH), 125.70 (CH), 125.80 (CH), 125.91 (C), 126.33 (CH), 126.58 (CH), 126.75 (CH), 127.18 (CH), 127.46 (CH), 127.56 (CH), 127.72 (CH), 128.21 (CH), 129.91 (CH), 130.88 (CH), 131.85 (CH), 132.25 (CH), 132.61 (CH), 137.28 (C), 137.85 (C), 137.93 (C), 138.42 (C), 138.51 (C), 138.57 (C), 138.89 (C), 139.00 (C), 139.25 (C), 145.24 (C), 145.36 (C), 145.57 (C), 149.75 (C), 149.90 (C), 157.85 (C), 158.13 (C), 158.49 (C) (several signals were not observed, due to overlapping) ppm. MALDI-MS (AgTFA): $m/z = 1317 [M + Ag]^+$. HR-MALDI-MS: m/z for $C_{72}H_{57}^{107}Ag^{79}$ -Br₃O₃: calcd. 1313.0908; found 1313.0903. syn-7a: 33 mg, 29%; yellow solid; m.p. 140–141 °C; $R_f = 0.19$ (hexane/CH₂Cl₂, 1:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.44 (s, 9 H), 3.63 (d, J = 13.3 Hz, 3 H), 3.98 (d, J = 13.1 Hz, 3 H), 4.10 (d, J = 14.3 Hz, 3 H), 4.30(d, J = 14.6 Hz, 3 H), 5.76 (d, J = 7.7 Hz, 3 H), 6.18 (t, J = 1.6 Hz, 3 H)3 H), 6.45 (dd, J = 7.9, 1.8 Hz, 3 H), 6.54 (td, J = 7.3, 1.2 Hz, 6 H), 6.71 (td, J = 8.1, 1.8 Hz, 3 H), 6.74 (t, J = 7.9 Hz, 3 H), 7.21– 7.42 (m, 12 H), 8.42 (d, J = 7.7 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz, DEPT): δ = 38.82 (CH₂), 43.12 (CH₂), 54.86 (CH₃), 56.87 (C), 111.97 (CH), 115.65 (CH), 122.33 (CH), 125.03 (CH), 125.55 (CH), 125.77 (C), 125.83 (CH), 126.25 (CH), 126.61 (CH), 127.37 (CH), 128.27 (CH), 129.60 (CH), 132.33 (CH), 137.98 (C), 138.22 (C), 138.74 (C), 138.86 (C), 145.57 (C), 149.71 (C), 158.26 (C) ppm. MALDI-MS (AgTFA): $m/z = 1317 [M + Ag]^+$. HR-MALDI-MS: *m*/*z* for C₇₂H₅₇¹⁰⁷Ag⁷⁹Br₃O₃: calcd. 1313.0908; found 1313.0903.

5α,10α,15β-Tris(3-bromophenylmethyl)-5β,10β,15α-tris[(3-methoxyphenyl)methyl]-10,15-dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (6a) and 5α,10α,15α-Tris(3-bromophenylmethyl)-5β,10β,15β-tris](3methoxyphenyl)methyl]-10,15-dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (7b): A mixture of 5,10,15-tris(3-bromophenylmethyl)-10,15dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (3b, 200 mg, 0.24 mmol) and KOtBu (87 mg, 0.71 mmol) in THF (20 mL) was heated under reflux for 30 min. 3-Methoxybenzyl bromide (157 mg, 0.78 mmol) in THF (10 mL) was then added to the green suspension. After 16 h, the mixture was cooled to 23 °C and diluted with CH₂Cl₂, washed with saturated aqueous NaCl solution, and dried (Na₂SO₄). The solvent was evaporated and the residue was tritu-

A. M. Echavarren et al.

rated with hexane to yield a ca. 1.5:1 mixture of anti-6b and syn-7b. The mixture of isomers could be separated by flash column chromatography (1:1 hexane/CH₂Cl₂). anti-6b: 190 mg, 66%; yellow solid; m.p. 166–167 °C; $R_{\rm f} = 0.38$ (1:1 hexane/CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ = 3.43–3.54 (m, 4 H), 3.56 (s, 3 H), 3.58 (s, 3 H), 3.60 (s, 3 H), 3.63–3.77 (m, 4 H), 3.84 (d, J = 13.4 Hz, 1 H), 3.94 (d, J = 13.4 Hz, 1 H), 4.05 (d, J = 13.4 Hz, 1 H), 4.11 (d, J = 13.4 Hz, 1 H), 5.99 (d, J = 7.7 Hz, 1 H), 5.85 (dd, J = 10.7, 7.7 Hz, 3 H), 6.08 (d, J = 7.5 Hz, 2 H), 6.27 (s, 2 H), 6.35 (s, 1 H), 6.55 (td, J = 6.3, 2.6 Hz, 3 H), 6.62 (t, J = 7.9 Hz, 3 H), 6.75 (d, J = 17.6 Hz, 3 H), 6.82 (d, J = 7.7 Hz, 2 H), 6.89 (t, J = 7.9 Hz, 1 H), 7.02 (dd, J = 16.4, 8.1 Hz, 2 H), 7.30–7.52 (m, 10 H), 8.48 (d, J = 7.7 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 40.05$, 40.44, 40.53, 41.20, 41.39, 41.48, 54.86, 54.91 (2 C), 56.91, 56.99, 57.03, 111.65, 111.81, 115.89, 116.03, 116.20, 120.27, 120.73, 120.87, 122.20, 122.43, 122.50, 122.53, 122.57, 125.21, 125.25, 125.81, 125.89, 125.95, 126.92, 126.95, 127.79, 128.02, 128.07, 128.26, 128.35, 128.39, 128.61, 128.76, 128.81, 128.85, 133.07, 133.17, 138.43, 138.51, 138.54, 138.64, 138.75, 139.38, 139.43, 139.53, 139.61, 139.70, 144.52, 144.68, 144.63, 149.86, 149.90, 158.40, 158.44, 158.52 (several signals were not observed, due to overlapping) ppm. MALDI-MS (AgTFA): $m/z = 1317 [M + Ag]^+$. HR-MALDI-MS: *m*/*z* for C₇₂H₅₇¹⁰⁷Ag⁷⁹Br₃O₃: calcd. 1313.0908; found 1313.0903. syn-7b: 95 mg, 33%; yellow solid; m.p. 143-144 °C; $R_{\rm f}$ = 0.16 (1:1 hexane/CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ = 3.53 (br.s, 9 H), 3.54–3.60 (m, 6 H), 3.82–3.95 (m, 6 H), 5.78 (d, J = 7.5 Hz, 3 H), 6.13 (d, J = 7.8 Hz, 3 H), 6.20 (br. s, 3 H), 6.52 (d, J = 8.1 Hz, 3 H), 6.70 (t, J = 7.8 Hz, 3 H), 6.85 (br. s, 3 H), 6.73 (t, J = 7.8 Hz, 3 H), 7.10 (d, J = 8.1 Hz, 3 H), 7.32 (dd, J = 7.3, 2.4 Hz, 3 H), 7.42 (t, J = 7.1 Hz, 3 H), 7.50 (t, J = 7.1 Hz, 3 H), 8.49 (d, J = 7.8 Hz, 3 H) ppm. ¹³C NMR $(CDCl_3, 75 \text{ MHz}): \delta = 40.77, 40.97, 54.84, 56.93, 111.68, 116.07,$ 120.99, 122.24, 125.22, 125.79, 125.86, 126.94, 127.84, 128.32, 128.79, 128.89, 133.29, 138.41, 138.53, 139.39, 139.86, 144.61, 149.89, 158.36 ppm. MALDI-MS (AgTFA): $m/z = 1317 [M + Ag]^+$. HR-MALDI-MS: *m*/*z* for C₇₂H₅₇¹⁰⁷Ag⁷⁹Br₃O₃: calcd. 1313.0908; found 1313.0903.

5β,10β,15α-Tris(4-bromophenylmethyl)-5α,10α,15β-tris[(3-methoxyphenyl)methyl]-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (6c) and 5β,10β,15β-Tris(4-bromophenylmethyl)-5α,10α,15α-tris[(3methoxyphenyl)methyl]-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (7c): A mixture of 5,10,15-tris(4-bromophenylmethyl)-10,15dihydro-5*H*-diindeno[1,2-a;1',2'-c]fluorene (**3c**, 100 mg, 0.12 mmol) and KOtBu (43 mg, 0.35 mmol) in THF (10 mL) was heated under reflux for 30 min. 3-Methoxybenzyl bromide (78 mg, 0.39 mmol) in THF (5 mL) was then added to the green suspension. After 16 h, the mixture was cooled to 23 °C and diluted with CH2Cl2, washed with saturated aqueous NaCl solution, and dried (Na₂SO₄). The solvent was evaporated and the residue was triturated with hexane to yield a ca. 1.5:1 mixture of anti-6c and syn-7c. The mixture of isomers could be separated by flash column chromatography (hexane/CH2Cl2 1:1). anti-6c: 87 mg, 61%; yellow solid; m.p. 130–131 °C; $R_{\rm f}$ = 0.33 (hexane/CH₂Cl₂, 1:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.50 (s, 3 H), 3.53 (s, 3 H), 3.34–3.59 (m, 8 H), 3.64 (s, 3 H), 3.87–3.95 (m, 2 H), 4.07 (d, J = 13.5 Hz, 1 H), 4.20 (d, J = 13.1 Hz, 1 H), 5.72 (d, J = 7.7 Hz, 1 H), 5.84 (d, J = 7.7 Hz, 1 H), 6.02 (dd, J = 13.3, 8.5 Hz, 5 H), 6.12 (s, 2 H), 6.14 (d, J = 6.2 Hz, 2 H), 6.34 (s, 1 H), 6.50 (dd, J = 7.9, 2.0 Hz, 1 H),6.62 (ddd, J = 15.8, 7.9, 2.0 Hz, 2 H), 6.75 (dd, J = 15.8, 7.9 Hz, 2 H), 6.83 (dd, J = 10.5, 8.3 Hz, 4 H), 6.92 (t, J = 7.9 Hz, 2 H), 6.99 (d, J = 8.3 Hz, 2 H), 7.33–7.48 (m, 8 H), 8.46 (dd, J = 7.1, 6.2 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz, DEPT): δ = 40.26 (CH₃), 40.93 (CH₃), 41.19 (CH₃), 41.54 (2 CH₃), 41.60 (CH₃), 54.79

(CH), 115.93 (CH), 116.38 (CH), 119.47 (C), 119.63 (C), 119.84 (C), 122.09 (CH), 122.23 (CH), 122.51 (CH), 125.19 (CH), 125.26 (CH), 125.51 (CH), 125.58 (CH), 125.76 (C), 125.82 (CH), 125.86 (CH), 125.90 (CH), 126.92 (CH), 128.19 (CH), 128.56 (CH), 128.62 (CH), 130.08 (C), 130.13 (CH), 130.46 (CH), 130.50 (CH), 131.31 (C), 131.37 (C), 131.41 (CH), 135.94 (C), 136.04 (C), 136.09 (C), 138.59 (C), 138.70 (C), 138.76 (C), 138.80 (C), 139.47 (C), 139.58 (C), 139.61 (C), 144.03 (C), 144.15 (C), 144.47 (C), 149.94 (C), 150.04 (C), 150.08 (C), 158.32 (C), 158.36 (C), 158.57 (C); (several signals were not observed, due to overlapping) ppm. MALDI-MS (AgTFA): $m/z = 1317 [M + Ag]^+$. HR-MALDI-MS: m/z for $C_{72}H_{57}^{107}Ag^{79}Br_{3}O_{3}$: calcd. 1313.0908; found 1313.0903. *syn-7c*: 54 mg, 38%; yellow solid; m.p. 153–154 °C; $R_f = 0.43$ (hexane/ CH₂Cl₂, 1:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.38–3.49 (m, 6 H), 3.58 (s, 9 H), 5.90 (d, J = 7.5 Hz, 3 H), 4.29 (d, J = 13.3 Hz, 6 H), 6.00 (d, J = 8.3 Hz, 6 H), 6.26 (s, 3 H), 6.53 (dd, J = 8.3, 2.4 Hz, 3 H), 6.79 (t, J = 7.5 Hz, 3 H), 6.92 (d, J = 8.3 Hz, 6 H), 7.33–7.48 (m, 9 H), 8.48 (d, J = 7.5 Hz, 3 H) ppm. ¹³C NMR $(CDCl_3, 75 \text{ MHz}, DEPT): \delta = 40.38 (CH_2), 41.77 (CH_2), 54.93$ (CH₃), 57.21 (C), 111.57 (CH), 116.38 (CH), 119.67 (C), 122.42 (CH), 125.25 (CH), 125.68 (CH), 125.82 (CH), 126.95 (CH), 128.25 (CH), 130.48 (CH), 131.29 (CH), 131.33 (C), 136.07 (C), 138.62 (C), 138.85 (C), 139.54 (C), 144.22 (C), 149.97 (C), 158.47 (C) (several signals were not observed, due to overlapping) ppm. MALDI-MS (AgTFA): $m/z = 1317 [M + Ag]^+$. HR-MALDI-MS: m/z for C₇₂H₅₇¹⁰⁷Ag⁷⁹Br₃O₃: calcd. 1313.0908; found 1313.0903.

(CH₂), 54.81 (CH₂), 54.95 (CH₂), 57.00 (CH₂), 57.22 (CH₂), 57.26

(CH₂), 111.44 (CH), 111.50 (C), 111.55 (C), 111.59 (C), 115.62

5,5,10,10,15,15-Hexakis{[3-(aminomethyl)phenyl]methyl}-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (8): Truxene 5e (100 mg, 0.29 mmol) in THF (12 mL) was slowly added at 0 °C to a suspension of LiAlH₄ (121 mg, 3.19 mmol) in THF (6 mL), and the mixture was then heated under reflux for 16 h. After the mixture had been cooled to 0 °C, H₂O was added very slowly, together with an aqueous solution of HCl, and the mixture was extracted with CH₂Cl₂. The aqueous layer was basified with an aqueous solution of NaOH and extracted with CH2Cl2 and dried (MgSO4), and the solvents were evaporated. The blue oil was triturated with CHCl₃/ Et₂O (1:100) to give 8 (156 mg, 51%); blue solid; m.p. >300 °C; $R_{\rm f}$ = 0.14 (CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz): δ = 3.54 (s, 12 H), 3.55 (d, J = 13.4 Hz, 6 H), 3.84 (d, J = 13.4 Hz, 6 H), 6.00 (d, J = 7.3 Hz, 3 H), 6.55 (s, 6 H), 6.78 (t, J = 7.7 Hz, 6 H), 6.86 (d, J = 7.5 Hz, 6 H), 7.34–7.46 (m, 12 H), 8.48 (d, J = 7.7 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz, DEPT): δ = 40.95 (2 CH₂), 46.31 (2 CH₂), 57.16 (C), 124.50 (2 CH), 125.21 (2 CH), 126.21 (CH), 126.48 (CH), 127.50 (2 CH), 128.04 (2 CH), 129.06 (2 CH), 137.47 (2 C), 138.30 (C), 139.69 (C), 142.07 (2 C), 144.85 (C), 150.29 (C) ppm. MALDI-MS (DHB/MeOH): $m/z = 1057 [M + 1]^+$. HR-MALDI-MS: *m*/*z* for C₇₅H₇₃N₆: calcd. 1057.5891; found 1057.5880.

5,5,10,10,15,15-Hexakis[(3-carboxyphenyl)methyl]-10,15-dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (9): NaOH (25% aq, 32 mL) was added to a solution of **5e** (400 mg, 0.39 mmol) in MeOH (40 mL) and the mixture was heated under reflux for 16 h. After being cooled, the mixture was poured into HCl solution (10%) and the solid was filtered off and washed with CH₂Cl₂. The aqueous layer was extracted CH₂Cl₂ and dried (Na₂SO₄), the solvent was evaporated, and the residue was triturated with acetone/Et₂O to yield **9** (349 mg, 78%); green solid; m.p. 284–286 °C. ¹H NMR (1,1,2,2tetrachloro[D₂]ethane, 110 °C, 300 MHz): δ = 3.57–4.40 (m, 12 H), 6.70–7.70 (m, 33 H), 8.00–8.10 (m, 3 H) ppm. ¹³C NMR (1,1,2,2tetrachloro[D₂]ethane, 75 MHz, DEPT, 110 °C): δ = 29.69 (CH₂), 30.03 (CH₂), 73.88 (CH), 74.53 (CH) (several signals were not observed) ppm. MALDI-MS (DHB/MeOH): $m/z = 1147 [M + 1]^+$.

5,5,10,10,15,15-Hexakis{[3-(methoxycarbonyl)phenyl]methyl}-**10,15-dihydro-5***H***-diindeno**[**1,2-***a*;**1**',**2**'-*c*]fluorene (**10**): H₂SO₄ (96%, 0.5 mL) was added to a solution of 9 (26 mg, 0.02 mmol) in MeOH (6 mL) and the mixture was heated under reflux for 16 h. After having been cooled, the mixture was diluted with H₂O, extracted with CH₂Cl₂, and dried (Na₂SO₄). The solvent was evaporated and the residue was chromatographed (hexane/EtOAc, 2:1) to give 10 (21 mg, 74%); white solid; m.p. 138–139 °C; $R_{\rm f} = 0.16$ (hexane/ EtOAc, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.47–3.77 (m, 6 H), 3.78 (s, 3 H), 3.79 (s, 3 H), 3.80 (s, 3 H), 3.81 (s, 3 H), 3.82 (s, 3 H), 3.83 (s, 3 H), 3.84-4.06 (m, 6 H), 6.15-6.42 (m, 6 H), 6.71-6.97 (m, 9 H), 7.16-7.52 (m, 15 H), 7.60-7.71 (m, 3 H), 8.38-8.52 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz, DEPT): δ = 40.64 (CH₂), 40.74 (CH₂), 51.85 (CH₃), 51.91 (CH₃), 56.60 (C), 56.68 (C), 56.82 (C), 56.92 (C), 110.88 (C), 118.56 (C), 125.22 (CH), 125.34 (CH), 125.63 (CH), 125.81 (CH), 125.92 (CH), 126.05 (CH), 126.60 (CH), 126.78 (CH), 127.13 (CH), 127.30 (CH), 127.95 (CH), 128.03 (CH), 128.91 (CH), 128.99 (CH), 129.11 (CH), 129.51 (CH), 131.47 (CH), 133.60 (CH), 133.70 (CH), 133.89 (CH), 134.02 (CH), 134.10 (CH), 137.07 (C), 137.19 (C), 137.34 (C), 137.43 (C), 138.49 (C), 138.55 (C), 138.69 (C), 138.75 (C), 149.14 (C), 149.47 (C), 149.61 (C), 166.74 (C) (several signals were not observed, due to overlapping) ppm. MALDI-MS (dithranol + NaI): $m/z = 1253 [M + Na]^+$. HR-MALDI-MS: *m*/*z* for C₈₁H₆₆NaO₁₂: calcd. 1253.4442; found 1253.4446.

5a,10a,15a-Tris(3-hydroxypropyl)-10,15-dihydro-5H-diindeno[1,2a;1',2'-c]fluorene (12): Catecholborane (0.90 mL, 8.43 mmol) was added very slowly at 0 °C to a mixture of 11 (325 mg, 0.703 mmol) in THF (10 mL), and the mixture was stirred under reflux for 16 h. After the mixture had been cooled to 0 °C, a solution of THF/ EtOH (1:1) (12 mL), NaOH (12 mL, 2 M), and H₂O₂ (12 mL) was added. The mixture was extracted with CH₂Cl₂, washed with NaOH solution (1 M), and dried (MgSO₄). The solvent was evaporated and the residue was triturated with CH₂Cl₂ to give 11 (218 mg, 60%); yellow solid; m.p. 241–242 °C; $R_{\rm f} = 0.17$ (CH₂Cl₂/ EtOAc, 1:2). ¹H NMR (CDCl₃, 300 MHz): $\delta = 0.74-0.80$ (m, 3 H), 0.95-1.05 (m, 3 H), 1.61 (br.s, 3 H), 2.15-2.24 (m, 3 H), 2.33-2.45 (m, 3 H), 2.96–3.16 (m, 6 H), 4.48 (t, J = 4.1 Hz, 3 H), 7.43 (t, J = 7.1 Hz, 3 H), 7.36 (t, J = 7.1 Hz, 3 H), 7.55 (d, J = 7.1 Hz, 3 H), 7.85 (d, J = 7.5 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz, DEPT): $\delta = 27.11$ (CH₂), 27.25 (CH₂), 46.08 (CH), 62.69 (CH₂), 122.63 (CH), 124.84 (CH), 126.55 (CH), 127.07 (CH), 136.80 (C), 140.43 (C), 140.82 (C), 147.99 (C) ppm. MALDI-MS (dithranol + AgTFA): $m/z = 539 [M + Na]^+$. HR-MALDI-MS: m/z for C₃₆H₃₆NaO₃: calcd. 539.2562; found 539.2557.

5,5,10,10,15,15-Hexakis(3-hydroxypropyl)-10,15-dihydro-5H-diindeno[1,2-*a***;1',2'-***c***]fluorene (13):** Catecholborane (1 м in THF, 9.68 mL, 9.68 mmol) was added slowly at 0 °C to a mixture of **5i** (235 mg, 0.403 mmol) in THF (10 mL), and the resulting mixture was stirred under reflux for 16 h. After the mixture had been cooled to 0 °C, a solution of THF/EtOH (1:1, 10 mL), NaOH (10 mL, 2 M), and H₂O₂ (10 mL) was added. The mixture was extracted with CH₂Cl₂ and washed with NaOH solution (1 M). The organic layer was concentrated and the residue was triturated with CH₂Cl₂ (5 mL) and filtered. The filtrate was washed with water and acetone to give **13** (84 mg, 30%); white solid; m.p. 246–248 °C; $R_{\rm f}$ = 0.40 (CH₂Cl₂/MeOH, 9:1). ¹H NMR ([D₄]MeOH, 400 MHz): δ = 0.73–0.84 (m, 12 H), 2.28–2.32 (m, 6 H), 3.03–3.16 (m, 18 H), 7.44 (br.s, 6 H), 7.59 (br.s, 3 H), 8.44 (br.s, 3 H) ppm. ¹³C NMR (CD₃OD, 100 MHz): δ = 28.78, 34.32, 56.30, 63.22, 123.84, 126.09, 127.71, 128.28, 140.32, 141.12, 145.60, 154.22 ppm. 13 C NMR ([D₄]MeOH, 100 MHz, DEPT): δ = 28.78 (CH₂), 34.32 (CH₂), 56.30 (C), 63.22 (CH₂), 123.84 (CH), 126.09 (CH), 127.71 (CH), 128.28 (CH), 140.32 (C), 141.12 (C), 145.60 (C), 154.22 (C) ppm. HR-EI-MS: *m*/*z* for C₄₅H₅₄NaO₆: calcd. 713.3818; found 713.3827.

5a,10a,15\beta-Trihydroxy-5β,10β,15a-tris(2-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (14a) and 5a,10a,15a-Trihydroxy-5\u03c6,10\u03c6,15\u03c6-tris(2-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (15a): nBuLi (5.6 mL, 14.06 mmol, 2.5 M in hexane) was added at -78 °C to a solution of 2-bromoanisole (1.75 mL, 14.06 mmol) in Et₂O (10 mL). The mixture was warmed up to 10 °C and then a suspension of truxenetrione 4 (600 mg, 1.56 mmol) in THF (50 mL) was added. The mixture was stirred at room temperature for 3 h. After aqueous workup, extraction with EtOAc, and drying with MgSO₄, the solvent was evaporated and the residue was triturated with hexane to give a ca. 1:2.8 mixture of 14a and 15a (1.06 g, 96%) as a gray solid. The mixture was separated by column chromatography (CH₂Cl₂/EtOAc, 30:1). 14a: White solid; m.p. 234–236 °C; $R_{\rm f} = 0.39$ (CH₂Cl₂/EtOAc, 20:1). ¹H NMR (CDCl₃, 300 MHz): δ = 4.00 (br.s, 9 H), 6.67–6.75 (m, 3 H), 6.96-7.10 (m, 9 H), 7.14-7.22 (m, 3 H), 7.56-7.75 (m, 9 H) ppm. ¹H NMR ([D₆]DMSO, 300 MHz): δ = 3.16 (br.s, 9 H), 6.14 (s, 1 H, OH), 6.18 (s, 1 H, OH), 6.22 (s, 1 H, OH), 6.73 (m, 3 H), 6.92-7.03 (m, 12 H), 7.09-7.16 (m, 6 H), 7.84-7.95 (m, 3 H) ppm. ¹³C NMR ([D₆]DMSO, 75 MHz): δ = 55.26, 55.90, 56.04, 81.70 (br), 112.35, 113.38, 113.66, 120.02, 120.44, 123.01, 123.09, 123.20, 125.68, 125.77, 125.93, 126.66, 126.77, 127.08, 127.16, 127.66, 127.72, 128.17, 128.28, 128.36, 132.66, 133.21, 137.68 (br), 138.88 (br), 144.48 (br), 151.15, 151.34, 151.79, 156.61, 156.78, 157.12, 157.17 (some signals were not observed, due to overlapping) ppm. IR: $\tilde{v} = 3485, 3056, 3928, 1594, 1596, 1483, 1274, 1228,$ 1040, 1020, 742 cm⁻¹. EI-MS: m/z (%) = 708 (100) [M]⁺, 691 (18), 674 (9), 601 (19), 583 (8). HRMS: *m*/*z* for C₄₈H₃₆O₆: calcd. 708.2512; found 708.2508. **15a**: White solid; m.p. >300 °C. $R_{\rm f}$ = 0.05 (CH₂Cl₂/EtOAc, 20:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.69 (br. s, 9 H), 6.90 (br. s, 4 H), 7.01–7.11 (m, 8 H), 7.16–7.22 (m, 4 H), 7.47 (br.s, 4 H), 7.75–7.77 (m, 4 H) ppm. ¹H NMR ([D₆]DMSO, 200 MHz): δ = 3.12 (br. s, 9 H), 6.19 (s, 1 H, OH), 6.79 (br. s, 3 H), 6.99–7.03 (m, 12 H), 7.12–7.19 (m, 6 H), 7.97 (br.s, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 55.44, 81.58, 112.83, 120.22, 122.93, 125.92, 126.87, 127.18, 127.62, 128.46, 129.10, 132.56, 137.73, 138.53, 151.72, 156.85 ppm. EI-MS: m/z (%) = 708 (43) [M]⁺, 691 (100), 674 (10). IR: $\tilde{v} = 3552$, 3484, 1730, 1600, 1584, 1490, 1242, 1047, 755, 644 cm⁻¹. HRMS: *m*/*z* for C₄₈H₃₆O₆: calcd. 708.2512; found 708.2512.

5a,10a,15β-Trihydroxy-5β,10β,15a-tris(3-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (14b) and 5a,10a,15a-Trihydroxy-56,106,156-tris(3-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (15b): nBuLi (6.16 mL, 15.6 mmol, 2.5 M in hexane) was added at -78 °C to a solution of 3-bromoanisole (1.98 mL, 15.6 mmol) in THF (20 mL). The mixture was warmed up to 10 °C and a suspension of truxenetrione 4 (1.00 g, 2.6 mmol) in THF (80 mL) was then added. The mixture was stirred at room temperature for 17 h. After aqueous workup, extraction with EtOAc, and drying with MgSO₄, the solvent was evaporated and the residue was triturated with hexane to give a ca. 1.1:1 mixture of 14b and 15b (1.20 g, 65%) as a yellow solid. The mixture was separated by column chromatography (CH₂Cl₂/ EtOAc, 40:1). **14b**: Yellow solid; m.p. 176–178 °C; $R_f = 0.66$ $(CH_2Cl_2/EtOAc, 20:1)$. ¹H NMR (CDCl₃, 200 MHz): $\delta = 2.80$ (s, 2 H), 2.81 (s, 1 H), 3.69 (s, 6 H), 3.73 (s, 3 H), 6.67–6.72 (m, 3 H), 7.06-7.23 (m, 15 H), 7.31-7.37 (m, 3 H), 7.83-7.87 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 55.05, 55.08, 55.19, 83.50, 83.67, 83.83, 110.86, 111.00, 111.55, 111.83, 112.31, 112.50, 123.52, of truxenetrio 123.72, 123.91, 126.23, 126.31, 126.48, 128.68–128.48 (m, 9 C), 129.54, 130.19, 135.93, 136.01, 136.07, 143.20, 143.29, 143.99, 151.07, 151.30, 151.58, 159.64, 159.69 (some signals were not observed, due to overlapping) ppm. IR: $\tilde{v} = 3478$, 3440, 3072, 2932, 2836, 1701, 1602, 1584, 1486, 1460, 1280, 1246, 1147, 1042, 760, 746, 698 cm⁻¹. EI-MS: *m/z* (%) = 708 (100) [M]⁺, 601 (84), 493 (29), 385 (21), 357 (19). HRMS: *m/z* for C₄₈H₃₆O₆: calcd. 708.2512; found 708.2516. **15b**: White solid; m.p. 264–266 °C; *R*_f = 0.18 of truxenetrio added. The magueous work the solvent was an to give a period of the solvent was an to give a period work the solvent was an to give a period wo

found 708.2516. **15b**: White solid; m.p. 264–266 °C; $R_{\rm f} = 0.18$ (CH₂Cl₂/EtOAc, 20:1). ¹H NMR (CDCl₃, 200 MHz): $\delta = 2.79$ (s, 3 H), 3.62 (s, 9 H), 6.60–6.66 (m, 3 H), 6.88 (br. s, 3 H), 6.98–7.06 (m, 6 H), 7.10–7.15 (m, 6 H), 7.197.24 (m, 3 H), 7.75–7.79 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 54.82$, 83.32, 110.41, 112.56, 117.16, 123.27, 126.28, 128.46, 128.62, 129.38, 135.57, 139.50, 143.32, 143.68, 151.13, 159.50 ppm. IR: $\tilde{v} = 3556$, 3530, 3470, 3072, 2932, 2838, 1608, 1588, 1480, 1454, 1292, 1250, 762, 702 cm⁻¹. EI-MS: *m*/*z* (%) = 708 (100) [M]⁺, 601 (73.2), 493 (11), 385 (13), 345 (18). HRMS: *m*/*z* for C₄₈H₃₆O₆: calcd. 708.2512; found 708.2518.

5a,10a,15β-Trihydroxy-5β,10β,15a-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (14c) and 5a,10a,15a-Trihydroxy-56,106,156-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (15c): nBuLi (11.25 mL, 28.13 mmol, 2.5 M in hexane) was added at -78 °C to a solution of 4-bromoanisole (3.53 mL, 28.13 mmol) in Et₂O (20 mL). The mixture was warmed up to 15 °C and a suspension of truxenetrione 4 (1.20 g, 3.13 mmol) in THF (120 mL) was then added. The mixture was stirred at room temperature for 3 h. After aqueous workup, extraction with EtOAc, and drying with MgSO₄, the solvent was evaporated and the residue was triturated with hexane to give a ca. 2:1 mixture of 14c and 15c (2.11 g, 95%) as a white solid. The mixture was separated by column chromatography (CH₂Cl₂/EtOAc, 20:1). 14c: White solid; m.p. 222–224 °C; $R_f = 0.77$ (CH₂Cl₂/EtOAc, 20:1). ¹H NMR (CDCl₃, 300 MHz): δ = 2.67 (s, 1 H), 2.68 (s, 1 H), 2.73 (s, 1 H), 3.71 (s, 3 H), 3.72 (s, 6 H), 6.18–6.74 (m, 6 H), 7.05-7.16 (m, 6 H), 7.32-7.35 (m, 3 H), 7.45-7.55 (m, 6 H), 7.77-7.83 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 55.02, 83.30, 83.47, 83.58, 113.76, 113.87, 123.41, 123.66, 126.03, 126.28, 126.36, 126.60, 128.37, 128.43, 134.31, 135.71, 135.82, 139.50, 139.61, 139.78, 143.35, 143.43, 143.44, 151.41, 151.66, 151.80, 158.55, 158.72 (some signals were not observed, due to overlapping) ppm. IR: v = 3542, 3442, 1700, 1602, 1576, 1502, 1465, 1242, 1164, 1020, 820, 742, 576 cm⁻¹. EI-MS: m/z (%) = 708 (100) [M]⁺, 690 (43), 601 (44), 493 (22), 385 (12), 357 (12). HRMS: m/z for C₄₈H₃₆O₆: calcd. 708.2512; found 708.2513. **15c**: White solid; m.p. >300 °C; $R_{\rm f}$ = $0.14 (CH_2Cl_2/EtOAc, 20:1)$. ¹H NMR ([D₆]acetone, 300 MHz): $\delta =$ 2.79 (s, 3 H), 3.65 (s, 9 H), 6.78 (d, J = 8.9 Hz, 6 H), 7.00–7.11 (m, 6 H), 7.26 (d, J = 8.1 Hz, 3 H), 7.50 (d, J = 8.9 Hz, 6 H), 8.11 (d, J = 6.9 Hz, 3 H) ppm. ¹³C NMR ([D₆]acetone, 75 MHz): $\delta = 55.29$, 83.91, 114.36, 124.26, 126.97, 127.80, 128.25, 128.47, 136.70, 137.45, 140.16, 145.62, 153.54, 159.51 ppm. IR: $\tilde{v} = 3556$, 1600, 1582, 1514, 1462, 1300, 1249, 1164, 1027, 830, 754 cm⁻¹. EI-MS: m/z (%) = 708 (100) [M]⁺, 692 (44), 676 (28),660 (53), 601 (36), 568 (16), 552 (20), 493 (14), 445 (10), 357 (6). HRMS: *m*/*z* for C₄₈H₃₆O₆: calcd. 708.2512; found 708.2524.

5a,10a,15 β -Trihydroxy-5 β ,10 β ,15a-tris(2,5-dimethoxyphenyl)-10,15dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (14d) and 5a,10a,15a-Trihydroxy-5 β ,10 β ,15 β -tris(2,5-dimethoxyphenyl)-10,15-dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (15d): *n*BuLi (11.25 mL, 28.13 mmol, 2.5 M in hexane) was added at -78 °C to a solution of 1-bromo-2,5-dimethoxybenzene (4.22 mL, 28.13 mmol) in Et₂O (20 mL). The mixture was warmed up to 15 °C and a suspension A. M. Echavarren et al.

of truxenetrione 4 (1.20 g, 3.13 mmol) in THF (120 mL) was then added. The mixture was stirred at room temperature for 3 h. After aqueous workup, extraction with EtOAc, and drying with MgSO₄, the solvent was evaporated and the residue was triturated with hexane to give a ca. 1:1.1 mixture of 14d and 15d (2.25 g, 90%) as a yellow solid. The mixture was separated by column chromatography (CH₂Cl₂/EtOAc, 30:1). 14d: Pale yellow solid; m.p. 194-196 °C; $R_{\rm f} = 0.68$ (CH₂Cl₂/EtOAc, 15:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.53 (br.s, 9 H), 3.87 (br.s, 9 H), 6.64–6.70 (m, 3 H), 6.88 (br.s, 3 H), 7.02–7.14 (m, 9 H), 7.58 (br.s, 3 H), 7.75–7.78 (m, 3 H) ppm. ¹H NMR ([D₆]acetone, 300 MHz): $\delta = 2.81$ (s, 3 H), 3.63 (br.s, 18 H), 5.64 (br.s, 3 H), 6.64–6.71 (m, 3 H), 6.81 (br.s, 3 H), 6.94-7.04 (m, 6 H), 7.34 (br.s, 3 H), 7.91-8.04 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 55.41, 55.58, 55.66, 56.39, 56.54, 56.70, 84.11, 84.52, 85.10, 112.88, 113.05, 113.48, 122.75, 122.83, 127.83, 127.91, 128.15, 128.18, 132.15 (br), 137.10 (br), 138.50, 139.63 (br), 142.39, 151.28, 151.35, 151.53, 153.85, 153.99 (some signals were not observed, due to overlapping) ppm. IR: $\tilde{v} = 3484$, 1606, 1584, 1496, 1222, 1040, 1028, 744 cm⁻¹. EI-MS: m/z (%) = 798 (100) [M]⁺, 781 (14), 764 (3), 750 (2), 661 (8), 643 (10). HRMS: m/z for C₅₁H₄₂O₉: calcd. 798.2829; found 798.2824. 15d: Pale yellow solid; m.p. 184–186 °C; $R_{\rm f} = 0.14$ (CH₂Cl₂/EtOAc, 15:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.53 (br.s, 9 H), 3.87 (br.s, 9 H), 6.64–6.70 (m, 3 H), 6.88 (br.s, 3 H), 7.02–7.14 (m, 9 H), 7.58 (br.s, 3 H), 7.75–7.78 (m, 3 H) ppm. ¹H NMR ([D₆]acetone, 300 MHz): δ = 2.79 (s, 3 H), 3.65 (br. s, 18 H), 5.57 (s, 3 H), 6.68 (dd, J = 8.9, 2.8 Hz, 3 H), 6.84 (br.s, 3 H), 6.98-7.36 (m, 6 H), 7.36 (br.s, 3 H), 8.01 (br.s, 3 H) ppm. ¹³C NMR ([D₆]acetone, 75 MHz): δ = 55.82, 56.96, 83.70, 113.16, 114.83, 123.68, 127.27, 128.05, 128.19, 134.16, 138.71, 139.60, 144.37, 152.48, 152.90, 154.66 (some signals were not observed, due to overlapping) ppm. IR: $\tilde{v} = 3484$, 1606, 1581, 1496, 1218, 1037, 744, 734 cm⁻¹. EI-MS: m/z (%) = 798 (100) [M]⁺, 781 (14), 764 (4), 750 (4), 661 (8), 643 (6). HRMS: m/z for C₅₁H₄₂O₉: calcd. 798.2829; found 798.2830.

5a,10a,15b-Tris(2-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2a;1',2'-c]fluorene (16a) and 5a,10a,15a-Tris(2-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (17a): Et₃SiH (2.67 mL, 16.81 mmol) and BF3·OEt2 (1.33 mL, 10.57 mmol) were added at 0 °C to a mixture of 14a and 15b (480 mg, 0.68 mmol) in CH₂Cl₂ (15 mL). The mixture was stirred at 0 °C for 45 min and was then partitioned between a saturated aqueous NH₄Cl solution $(pH = 7 \text{ with } NH_4OH)$ and CH_2Cl_2 . After extractive workup, the residue was triturated with EtOAc to give a ca. 2.6:1 mixture of 16a and 17a as a yellow solid (309 mg, 70%). The mixture was separated by column chromatography (hexane/CH₂Cl₂, 2:1). 16a: Yellow solid; m.p. >300 °C; $R_{\rm f} = 0.73$ (hexane/CH₂Cl₂, 1:1). ¹H NMR (CDCl₃, 300 MHz): δ = 4.19 (br. s, 9 H), 6.26–6.38 (m, 4 H), 6.50-6.63 (m, 5 H), 7.06-7.13 (m, 12 H), 7.38-7.46 (m, 6 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 46.35, 55.76, 55.79, 110.65, 110.76, 121.23 (br), 122.77, 122.85, 124.41, 124.54, 126.45, 126.55, 126.62, 127.60, 127.66, 129.68, 129.75, 129.91, 138.09, 139.10, 139.83, 139.99, 149.62, 149.71, 149.81, 157.14, 157.20 (some signals were not observed, due to overlapping) ppm. EI-MS: m/z (%) = 660 (100) [M]⁺, 552 (20), 445 (17). HRMS: *m/z* for C₄₈H₃₆O₃: calcd. 660.2664; found 660.2677. **17b**: Yellow solid; m.p. >300 °C; $R_{\rm f}$ = 0.58 (hexane/CH₂Cl₂, 1:1). ¹H NMR (CDCl₃, 300 MHz): $\delta = 4.16$ (br. s, 9 H), 6.17 (br. s, 3 H), 6.63 (br. s, 6 H), 7.03-7.16 (m, 12 H), 7.39–7.48 (m, 6 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 48.55, 55.72, 110.77, 121.31, 122.79, 124.46, 126.56, 126.61, 127.67, 129.85, 138.83, 139.86, 157.15 (some signals were not observed, due to overlapping) ppm. EI-MS: *m*/*z* (%) = 660 (100) [M]⁺, 552 (22), 445 (18). HRMS: m/z for C₄₈H₃₆O: calcd. 660.2664; found 660.2667.

Isomerization of *anti***-16a to** *syn***-17a:** A suspension of **16a** (71 mg, 0.11 mmol) and KOtBu (15 mg) was heated under reflux in *t*BuOH (10 mL) for 17 h. After having been cooled to room temperature, the mixture was partitioned between water and CH_2Cl_2 . Extractive workup and chromatography (hexane/CH₂Cl₂, 2:1) gave **17a** (49 mg, 69%).

5a,10a,15b-Tris(3-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2a;1',2'-c [fluorene (16b) and $5\alpha,10\alpha,15\alpha$ -Tris(3-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (17b): The procedure described for the synthesis of 16a and 17a was applied to 14b/15b (450 mg, 0.64 mmol), Et₃SiH (2.48 mL, 15.61 mmol), and BF₃·OEt₂ (1.24 mL, 8.95 mmol). A ca. 10:1 mixture of **16b** and **17b** (370 mg, 88%) was obtained as a yellow solid. The mixture was separated by column chromatography (hexane/EtOAc, 5:1). 16b: White solid; m.p. 238–240 °C; $R_f = 0.41$ (3:1 hexane/EtOAc). ¹H NMR (CDCl₃, 300 MHz): δ = 3.62 (s, 3 H), 3.65 (s, 3 H), 3.66 (s, 3 H), 5.60 (s, 2 H), 5.62 (s, 1 H), 6.67-6.71 (m, 6 H), 6.85-6.88 (m, 1 H), 6.95-7.01 (m, 2 H), 7.10-7.22 (m, 9 H), 7.42-7.46 (m, 3 H), 7.52–7.61 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 53.93, 54.05, 54.93, 55.08, 11.64, 11.81, 112.14, 112.64, 112.89, 113.40, 120.03, 120.20, 123.46, 123.60, 124.44, 124.61, 124.66, 126.89, 126.95, 129.96, 138.72, 138.80, 139.11, 139.19, 139.25, 139.34, 139.50, 142.90, 142.97, 148.60, 148.73, 160.03 (some signals were not observed, due to overlapping) ppm. EI-MS: m/z (%) = 660 (100) [M]⁺, 552 (37), 445 (42), 401 (9). HRMS: *m*/*z* for C₄₈H₃₆O₃: calcd. 660.2664; found 660.2658. 17b: White solid; m.p. >300 °C; $R_{\rm f} = 0.23$ (hexane/EtOAc, 3:1). ¹H NMR (CDCl₃, 300 MHz): $\delta =$ 3.58 (s, 9 H), 4.57 (s, 3 H), 6.42 (s, 3 H), 6.60 (dd, J = 8.1, 2.4 Hz, 3 H), 6.66 (d, J = 7.3 Hz, 3 H), 7.08 (t, J = 7.9 Hz, 3 H), 7.22–7.33 (m, 12 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 53.07, 54.72, 111.78, 112.42, 119.70, 123.74, 124.69, 126.59, 126.73, 129.77, 138.33, 138.80, 139.03, 142.85, 148.79, 159.72 ppm. EI-MS: m/z $(\%) = 660 (100) [M]^+$, 552 (27), 445 (32), 401 (3). HRMS: *m/z* for C₄₈H₃₆O₃: calcd. 660.2664; found 660.2669.

Isomerization of *anti***-16b to** *syn***-17b:** A suspension of **16b** (250 mg, 0.35 mmol) and KOtBu (20 mg) was heated under reflux in *t*BuOH (10 mL) for 17 h. After having been cooled to room temperature, the mixture was partitioned between water and CH₂Cl₂. Extractive workup and trituration with hexane/CH₂Cl₂ gave **17b** (160 mg, 70%).

5a,10a,15b-Tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2a;1',2'-c [fluorene (16c) and $5\alpha,10\alpha,15\alpha$ -Tris(4-methoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (17c): The procedure described for the synthesis of 16a and 17a was applied to 14c/15c (450 mg, 0.64 mmol), Et₃SiH (2.48 mL, 15.61 mmol), and BF₃·OEt₂ (1.24 mL, 8.95 mmol). A ca. 10:1 mixture of 16c and 17c (305 mg, 72%) was obtained as a yellow solid. The mixture was separated by column chromatography (hexane/CH₂Cl₂, 4:1). 16c: White solid; m.p >300 °C; $R_{\rm f} = 0.5$ (hexane/CH₂Cl₂, 2:1). ¹H NMR (CDCl₃, 300 MHz): δ = 3.70 (s, 3 H), 3.71 (s, 3 H), 3.72 (s, 3 H), 5.57 (s, 1 H), 5.58 (s, 1 H), 5.60 (s, 1 H), 6.74-6.82 (m, 6 H), 7.08-7.22 (m, 12 H), 7.37-7.42 (m, 3 H), 7.51-7.56 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 300 MHz): δ = 53.21, 53.27, 55.05, 114.34, 114.40, 114.45, 123.54, 123.71, 124.33, 124.58, 126.67, 126.75, 128.26, 133.19, 133.30, 138.55, 138.60, 139.08, 139.10, 139.16, 139.47, 139.64, 149.17, 149.26, 158.29 (some signals were not observed, due to overlapping) ppm. EI-MS: m/z (%) = 660 (100) [M]⁺, 552 (48), 445 (25), 401 (8). HRMS: *m*/*z* for C₄₈H₃₆O₃: calcd. 660.2664; found 660.2657. **17c**: White solid; m.p. >300 °C; $R_{\rm f}$ = 0.3 (hexane/CH₂Cl₂, 2:1). ¹H NMR (1,1,2,2-tetrachloro[D₂]ethane, 300 MHz): δ = 3.63 (s, 9 H), 4.99 (s, 3 H), 6.71 (d, J = 8.5 Hz, 6 H), 7.01 (d, J = 8.4 Hz, 6 H), 7.12–7.19 (m, 6 H), 7.27–7.33 (m, 6 H) ppm. EI-MS: m/z (%) = 660 (100) [M]⁺, 568 (14), 552 (41), 445 (21), 401 (7). HRMS: m/z for C₄₈H₃₆O₃: calcd. 660.2664; found 660.2657.

Isomerization of *anti***-16c to** *syn***-17c:** A suspension of **16c** (250 mg, 0.35 mmol) and KOtBu (20 mg) was heated under reflux in *t*BuOH (10 mL) for 48 h. After having been cooled to room temperature, the mixture was partitioned between water and CH_2Cl_2 . Extractive workup and trituration with hexane/ CH_2Cl_2 gave **17c** (150 mg, 65%).

5a,10a,15β-Tris(2,5-dimethoxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (16d) and 5a,10a,15a-Tris(2,5-dimethoxyphenyl)-10,15-dihydro-5*H*-diindeno[1,2-*a*;1',2'-*c*]fluorene (17d): The procedure described for the synthesis of 16a and 17a was applied to 14d/15d (1.80 g, 2.25 mmol), Et₃SiH (6.00 mL, 37.77 mmol), and BF₃·OEt₂ (3.00 mL, 23.84 mmol). A ca. 3:1 mixture of 16d and 17d (1.25 g, 74%) was obtained as a yellow solid. The mixture was separated by column chromatography (hexane/ CH₂Cl₂, 1:2). **16d**: White solid; m.p. 278–280 °C; $R_f = 0.56$ (hexane/ CH₂Cl₂, 1:4). ¹H NMR (CDCl₃, 300 MHz): δ = 3.34 (s, 6 H), 3.38 (s, 3 H), 4.17 (s, 9 H), 5.94 (br.s, 1 H), 6.00 (br.s, 1 H), 6.08 (br.s, 1 H), 6.23-6.27 (m, 3 H), 6.59-6.65 (m, 3 H), 6.97-7.00 (m, 3 H), 7.10-7.15 (m, 6 H), 7.42-7.52 (m, 6 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 46.49, 54.97, 55.08, 55.19, 56.25, 11.33, 111.42,$ 111.53, 111.69, 112.28, 122.74, 122.88, 124.38, 124.55, 126.56, 126.64, 130.88, 130.97, 138.89, 139.00, 139.11, 139.67, 139.78, 149.54, 149.68, 149.76, 151.38, 151.49, 153.61, 153.68 (some signals were not observed, due to overlapping) ppm. EI-MS: m/z (%) = 750 (100) [M]⁺, 735 (4), 719 (7), 612 (20), 475 (9). HRMS: m/z for C₅₁H₄₂O₆: calcd. 750.2981; found 750.2988. **17d**: Pale yellow solid; m.p. 292–294 °C; $R_f = 0.46$ (hexane/CH₂Cl₂, 1:4). ¹H NMR (CDCl₃, 300 MHz): δ = 3.33 (s, 9 H), 4.15 (s, 9 H), 6.01 (br. s, 3 H), 6.06 (br.s, 3 H), 6.57 (dd, J = 8.9, 3.0 Hz, 3 H), 6.94 (d, J =8.9 Hz, 3 H), 7.01-7.14 (m, 6 H), 7.40-7.42 (m, 3 H), 7.43-7.48 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 46.21, 54.88, 56.19, 111.55, 111.86, 112.22, 122.85, 124.41, 126.59, 126.67, 130.88, 138.69, 139.05, 139.86, 149.68, 151.44, 153.66 ppm. EI-MS: m/z $(\%) = 750 (100) [M]^+, 735 (3), 719 (6), 612 (18), 475 (8).$ HRMS: m/z for C₅₁H₄₂O₆: calcd. 750.2981; found 750.2980.

5a,10a,15a-Tris(2-hydroxyphenyl)-10,15-dihydro-5H-diindeno[1,2*a*;1',2'-*c*]fluorene (18a): BBr₃ (0.78 mL, 0.78 mmol, 1 м in CH₂Cl₂) was added at -78 °C to a solution of 17a (85 mg, 0.13 mmol) in CH_2Cl_2 (10 mL). The mixture was stirred at $-78\ ^{\rm o}C$ for 1 h and at room temperature for 12 h. After being partitioned between CH₂Cl₂ and water, and extractive workup, the residue was triturated with hexane/CH₂Cl₂, and then with EtOAc to give 18a (58 mg, 72%): White solid; m.p. >300 °C. ¹H NMR ([D₄]MeOH, 300 MHz): δ = 6.11 (br.s, 3 H), 6.49 (m, 6 H), 6.95–6.97 (m, 6 H), 7.04-7.10 (m, 6 H), 7.54-7.56 (m, 6 H) (3 H corresponding to the OH signals were not observed) ppm. ¹³C NMR ([D₄]MeOH, 75 MHz): *δ* = 47.81, 116.41, 120.96, 124.08, 125.67, 127.51, 128.54, 129.43, 140.09, 140.31, 141.26, 151.44, 156.46 (some signals were not observed, due to overlapping) ppm. IR: $\tilde{v} = 3560, 3470, 3414,$ 1621, 1592, 1450, 1148, 1082, 743, 614 cm⁻¹. EI-MS: m/z (%) = 618 (100) $[M]^+$, 524 (40), 431 (23). HRMS: m/z for $C_{45}H_{30}O_3$: calcd. 618.2194; found 618.2185.

5*a*,**10***a*,**15***a*-**Tris**(**3**-hydroxyphenyl)-**10**,**15**-dihydro-5*H*-diindeno[**1**,**2**-*a*;**1**',**2**'-*c*]**fluorene (18b):** The same procedure as described for the preparation of **18a** was applied to **17b** (160 mg, 0.24 mmol) in CH₂Cl₂ (10 mL) to give **18b** (92 mg, 62%); white solid; m.p. >300 °C. ¹H NMR ([D₄]MeOH, 300 MHz): δ = 3.89 (s, 3 H), 6.19 (s, 3 H), 6.29 (dd, *J* = 8.1, *J* = 7.1 Hz, 3 H), 6.42 (dd, *J* = 8.1, *J* = 2.4 Hz, 3 H), 6.88 (t, *J* = 7.7 Hz, 3 H), 7.05 (d, *J* = 7.7 Hz, 3 H),

FULL PAPER

7.18 (t, *J* = 7.3 Hz, 6 H), 7.32 (t, *J* = 7.7 Hz, 3 H) ppm. FAB-MS: 125.23, 125.40, 1

calcd, 618.2195; found 618.2206. 5a,10a,15\beta-Tris(4-hydroxyphenyl)-10,15-dihydro-5H-diindeno[1,2a;1',2'-c]fluorene (18c) and 5a,10a,15a-Tris(4-hydroxyphenyl)-10,15-dihydro-5H-diindeno[1,2-a;1',2'-c]fluorene (19c): The same procedure as described for the preparation of 18a was applied to a mixture of 16c and 17c (1.00 g, 1.51 mmol) in CH₂Cl₂ (45 mL) to give 18c and 19c (652 mg, 70%) as a gray solid. The mixture was separated by column chromatography (hexane/CH₂Cl₂, 2:1). 18c: White solid; m.p. >300 °C; $R_{\rm f} = 0.48$ (hexane/EtOAc, 1:1). ¹H NMR ([D₄]MeOH, 200 MHz): δ = 5.51 (s, 1 H), 5.52 (s, 1 H), 5.58 (s, 1 H), 6.61-6.68 (m, 6 H), 6.98-7.01 (m, 12 H), 7.32-7.34 (m, 3 H), 7.50–7.59 (m, 3 H) ppm. IR: $\tilde{v} = 3513$, 3384 (br), 1694, 1616, 1592, 1514, 1240, 1172, 745 cm⁻¹. FAB-MS: m/z (%) = 618 [M]⁺ (15), 525 (8), 460 (6), 382 (17). HRMS: m/z for C₄₅H₃₀O₃: calcd. 618.2195; found 618.2190. **19c**: White solid; m.p. >300 °C; $R_{\rm f}$ = 0.18 (hexane/EtOAc, 1:1). ¹H NMR ([D₄]MeOH, 300 MHz): $\delta =$ 3.78 (s, 3 H), 6.42-6.51 (m, 12 H), 6.93 (d, J = 7.7 Hz, 3 H), 7.07-7.13 (m, 6 H), 7.26 (t, J = 7.3 Hz, 3 H) ppm. ¹³C NMR ([D₄] MeOH, 75 MHz): *δ* = 53.55, 116.52, 125.42, 125.97, 127.31, 127.42, 129.24, 133.62, 139.03, 140.11, 140.81, 151.05, 156.93 ppm. FAB-M: m/z (%) = 618 (1) [M]⁺.

m/z (%) = 618 [M]⁺ (4), 525 [M]⁺ (3). HRMS: m/z for C₄₅H₃₀O₃:

5a,10a,15B-Tris(2,5-dihydroxyphenyl)-10,15-dihydro-5H-diindeno-[1,2-a;1',2'-c]fluorene (18d): The same procedure as described for the preparation of 18a was applied to 16d (150 mg, 0.20 mmol) in CH₂Cl₂ (15 mL) to give **18d** (84 mg, 63%); gray solid; m.p. >300 °C. ¹H NMR ([D₆]acetone, 200 MHz): $\delta = 5.70$ (d, J =3.1 Hz, 1 H), 5.89 (d, J = 3.1 Hz, 1 H), 5.93 (d, J = 3.1 Hz, 1 H), 6.19–6.23 (m, 3 H), 6.38–6.45 (m, 3 H), 6.91 (d, J = 8.7 Hz, 3 H), 7.04-7.15 (m, 6 H), 7.57-7.64 (m, 3 H), 7.67-7.70 (m, 3 H) ppm. ¹³C NMR ([D₆]acetone, 75 MHz): $\delta = 47.40$, 113.41, 113.83, 114.83, 114.92, 116.90, 116.95, 123.84, 125.52, 125.63, 127.44, 127.50, 127.61, 129.20, 129.36, 129.64, 139.74, 139.82, 139.93, 140.74, 140.91, 148.64, 148.77, 151.00, 151.06, 151.15, 151.20 (some signals were not observed, due to overlapping) ppm. IR: $\tilde{v} = 3504$, 3308 (br), 1608, 1506, 1454, 1190, 754 cm⁻¹. FAB-MS: m/z (%) = 666 (100) [M]⁺, 575 (57), 447 (18). HRMS: *m/z* for C₄₅H₃₀O₆: calcd. 666.2042; found 666.2041.

5a,10a,15a-Tris(2,5-dihydroxyphenyl)-10,15-dihydro-5*H***-diindeno-[1,2-***a***;1',2'-***c***]fluorene (19d): The same procedure as described for the preparation of 18a** was applied to **17d** (150 mg, 0.20 mmol) in CH₂Cl₂ (15 mL) to give **19d** (87 mg, 65%); gray solid; m.p. >300 °C. ¹H NMR ([D₄]MeOH, 300 MHz): δ = 6.04 (br.s, 6 H), 6.48 (dd, *J* = 8.7, 3.0 Hz, 3 H), 6.88 (d, *J* = 8.5 Hz, 3 H), 7.07–7.15 (m, 6 H), 7.55–57 (m, 3 H), 7.60–7.63 (m, 3 H) ppm. ¹³C NMR ([D₄]MeOH, 75 MHz): δ = 47.83, 114.43, 115.24, 117.11, 124.22, 125.75, 127.59, 130.49, 140.20, 140.31, 141.09, 149.62, 150.93, 151.38 ppm. IR: \tilde{v} = 3350 (br), 1694, 1600, 1506, 1446, 1352, 1198, 814, 736 cm⁻¹. FAB-MS: *m/z* (%) = 666 [M]⁺ (64), 575 [M – C₆H₅O₂]⁺ (35), 490 (9). HRMS: *m/z* for C₄₅H₃₀O₆: calcd. 666.2042; found 666.2038.

2α,5α,15β-Tris[(**2,5-cyclohexadien-1,4-dione-2-yl)**]-**10,15-dihydro-5H-diindeno**[**1,2-***a***;1**',**2**'-*c*]**fluorene** (**20**): Phenyliodonium bis(trifluoroacetate) (PIFA, 242 mg, 0.56 mmol) was added to a solution of **18d** (25 mg, 0.04 mmol) in CH₂Cl₂ (2 mL) and MeOH (0.2 mL). The mixture was stirred at room temperature for 40 min. After partition between CH₂Cl₂ and water and extractive workup, **20** (13 mg, 53%) was obtained; orange solid; m.p. >300 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 5.85 (br. s, 1 H), 5.90–6.03 (m, 5 H), 6.64–6.73 (m, 3 H), 7.00 (dd, *J* = 10.1, 2.4 Hz, 3 H), 7.25–7.45 (m, 12 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 45.58 (br) 122.60, 122.68, 125.14, 125.23, 125.40, 128.11, 128.23, 129.92 (br), 130.30 (br), 136.35, 136.42, 136.42, 136.46, 136.54, 136.71, 136.75, 137.49, 137.95, 137.99, 138.16, 139.49, 139.51, 145.69, 146.26, 146.35, 147.48, 147.81, 147.96, 187.07, 187.64, 187.69 (some signals were not observed, due to overlapping) ppm. IR: $\tilde{v} = 2932$, 2855, 1650, 1591, 1462, 1292, 916, 736, 420 cm⁻¹. UV/Vis (EtOH): λ_{max} (log ε) = 238 (4.71), 278 (4.57), 299 (4.49) nm. EI-MS: m/z (%) = 660 (100) [M]⁺, 207 (50), 165 (47). HRMS: m/z for C₄₅H₂₄O₆: calcd, 660.1573; found 660.1575.

2a,5a,15α-Tris](2,5-cyclohexadien-1,4-dione-2-yl)]-10,15-dihydro-5H-diindeno[1,2-*a***;1',2'-***c***]fluorene (21)**: Phenyliodonium bis(trifluoroacetate) (PIFA, 200 mg, 0.46 mmol) was added to a solution of **19d** (20 mg, 0.03 mmol) in CH₂Cl₂ (2 mL) and MeOH (0.2 mL). The mixture was stirred at room temperature for 40 min. After partitioning between CH₂Cl₂ and water and extractive workup, **21** (6 mg, 30%) was obtained; orange solid; m.p. >300 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 5.62 (s, 3 H), 6.13 (s, 3 H), 6.69 (dd, *J* = 10.1, 2.4 Hz, 3 H), 6.96 (d, *J* = 10.1 Hz, 3 H), 7.24–7.39 (m, 12 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 46.01, 122.60, 125.28, 128.05, 128.05, 128.17, 131.41 (br), 136.42, 136.74, 138.19, 139.21, 145.73, 147.49, 186.90, 187.55 ppm. IR: \tilde{v} = 2924, 2855, 1650, 1600, 1292, 916, 745, 412 cm⁻¹. UV/Vis (EtOH): λ_{max} (log ε) = 206 (4.58), 237 (4.58), 279 (4.44), 300 (4,34). EI-MS: *m*/*z* (%) = 660 (4) [M]⁺, 322 (35), 207 (18), 167 (100) nm.

Table 4. Collecting parameters, crystal and determination data for **5e**.

Diffractometer	Bruker-Siemens Smart CCD
Radiation	Cu- K_{α} ($\lambda = 1.54178$ Å)
<i>T</i> [K]	296(2)
θ [°]	2.37-63.68
Crystal degradation	inappreciable
Index ranges	$-42 \le h \le 43, -15 \le k \le$
	$14, -21 \le l \le 23$
Empirical formula	$C_{75}H_{48}N_6$
Formula mass	1033.19
Crystal system	monoclinic
Symmetry group	C2/c
<i>a</i> [Å]	37.3451(7)
b [Å]	14.3265(3)
c [Å]	22.1848(4)
β[°]	90.8820(10)
Volume [Å ³]	11868.0(4)
Z	8
Calculated density [Mg/m ³]	1.156
F(000)	4320
$\mu [\mathrm{mm}^{-1}]$	0.527
Number of reflections observed	9091
Number of independent reflec-	5308
tions	
Goodness-of-fit	1.002
max/min. $\Delta \rho$ [e Å ⁻³]	1.551/-0.323
R factors	R1 = 0.1261, wR2 = 0.2883
Final $R [I > 2\sigma(I)]$	R1 = 0.0876, wR2 = 0.2452
L (/J	

X-ray Crystal Structure Determination of 5e: Blue crystals of 5e suitable for X-ray diffraction studies were obtained by slow concentration of a DMF/Et₂O (1:100) solution at 23 °C. Crystals were mounted on a Bruker–Siemens Smart CCD diffractometer equipped with a low-temperature device, a normal-focus, 2.4-kW sealed-tube X-ray source (Cu- K_a ; $\lambda = 1.54178$ Å). The cell parameters were determined by least-squares fit for all reflections collected. Full-matrix least-squares refinements were carried out, min-

imizing $\omega (F_o^2 - F_c^2)^2$. R_w and goodness-of-fit are based on F^2 . Most of the calculations were carried out with the SMART software for data collection and reduction and SHELXTL97^[25] for structure solution and refinement. The collecting parameters, crystal and determination data are given in Table 4.

X-ray Crystal Structure Determination of 5f: Blue crystals of **5f** suitable for X-ray diffraction studies were obtained by slow concentration of a DMF/Et₂O (1:100) solution at 23 °C. Crystals were mounted on a Bruker–Siemens Smart CCD diffractometer equipped with a low-temperature device, a normal-focus, 2.4-kW sealed-tube X-ray source (Cu- K_a ; $\lambda = 1.54178$ Å). The cell parameters were determined by least-squares fit for all reflections collected. Full-matrix least-squares refinements were carried out, minimizing $\omega(F_o^2 - F_c^2)^2$. Rw and goodness-of-fit are based on F^2 . Most of the calculations were carried out with the SMART software for data collection and reduction and SHELXTL97^[25] for structure solutions and refinement. The collecting parameters, crystal and determination data are shown in Table 5.

Table 5. Collecting parameters, crystal and determination data for **5f**.

Diffractometer	Bruker–Siemens Smart CCD
Radiation	Cu- K_{α} ($\lambda = 1.54178$ Å)
T[K]	273(2)
θ (°)	2.54-70.54
Crystal degradation	inappreciable
Index ranges	$-21 \le h \le 21, 0 \le k \le 25, 0 \le$
-	$l \leq 20$
Empirical formula	$C_{75}H_{48}N_6$
Formula mass	1033.19
Crystal system	monoclinic
Symmetry group	$P2_1/c$
<i>a</i> [Å]	18.0281(3)
b [Å]	21.2291(4)
c [Å]	17.5830(3)
β[°]	105.3230(10)
Volume [Å ³]	6490.2(2)
Ζ	4
Calculated density [Mg/m ³]	1.207
<i>F</i> (000)	2480
$\mu [{ m mm}^{-1}]$	0.574
Number of reflections observed	11833
Number of independent reflec-	8066
tions	
Goodness-of-fit	1.032
max/min. $\Delta \rho$ [e Å ⁻³]	0.376, 0.286
R factors	R1 = 0.0759, wR2 = 0.1759
Final $R [I > 2\sigma(I)]$	R1 = 0.0759, wR2 = 0.1897

CCDC-280573 (for **5e** and **5f**) contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Acknowledgments

We are grateful to the MEC (project CTQ2004-02869), the CAM (projects 07N/0047/2002 and 07N/0085/2002), and the ICIQ Foundation for support of this research. We also thank the CAM and the MEC for predoctoral fellowships to E. G.-C. and M. R., respectively, and Dr Jordi Benet-Buchholz (ICIQ) for help with the X-ray diffraction data.

- [2] P. W. Rabideau, A. H. Abdourazak, Z. Marcinow, R. Sygula, A. Sygula, J. Am. Chem. Soc. 1995, 117, 6410–6411.
- [3] a) F. Sbrogio, F. Fabris, O. De Lucchi, V. Lucchini, Synlett 1994, 761–762; b) C. Fabre, A. Rassat, C. R. Acad. Sci. Ser. II 1989, 308, 1223–1228; c) R. J. Ferrier, S. G. Holden, O. Gladkikh, J. Chem. Soc. Perkin Trans. 1 2000, 3505–3512.
- [4] a) F. Diederich, Y. Rubin, Angew. Chem. Int. Ed. Engl. 1992, 31, 1101–1264; b) Ph.D. dissertations at Chapman's group at UCLA: R. H. Jacobsen, 1986; Y. Xiong, 1987; D. Loguercio, 1988; D. Shen, 1990.
- [5] G. Mehta, P. V. V. S. Sarma, *Tetrahedron Lett.* 2002, 43, 9343– 9346.
- [6] C. Lambert, G. Nöll, E. Schmälzlin, K. Meerholz, C. Bräuchle, *Chem. Eur. J.* 1998, 4, 2129–2134.
- [7] a) T. S. Perova, J. K. Vij, Adv. Mater. 1995, 7, 919–922; b) E. Fontes, P. A. Heiney, M. Ohba, J. N. Haseltine, A. B. Smith, *Phys. Rev. A* 1988, 37, 1329–1334; c) T. Warnerdam, R. J. M. Nolte, W. Drenth, J. C. van Miltenburg, D. Frenkel, R. J. J. Ziljlstra, *Liq. Cryst.* 1988, 3, 1087–1104; d) C. Destrade, J. Malthete, N. H. Tinh, H. Gasparoux, *Phys. Lett.* 1980, 78A, 82–84.
- [8] K. Jacob, J. Y. Becker, A. Ellern, V. Khodorkovsky, *Tetrahedron Lett.* 1999, 40, 8625–8628.
- [9] a) J. Pei, J.-L. Wang, X.-Y. Cao, X.-H. Zhou, W.-B. Zhang, J. Am. Chem. Soc. 2003, 125, 9944–9945; b) X.-Y. Cao, W.-B. Zhang, J.-L. Wang, X.-H. Zhou, H. Lu, J. Pei, J. Am. Chem. Soc. 2003, 125, 12430–12431; c) X.-Y. Cao, X.-H. Liu, X.-H. Zhou, Y. Zhang, Y. Jiang, Y. Cao, Y.-X. Cui, J. Pei, J. Org. Chem. 2004, 69, 6050–6058; d) X.-Y. Cao, W. Zhang, H. Zi, J. Pei, Org. Lett. 2004, 6, 4845–4848; e) W. Zhang, X.-Y. Cao, H. Zi, J. Pei, Org. Lett. 2005, 7, ol047625c.
- [10] a) B. Gómez-Lor, Ó. de Frutos, A. M. Echavarren, *Chem. Commun.* 1999, 2431–2432; b) B. Gómez-Lor, C. Koper, R. H. Fokkens, E. J. Vlietstra, T. J. Cleij, L. W. Jenneskens, N. M. M. Nibbering, A. M. Echavarren, *Chem. Commun.* 2002, 370–371; c) B. Gómez-Lor, E. González-Cantalapiedra, M. Ruiz, Ó. de Frutos, D. J. Cárdenas, A. Santos, A. M. Echavarren, *Chem. Eur. J.* 2004, *10*, 2601–2608.
- [11] A. M. Echavarren, B. Gómez-Lor, J. J. González, Ó. de Frutos, *Synlett* **2003**, 585–597.
- [12] a) M. M. Boorum, Y. V. Vasil'ev, T. Drewello, L. T. Scott, *Science* 2001, 294, 828–831; b) L. T. Scott, M. M. Boorum, B. J. McMahon, S. Hagen, J. Mack, J. Balnk, H. Wegner, A. de Meijere, *Science* 2002, 295, 1500–1503.
- [13] a) Ó. de Frutos, B. Gómez-Lor, T. Granier, M. A. Monge, E. Gutiérrez-Puebla, A. M. Echavarren, *Angew. Chem. Int. Ed.* 1999, 38, 204–207; b) Ó. de Frutos, T. Granier, B. Gómez-Lor, J. Jiménez-Barbero, A. Monge, E. Gutiérrez-Puebla, A. M. Echavarren, *Chem. Eur. J.* 2002, *8*, 2879–2890.
- [14] T. Granier, D. J. Cárdenas, A. M. Echavarren, *Tetrahedron Lett.* 2000, 41, 6775–6779.
- [15] a) B. Gómez-Lor, Ó. de Frutos, P. A. Ceballos, T. Granier, A. M. Echavarren, *Eur. J. Org. Chem.* 2001, 2107–2114; b) M. Ruiz, B. Gómez-Lor, A. Santos, A. M. Echavarren, *Eur. J. Org. Chem.* 2004, 858–866.
- [16] M. W. Hosseini, Acc. Chem. Res. 2005, 38, 313-323.
- [17] C. Di Pietro, S. Campagna, V. Ricevuto, M. Giannetto, A. Manfredi, G. Pozzi, S. Quici, *Eur. J. Org. Chem.* 2001, 587– 594.
- [18] H. Hart, L.-T. W. Lin, D. L. Ward, J. Am. Chem. Soc. 1984, 106, 4043–4045.
- [19] M. E. Rogers, B. A. Averill, J. Org. Chem. 1986, 51, 3308-3314.
- [20] C. E. Godinez, G. Zepeda, M. García-Garibay, J. Am. Chem. Soc. 2002, 124, 4701–4707.

FULL PAPER

- [21] H. Tohma, H. Morioka, Y. Harayama, M. Hashizume, Y. Kita, *Tetrahedron Lett.* 2001, 42, 6899–6902.
- [22] K. M. C. Davis, P. R. Hammond, M. E. Peover, *Trans. Faraday Soc.* 1965, 61, 1516–1520.
- [23] M. Macías Ruvalcaba, G. Cuevas, I. González, M. Aguilar-Martínez, J. Org. Chem. 2002, 67, 3673–3681.
- [24] E. V. Dehmlow, T. Kelle, *Synth. Commun.* 1997, 27, 2021–2031.
 [25] *SHELXTL*, Siemens Energy & Automation Inc., Analytical Instrumentation, 1996.

Received: April 13, 2005 Published Online: August 16, 2005