Synthesis of Fused Oxa-Aza Spiro Sugars from D-Glucose-Derived δ-Lactone as Glycosidase Inhibitors

A. P. John Pal,^[a] Preeti Gupta,^[a] Y. Suman Reddy,^[a] and Yashwant D. Vankar*^[a]

Keywords: Glycosylation / Metathesis / Dihydroxylation / Spiro compounds / Azasugars / Enzyme inhibitors

Four conformationally constrained fused oxa-aza spiro sugars have been synthesized from perbenzylated D-gluconolactone involving C-glycosylation of ketoses by using Me₃-SiCN, ring-closing metathesis, and diastereoselective dihydroxylation as key steps. Two of the four spiro sugars were found to be highly selective but moderate inhibitors of α -mannosidase.

Introduction

In recent years an increasing interest in the design and synthesis of inhibitors of carbohydrate-processing enzymes^[1] (i.e., glycosidases and glycotransferases) has been witnessed. As glycosidases are essential for normal cellular development, glycosidase inhibitors have potential therapeutic applications in a number of carbohydrate-mediated diseases such as cancer,^[2] diabetes,^[3] lysosomal storage disorders,^[4] viral infection including influenza,^[5] and HIV.^[6] In the last few years a large number of glycosidase inhibitors has been designed and synthesized and tested for their activity against several glycosidases. As a result, glycosidase inhibitors such as Tamiflu, Zanamivir, Miglitol, Miglustat, Acarbose, Voglibose, and so on^[7] have been approved as drugs to treat various carbohydrate-mediated diseases.

Polyhydroxylated derivatives of nitrogen-containing heterocycles, such as piperidines, pyrrolidines, indolizidines, pyrrolizidines, calystegines, and azepanes, are probably the most fascinating class of active compounds towards glycosidases so far. For example, *N*-butyl-1-deoxynojirimycin (1, Zavesca) and *N*-hydroxyethyl-1-deoxynojirimycin (2, Miglitol; Figure 1) have both been approved as medicines.^[8] Besides these, isofagomine^[9] (3) is the most potent β -glucosidase inhibitor found so far; swainsonine^[10] (4) is a potent α -mannosidase inhibitor, alexine^[11] (5) is also an effective thioglucosidase inhibitor, castanospermine (6) and its stereoisomers also have potential therapeutic applications.^[12]

As part of our ongoing program of developing novel carbohydrate molecules^[13] as glycosidase inhibitors and also our recent study on spiroaminal frameworks^[14] as glycosidase inhibitors, we became interested in synthesizing

E-mail: vankar@iitk.ac.in

Figure 1. Some of the most important polyhydroxylated alkaloids.

structurally interesting and conformationally constrained novel fused oxa-aza spiro sugars viz. 17, 25, 31, and 32 as glycosidase inhibitors. These spiro sugars were derived by carrying out spiroannulation at the anomeric center of monosaccharides. We can also consider these oxa-aza spiro sugars as "sugar-tethered azasugars" or "sugar-templated azasugars" (piperidine and azepane) or "spiro carbon linked oxa-aza disaccharides". Due to the conformational rigidity of the spiro system, these spiro sugars should hold the hydroxy substituents in precisely defined arrangements and hence should have potential for specific interactions. Herein, we report the synthesis of four novel fused oxa-aza spiro sugars and their enzyme inhibition activity towards glycosidases. The key steps in their synthesis involved Cglycosylation of ketoses, which were derived from vinyl or allyl Grignard addition reactions of D-gluconolactone (7), ring-closing metathesis reactions, and diastereoselective dihydroxylations by using RuO₄ or OsO₄.

Results and Discussion

As outlined in Scheme 1, target molecules 17 and 25 could be obtained from global deprotection of benzylated

 [[]a] Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India Fax: +91-512-259-0007

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201001102.

FULL PAPER

spiro sugar **A**, which could be easily prepared from diastereoselective dihydroxylation of olefin **B**, assembled, in turn, from diene **C** using ring-closing metathesis. Metathesis precursor diene **C** could be prepared from perbenzylated Dgluconolactone 7 through a few sequential reactions such as vinyl or allyl Grignard addition, followed by *C*-glycosylation, and functional-group manipulations of the resulting glycosyl cyanide.

Scheme 1. Retrosynthetic analysis of spiro sugars 17 and 25.

As depicted in Scheme 2, synthesis of one of the target molecules viz. glucose-tethered isofagomine analogue 17 began with the Grignard reaction of D-glucono-1,5-lactone

7 using vinylmagnesium bromide,^[15] followed by C-glycosylation of the so-obtained 1-C-vinylated hexapyranose 8 using Me₃SiCN in the presence of Me₃SiOTf to afford glycosyl cyanide^[16] 9 in 92% yield. Reduction of the cyanide^[17] group by using LiAlH₄ in Et₂O gave primary amine 10a. Our initial attempts to protect the primary amine with (Boc)₂O in the presence of Et₃N were unsuccessful, and protection as a Cbz carbamate afforded 11 in only 47% yield. However, the easily removable nature of the Cbz group through hydrogenolysis encouraged us to continue the synthesis with Cbz as the N-protecting group. Due to the rotameric nature of the carbamate, the NMR spectra of all the intermediates of the sequence were highly complex and difficult to analyze. To overcome this problem we chose the acetyl group as the N-protecting group. Thus, acetylation of amine 10a gave amide 12 in good yield, which upon treatment with allyl bromide in the presence of NaH afforded ring-closing metathesis (RCM) precursor diene 13 in 85% yield. RCM reaction of diene 13 with the Grubbs first-generation catalyst did not give desired cyclic adduct 14. Further, RCM of diene 13 with the Grubbs second-generation catalyst^[18] (5 mol-%) in dichloromethane under refluxing conditions afforded desired spiro olefin 14 in 72% yield. The structure of spiro olefin 14 was confirmed through spectral analysis. Appearance of four internal characteristic olefinic protons in its ¹H NMR spectrum at δ =

Scheme 2. Synthesis of "glucose-templated isofagomine analogue" 17.

6.02–5.91 ppm indicated the formation of olefin **14** as a rot-americ mixture (2:1 ratio).

Initial attempts at osmium tetroxide mediated dihydroxylation of conformationally constrained spiro olefin **14** failed under various experimental conditions and the starting material was recovered completely.^[19] Epoxidation of olefin **14** using *m*-chloroperbenzoic acid^[20a] and H₂O₂ in the presence of formic acid^[20b] was also unsuccessful. To overcome this problem we chose a highly reactive bimetallic oxidizing system^[21] (RuCl₃/CeCl₃·7H₂O/NaIO₄) for the *cis*dihydroxylation of olefin **14**. Thus, the reaction of olefin **14** with RuCl₃ (0.25 mol-%) in the presence of CeCl₃·7H₂O/ NaIO₄ in an EtOAc/CH₃CN/H₂O mixed solvent system at 0 °C followed by acetylation of the obtained α-diol gave acetate **15** in 62% overall yield.

The formation of product 15 was confirmed through spectral analysis. Thus, the ¹H NMR spectrum of compound 15 showed characteristic peaks of H-10 and H-11 as a broad singlet at $\delta = 5.31$ ppm and a doublet at $\delta =$ 5.20 ppm (J = 3.85 Hz), respectively. Further, the formation of the α -diol was confirmed through nOe experiments (vide infra). Deacetylation of compound 15 was carried out by using a catalytic amount of sodium methoxide in MeOH, followed by debenzylation of diol 16 by using $Pd(OH)_2$ in MeOH in the presence of H_2 (1 atm) at room temperature to afford the deprotected "glucose-templated isofagomine analogue" 17 in quantitative yield. Deacetylation of compound 17 under various conditions was unsuccessful. The structure of free hydroxy compound 17 was confirmed through acetate derivative 18, which was prepared by acetylation using Ac_2O/Py .

After the successful synthesis of spiro sugar 17, our synthetic plan focused on the construction of sugar-tethered polyhydroxylated azepane 25 (Scheme 3). For this purpose,

we chose 1-C-allylated glycosyl cyanide 20 as a starting material, which can be easily prepared in good yield using allylmagnesium chloride^[22] addition to D-glucose-based lactone 7 followed by C-glycosylation of resulting 1-Callylated hexapyranose^[23] 19 with Me₃SiCN in the presence of Me₃SiOTf. Glycosyl cyanide 20 was converted into Cglycosylamine, followed by protection of the primary amine with CbzCl in the presence of NaHCO₃ to afford carbamate 21 in 74% yield. In this case, Cbz protection gave a good yield compared to amine 10a (Scheme 2). The metathesis precursor was prepared by N-allylation of carbamate 21 using allyl bromide, and the RCM of diene 22 with Grubbs first-generation catalyst smoothly proceeded to provide desired olefin 23 in 88% yield. The structure of spiro olefin 23 was confirmed through ¹H and ¹³C NMR spectroscopy and was found to exist as a 1:1 ratio of rotamers. Osmium tetroxide catalyzed dihydroxylation of olefin 23 successfully gave diol 24. Global debenzylation of the α -diol using $Pd(OH)_2$ in MeOH in the presence of H_2 at 50 psi furnished the fully deprotected "glucose-templated polyhydroxylated azepane" 25 in 76% yield. Its structure was confirmed through spectral analysis, also of its acetylated derivative 26

Further, we also planned to synthesize glucose-tethered spirolactams **31** and **32** (Scheme 4). For the construction of these spiro sugars, we utilized intermediate *C*-glycosylamines **10a** and **10b**. Acroylation reaction of amines **10a** and **10b** with acryloyl chloride furnished dienes **27** and **28** in 56 and 63% yield, respectively. RCM reaction of dienes **27** and **28** using the Grubbs second-generation catalyst (5 mol-%) gave unsaturated spirolactams **29** and **30** in moderate yields. The ¹H NMR spectrum of compound **29** showed the internal olefinic protons at $\delta = 6.21$ and 6.0 ppm as doublets with J = 9.9 Hz, and the NH proton

Scheme 3. Synthesis of "glucose-templated azepane analogue" 25.

appeared at $\delta = 5.67$ ppm as a broad singlet. Similarly, we also confirmed the structure of olefin **30**. Finally, debenzylation and saturation of the double bond of olefins **29** and **30** was achieved by hydrogenolysis [20% Pd(OH)₂/H₂, MeOH, 1 atm, r.t.]. The structures of polyhydroxy "sugar-templated spirolactams" **31** and **32** were confirmed through their ¹H, ¹³C, and DEPT-135 NMR spectral analysis and also by spectral analysis of the corresponding acetyl derivatives **33** and **34**.

Scheme 4. Synthesis of "glucose-templated spirolactams" **31** and **32**.

The ¹H NMR, 2D COSY and nOe experiments unambiguously supported the structure of the newly generated α diol configurations in spiro sugars 17 and 25. To determine the diol configuration, initially we examined the conformation of the pyranose ring in these spiro sugars. For this purpose, we chose spiro piperidine 15 and spiro azepane 26 because of their well-resolved ¹H NMR splitting pattern as model systems. The large coupling constants (i.e., >9.0 Hz) for $J_{2,3}$, $J_{3,4}$, and $J_{4,5}$ (Figure 2) along with the positive nOe observations between H-2/H-4 or H-3/H-5 establish the ${}^{4}C_{1}$ chair conformation^[24] of the pyranose ring in spiro sugars 15, 26, 33, and 34. On the basis of the inspection of molecular models and nOe experiments, the piperidine ring in spiro sugar 15 is also more likely in the rigid chair conformation (Figure 2). Thus, in spiro sugar 15 irradiation of the H-11 proton at δ = 5.20 ppm enhanced the H-5 proton signal at δ = 3.59 ppm, the H-9b proton signal at δ = 3.36 ppm, and the H-7b proton signal at $\delta = 2.97$ ppm, clearly indicating that H-11, H-9b, and H-7b are axial protons. Further, upon irradiation of the signal for H-11, enhancement of the signals for three protons (H-5, H-7b, and H-9b) could only be possible when the -OAc group at C-11 is in the equatorial position, and also these enhancements are possible only in the particular rigid chair conformation of piperidine, which was apparent through the inspection of the molecular model. These observations revealed that the diol in the spiro sugar is an α -diol. In the case of spiro azepane 26, we utilized the diastereotopic methylene (C-12) protons for the assignment of the diol configuration. Thus, irradiation of the H-5 proton signal at $\delta = 5.01$ ppm enhanced only one of the two methylene protons (H-12a) at $\delta = 1.77$ ppm, which was only possible in a particular rigid chair-like conformation in which H-12a should be β -oriented and also only one methylene proton, H-12a, enhancement clearly indicates the rigidity of such spiro systems. Further, irradiation of the H-12a proton signal at $\delta = 1.77$ ppm enhanced the vicinal H-11 proton signal at $\delta = 5.24$ ppm in 7% nOe, but irradiation of the H-12b proton signal at $\delta = 2.26$ ppm did not show any enhancement in the vicinal H-11 proton signal. These observations clearly indicate that the H-12a and H-11 protons are cis to each other and that the -OAc group at C-11 is in α orientation. This suggests that the diol obtained had the α orientation of the –OH groups. The remaining nOe observations are shown in Figure 2.

Figure 2. nOe observations and homonuclear proton coupling constants of compounds **15**, **26**, **33**, and **34**.

The inhibitory activities of spiro compounds **17**, **25**, **31**, and **32** were tested against five commercially available enzymes,^[25] and the results are summarized in Table 1. These spiro compounds did not show any significant inhibition against α -glucosidase from yeast and α -galactosidase from coffee beans. However, spiro sugars **17** and **25** showed highly selective but moderate inhibition towards α -mannosidase from jack beans and were inactive towards other gly-

cosidases (Table 1). Thus, compounds 17 and 25 showed inhibitions against α -mannosidase at a concentration of 0.4 and 0.5 mM, respectively. Spirolactam 31 also showed moderate inhibition against α -mannosidase as well as β -galactosidase at 1.2 and 2.9 mM concentrations, respectively. Likewise, spiro sugar 32 also showed inhibition against β -glucosidase along with α -mannosidase and β -galactosidase, but activity was considerably reduced toward β -glucosidase. Thus, spirolactams 31 and 32 were nonselective glycosidase inhibitors towards glycosidases. Even though the inhibition was moderate to poor, this present inhibition activity study on such oxa-aza spiro sugars suggests that structural variations of these spiro sugars could promote better and specific glycosidase inhibition. We are currently investigating this possibility and we will report our results in due course.

Table 1. IC₅₀ [mM] values of spiro compounds 17, 25, 31, and 32.^[a]

Enzyme	17	25	31	32
α-Glucosidase (yeast)	NI	NI	NI	NI
β-Glucosidase (almonds)	NI	NI	NI	20.3
α-Mannosidase (Jack beans)	0.4	0.5	1.2	2.7
α -Galactosidase (coffee beans)	NI	NI	NI	NI
β-Galactosidase (bovine)	NI	NI	2.9	3.3

[a] NI: no inhibition at 3 mM concentration; inhibition studies were carried out optimal pH of the enzymes at 37 °C.

Conclusions

In summary, we have synthesized a new class of glucosetemplated oxa-aza spiro sugars from glucose-derived δ -lactone. The synthesis of these novel fused spiro sugars involved *C*-glycosylation of ketoses, a RCM reaction, and diastereoselective dihydroxylation as the key steps. Further, spiro sugars 17 and 25 showed highly specific but moderate inhibition towards α -mannosidase. To the best of our knowledge this is the first report on such conformationally constrained oxa-aza spiro sugars as glycosidase inhibitors. Further work to extend the scope of the present study is in progress.

Experimental Section

General: Infrared spectra were recorded with a Bruker FTIR Vector 22 spectrophotometer. ¹H and ¹³C NMR spectra were recorded with a JEOL LA-400 (400 and 100 MHz, respectively) spectrometer or JEOL ECX-500 spectrometer (500 and 125 MHz, respectively) in solutions of CDCl₃ using tetramethylsilane as the internal standard. Mass spectra were recorded with a Waters HAB 213 Q TOF Premier Micromass spectrometer. Optical rotations were recorded with an Autopol II automatic polarimeter at the wavelength of the sodium D line (589 nm) at 25 °C. Column chromatography was performed on silica gel (100-200 mesh) and thin-layer chromatography (TLC) was performed on silica gel plates made by using grade G silica gel obtained from s.d. fine-chem Ltd., Mumbai, or on Merck silica gel precoated on aluminum plates. Melting points were determined using a Fischer-John melting point apparatus. All solvents and common reagents were purified by established procedures.

General Procedure A

Deprotection of Benzyl Groups: To a solution of a benzyl-protected spiro sugar (0.1 mmol) in MeOH (2 mL) was added 20% Pd(OH)₂/C (50 mg). The reaction mixture was stirred under 1 atm H₂ pressure for 3–4 d at room temperature. The catalyst was filtered off through Celite and concentrated in vacuo to obtain polyhydroxylated spiro sugars.

General Procedure B

Acetylation of Hydroxy Spiro Sugars: A mixture of a polyhydroxy spiro sugar derivative (20 mg) in acetic anhydride (0.5 mL) and pyridine (0.5 mL) and a catalytic amount of DMAP was stirred for 24 h at room temperature. The reaction mixture was extracted with CH_2Cl_2 (3×10 mL), washed with water (5 mL) and brine (3 mL), dried with MgSO₄, concentrated in vacuo, and purified by silica gel chromatography to give the pure acetylated spiro sugars.

General Procedure C

Acryloylation of Glycosyl Amines: To a stirred solution of amine 10a or 10b (1.35 mmol) in dry CH_2Cl_2 (10 mL) at 0 °C was added dropwise Et_3N (0.224 mL, 1.62 mmol) followed by acryloyl chloride (0.128 mL, 1.62 mmol). The reaction mixture was stirred for 1 h, and after completion of the reaction (TLC monitoring), it was extracted with CH_2Cl_2 (2×40 mL). Usual workup gave a crude product that was purified by column chromatography to give diene 27 or 28.

Benzyl [(2R,3R,4S,5R,6R)-3,4,5-Tris(benzyloxy)-6-(benzyloxymethyl)-2-vinyltetrahydro-2H-pyran-2-yl]methylcarbamate (11): To a suspension of LiAlH₄ (118.5 mg, 0.312 mmol) in dry ether (8 mL) was added glycosyl cyanide 9 (600 mg, 0.104 mmol, 8-10 mL of Et₂O) dropwise, and the mixture was stirred for 30 min at 0-5 °C under a nitrogen atmosphere. The reaction mixture was stirred overnight at room temperature. After completion of the reaction, the reaction mixture was cooled to 0 °C, and the excess amount of LiAlH₄ was quenched with EtOAc and 30% NaOH (5-6 mL). It was then filtered through Celite and washed thoroughly with diethyl ether $(3 \times 20 \text{ mL})$. The filtrate was dried (Na₂SO₄) and concentrated under reduced pressure. Liquid crude product 10a (587 mg, 1.01 mmol) was dissolved in MeOH/H2O (9:1) and CbzCl (0.12 mL, 1.52 mmol) was added at 0 °C followed by NaHCO₃ (127.7 mg, 1.52 mmol). The reaction mixture was stirred for 24 h at room temperature. After completion of the reaction, methanol was evaporated under reduced pressure and worked up by ethyl acetate, dried with Na₂SO₄, and purified by silica gel column chromatography to afford product 11. Yield: 47% (two steps, 349 mg, liquid). $R_{\rm f} = 0.50$ (hexane/ethyl acetate, 4:1). $[a]_{\rm D}^{28} = +25.71$ $(c = 0.7, CH_2Cl_2)$. IR (neat): $\tilde{v} = 3435, 3030, 2924, 1724, 1515,$ 1497, 1453 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.37–7.18 (m, 25 H, Ar-H), 5.91 (dd, J = 11.0, 17.5 Hz, 1 H, -CH=CH₂), 5.45 (d, $J = 17.5 \text{ Hz}, 1 \text{ H}, -\text{CH}=CH_{a}H_{b}), 5.21 \text{ (d, } J = 10.9 \text{ Hz}, 1 \text{ H},$ -CH=CH_a H_b), 5.09–5.05 (m, 3 H), 4.90–4.81 (m, 4 H), 4.69–4.50 (m, 4 H), 3.88 (t, J = 9.3 Hz, 1 H), 3.73-3.56 (m, 6 H), 3.46 (d, J= 9.6 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 156.6, 138.3, 138.0, 136.6, 128.4–127.4 (m, Ar-C), 126.9, 116.2, 84.3, 83.7, 78.5, 78.3, 75.6, 75.4, 74.9, 73.7, 72.7, 69.2, 66.6, 38.7 ppm. HRMS: calcd. for $C_{45}H_{47}NO_7 [M + Na]^+$ 714.3431; found 714.3434.

N-{[(2R,3R,4S,5R,6R)-3,4,5-Tris(benzyloxy)-6-(benzyloxymethyl)-2-vinyltetrahydro-2H-pyran-2-yl]methyl} acetamide (12): A procedure similar to that described for the synthesis of 11 was employed for the reduction of glycosyl cyanide 9 (1.2 g) Crude primary amine (1.25 gm) 10a was dissolved in CH₂Cl₂ (12.0 mL) and cooled to 0 °C. Acetic anhydride (0.3 mL, 3.25 mmol), Et₃N (0.45 mL, 3.25 mmol), and a catalytic amount of DMAP were added to the solution, and the reaction mixture was stirred for 2 h at room temperature. After completion of the reaction, the reaction mixture was extracted with CH_2Cl_2 (3 × 50 mL), washed with water (50 mL) and brine (30 mL), dried with Na₂SO₄, concentrated in vacuo, and purified by silica gel chromatography to afford pure acetylated derivative 12 as a liquid. Yield: 72% (two steps, 933 mg). $R_{\rm f} = 0.50$ (hexane/ethyl acetate, 1:1). $[a]_{\rm D}^{28} = +25.0$ (c = 0.8, CH₂Cl₂). IR (neat): $\tilde{v} = 3320, 3030, 2923, 1738, 1660, 1453 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃): δ = 7.35–7.19 (m, 20 H, Ar-H), 5.92 $(dd, J = 11.0, 17.5 Hz, 1 H, -CH=CH_2), 5.59 (br. s, 1 H, -NHAc)$ 5.43 (dd, J = 1.7, 17.5 Hz, 1 H, -CH=CH_aH_b), 5.22 (dd, J = 1.3, 10.9 Hz, 1 H, -CH=CH_aH_b), 4.86–4.81 (m, 4 H, 2 PhCH₂), 4.62 (d, J = 10.9 Hz, 1 H, PhCH) ppm. 4.59–4.51 (m, 3 H, 3 PhCH), 3.88 (t, 1 H, J = 9.3 Hz), 3.72–3.61 (m, 5 H), 3.50 (t, 1 H, J =9.6 Hz) 3.46 (d, 1 H, J = 9.6 Hz), 1.80 (s, 3 H, COCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 170.4, 138.6, 138.2, 138.1, 138.0, 137.9, 128.4-127.4 (m, Ar-C), 116.0, 84.4, 83.8, 78.6, 77.9, 75.8, 75.6, 74.9, 73.4, 72.7, 69.6, 37.4, 22.9 ppm. HRMS: calcd. for $C_{39}H_{43}NO_6 [M + H]^+ 622.3169$; found 622.3166.

N-Allyl-N-{[(2R,3R,4S,5R,6R)-3,4,5-Tris(benzyloxy)-6-(benzyloxymethyl)-2-vinyltetrahydro-2H-pyran-2-yl]methyl}acetamide (13): To a stirred solution of acetyl-protected amine 12 (500 mg, 0.828 mmol) in dry DMF (10.0 mL) at 0 °C was added allyl bromide (0.1 mL, 1.24 mmol) and NaH (60 mg, 1.24 mmol). The reaction mixture was stirred for 1 h at 0 °C and after completion of the reaction (TLC monitoring), the reaction mixture was quenched with saturated aq. NH₄Cl and extracted with diethyl ether $(3 \times 40 \text{ mL})$. The extract was washed with water and brine and dried with anhydrous Na₂SO₄. Evaporation of the solvent gave a crude product, which was purified by column chromatography to give diene 13. Yield: 85% (452 mg), colorless liquid, $R_f = 0.50$ (hexane/ethyl acetate, 7:3). $[a]_{D}^{28} = +23.07$ (c = 0.65, CH₂Cl₂). IR (neat): $\tilde{v} = 3064, 2923, 1727, 1651, 1495, 1422 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃, mixture of rotamers 3:1 ratio): $\delta = 7.40-7.18$ (m, 40 H, Ar-H, both rotamers), 6.24–6.18 (m, 1 H, major), 5.96–5.90 (m, 1 H, minor) 5.69–5.63 (m, 2 H, both rotamers), 5.50 (dd, 1 H, J = 1.7, 17.2 Hz, minor), 5.45 (dd, 1 H, J = 2.0, 17.1 Hz, major), 5.18 (dd, 1 H, J = 1.7, 11.0 Hz, minor), 5.14–5.01 (m, 5 H, both rotamers), 4.94 (d, 1 H, J = 11.0 Hz, PhCH, minor). 4.88-4.82 (m, 6 H, 6 PhCH, both rotamers), 4.79 (d, 1 H, J = 11.3 Hz, PhCH, major), 4.75-4.71 (m, 3 H, 3 PhCH, both rotamers), 4.65-4.60 (m, 2 H, 2 PhCH, minor), 4.62 (d, 1 H, J = 12.2 Hz, PhCH, major), 4.55 (d, 1 H, J = 11.7 Hz, PhCH, major), 4.53–4.50 (m, 1 H, PhCH, minor), 4.19 (dd, 1 H, J = 5.1, 18.2 Hz, major), 3.91–3.55 (m, 15 H, both rotamers), 3.49 (t, 1 H, J = 9.6 Hz, major) 3.40–3.31 (m, 3 H, both rotamers), 2.03 (s, 6 H, COCH₃, both rotamers) ppm. ¹³C NMR $(125 \text{ MHz}, \text{ CDCl}_3): \delta = 171.7, 138.9, 138.7, 138.4, 138.4, 138.1,$ 137.9, 137.7, 136.3, 135.3, 133.2, 132.9, 128.4–127.5 (m, Ar-C), 116.3, 115.7, 113.9, 85.3, 84.9, 83.3, 83.2, 81.7, 81.6, 78.7, 78.6, 75.5, 75.3, 75.2, 73.5, 73.4, 72.6, 72.5, 69.8, 69.4, 50.3, 46.8, 39.5, 21.7, 21.3 ppm. HRMS: calcd. for $C_{42}H_{47}NO_6 [M + H]^+ 662.3482$; found 622.3488.

1-[(2*R*,3*R*,4*S*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-(benzyloxymethyl)-1oxa-8-azaspiro[5.5]undec-10-en-8-yl]ethanone (14): To a stirred solution of compound 13 (320 mg, 0.496 mmol) in dry CH₂Cl₂ (8.0 mL) at room temperature was added the Grubbs 2nd generation catalyst (5 mol-%, 21 mg). The mixture was heated at reflux in CH₂Cl₂ and stirred overnight under a nitrogen atmosphere. After completion of the reaction, the solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography to obtain compound 14. Yield: 72% (220 mg), liquid, $R_f = 0.4$ (hexane/ethyl acetate, 2:3). $[a]_{28}^{28} = +41.58$ (c = 0.95, CH₂Cl₂). IR (neat): $\tilde{v} = 3031$, 2921, 1726, 1643, 1452, 1271 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, mixture of rotamers 2:1 ratio): $\delta =$ 7.33–7.13 (m, 40 H, Ar-H, both rotamers), 6.01 (dt, J = 3.1, 9.9 Hz, 1 H, $-CH=CHCH_2$, minor), 5.92 (dt, J = 3.4, 9.9 Hz, 1 H, -CH=CHCH₂, major), 5.73 (d, J = 9.9 Hz, 1 H, -CH=CHCH₂, major), 5.63 (d, J = 10.3 Hz, 1 H, -CH=CHCH₂, minor), 4.88–4.84 (m, 6 H, both rotamers), 4.80 (d, J = 10.6, Hz, 1 H, major), 4.79 (d, J = 11.3 Hz, 1 H, major), 4.70 (d, J = 10.6 Hz, 1 H, minor), 4.65-4.59 (m, 5 H, both rotamers), 4.54 (d, J = 10.6 Hz, 1 H, minor), 4.51 (d, J = 11.3 Hz, 1 H, major), 4.41 (d, 1 H, J = 12.0 Hz, major), 4.36(m, 1 H, minor), 4.06-4.03 (m, 1 H, major), 3.99-3.97 (m, 1 H, major), 3.91 (t, 1 H, J = 9.2 major), 3.87-3.60 (m, 11 H, both rotamers), 3.56-3.47 (m, 4 H, both rotamers), 2.10 (s, 3 H, COCH₃, minor), 1.99 (s, 3 H, COCH₃, major) ppm. ¹³C NMR $(125 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 169.6, 169.4, 138.6, 138.3, 138.1, 137.9,$ 137.8, 137.6, 130.7, 129.7, 129.1, 128.4-127.5 (m, Ar-C), 84.2, 84.0, 83.3, 83.1, 78.3, 78.2, 75.6, 75.3, 75.2, 74.8, 73.8, 73.5, 73.1, 73.1, 68.9, 68.8, 45.4, 44.8, 41.2, 38.8, 21.5, 21.3 ppm. HRMS: calcd. for $C_{40}H_{43}NO_6 [M + H]^+ 634.3169$; found 634.3168.

(2R,3R,4S,5R,6R,10R,11R)-8-Acetyl-3,4,5-tris(benzyloxy)-2-(benzyloxymethyl)-1-oxa-8-azaspiro[5.5]undecane-10,11-diyl Diacetate (15): A mixture of NaIO₄ (60.5 mg, 0.283 mmol) and CeCl₃·7H₂O (6.2 mg, 0.0189 mmol) in H₂O (1 mL) was stirred at room temperature for a few minutes. The reaction mixture was cooled to 0 °C and EtOAc (1.5 mL), CH₃CN (3.0 mL), and RuCl₃·H₂O (5.2 mg, 0.005 mmol) were added successively. After the mixture was stirred for 2.0 min, a solution of 14 (120 mg, 0.189 mmol) in EtOAc (1.5 mL) was added, and the resulting heterogeneous mixture was stirred until the reaction was complete (TLC monitoring). The reaction mixture was diluted with EtOAc (25 mL). The organic layer was washed with aqueous NaHCO₃ and water, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified with SiO₂ (hexanes/EtOAc). Acetylation of the diol was carried out conventionally using acetic anhydride and Et₃N to give spiro sugar 15. Yield: 62% (two steps, 88.2 mg), colorless liquid. $R_{\rm f}$ = 0.30 (hexane/ethyl acetate, 1:4). $[a]_{D}^{28}$ = +10.0 (c = 0.25, CH₂Cl₂). IR (neat): $\tilde{v} = 2922, 2853, 1742, 1649, 1452, 1370 \text{ cm}^{-1}$. ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 7.35-7.25 \text{ (m, 20 H, Ar-H)}, 5.31 \text{ (br. s, 1)}$ H, H-10), 5.20 (d, J = 3.8 Hz, 1 H, H-11), 4.98 (d, J = 14.9 Hz, 1 H, H-7a), 4.93 (d, J = 10.7 Hz, 1 H, PhCH), 4.90 (d, J = 10.3 Hz, 1 H, PhCH), 4.83 (d, J = 10.7 Hz, 1 H, PhCH), 4.81 (d, J = 11.4 Hz, 1 H, PhCH), 4.79 (d, J = 12.2 Hz, 1 H, PhCH), 4.71 (d, J = 11.0 Hz, 1 H, PhCH), 4.47 (d, J = 11.4 Hz, 1 H, PhCH), 4.41 (d, J = 10.3 Hz, 1 H, PhCH), 4.10–4.08 (m, 1 H, H-2), 3.96 (dd, J = 2.7, 11.8 Hz, 1 H, -CHOBn), 3.92 (t, J = 9.6 Hz, 1 H, H-4), 3.92– 3.89 (m, 1 H, H-9a), 3.75 (t, J = 9.9 Hz, 1 H, H-3), 3.59 (d, J =9.5 Hz, 1 H, H-5), 3.60–3.58 (m, 1 H, -CHOBn), 3.36 (d, J = 14.9 Hz, 1 H, H-9b), 2.97 (d, J = 14.9 Hz, 1 H, H-7b), 2.07 (s, 3 H, COCH₃), 2.02 (s, 3 H, COCH₃), 1.97 (s, 3 H, COCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 170.6, 170.5, 170.0, 138.9, 138.5, 138.3, 138.0, 128.6–127.2 (m, Ar-C), 83.5, 78.5, 78.3, 77.5, 75.9, 75.8, 74.9, 73.9, 73.7, 69.6, 67.2, 48.8, 40.4, 21.3, 20.9, 20.8 ppm. HRMS: calcd. for $C_{44}H_{49}NO_{10}$ [M + H]⁺ 752.3435; found 752.3434.

1-[(2*R*,3*R*,4*S*,5*R*,6*S*,10*R*,11*R*)-3,4,5-Tris(benzyloxy)-2-(benzyloxymethyl)-10,11-dihydroxy-1-oxa-8-azaspiro[5.5]undecan-8-yl]ethanone (16): To a solution of compound 15 (80 mg, 0.106 mmol) in dry MeOH (1.5 mL) at 0 °C was added a catalytic amount of NaOMe. The mixture was stirred for 1 h at room temperature and after completion of the reaction (TLC monitoring) MeOH was evaporated. The product was extracted with EtOAc (3×20 mL), and the organic layer was washed with water and brine. Evaporation of the solvent followed by purification by using SiO₂ column chromatography gave diol 16. Yield: 85% (60.4 mg), colorless li-

quid. $R_{\rm f} = 0.20$ (hexane/ethyl acetate, 1:9). $[a]_{28}^{28} = +31.25$ (c = 0.4, CH₂Cl₂). IR (neat): $\tilde{v} = 3453$, 2921, 2852, 1642, 1452 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.33-7.18$ (m, 20 H, Ar-H), 5.05 (d, J = 14.9 Hz, 1 H), 4.94 (d, J = 11.4 Hz, 1 H, PhC*H*), 4.88–4.79 (m, 3 H, 3 PhC*H*), 4.69 (d, J = 11.1 Hz, 1 H, PhC*H*), 4.52–4.47 (m, 2 H, 2 PhC*H*), 4.38 (d, J = 12.0 Hz, 1 H, PhC*H*), 4.15–4.12 (m, 1 H), 4.08 (d, J = 9.7 Hz, 1 H), 3.94–3.88 (m, 3 H), 3.63 (d, J = 2.6 Hz, 1 H), 3.56–3.54 (m, 1 H), 3.47 (dd, J = 6.6, 10.3 Hz, 1 H), 3.38 (t, J = 9.7 Hz, 1 H), 3.15 (d, J = 14.0 Hz, 1 H), 2.76 (d, J = 14.6 Hz, 1 H), 1.98 (s, 3 H, COC*H*₃) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 170.6$, 138.3, 137.9, 137.8, 128.4–127.2 (m, Ar-C), 83.1, 80.5, 78.9, 77.8, 75.6, 74.9, 72.9, 72.3, 69.9, 69.6, 68.7, 51.9, 40.3, 21.2 ppm. HRMS: calcd. for C₄₀H₄₅NO₈ [M + H]⁺ 668.3223; found 668.3223.

1-[(2*R*,3*S*,4*S*,5*R*,6*S*,10*R*,11*R*)-3,4,5,10,11-Pentahydroxy-2-(hydroxy-methyl)-1-oxa-8-azaspiro(5.5)undecan-8-yl]ethanone (17): General procedure A was employed to obtain compound 17. Yield: quantitative (30 mg), liquid. $R_{\rm f} = 0.30$ (MeOH/ethyl acetate, 1:4). $[a]_{\rm D}^{28} = -15.0$ (c = 0.4, MeOH). ¹H NMR (500 MHz, D₂O): $\delta = 3.91-3.89$ (m, 2 H), 3.81 (d, J = 3.4 Hz, 1 H), 3.72 (d, J = 9.7 Hz, 1 H), 3.61– 3.55 (m, 3 H), 3.50 (t, J = 9.7 Hz, 1 H), 3.26–3.22 (m, 3 H), 2.75 (d, J = 14.9 Hz, 1 H), 2.03 (s, 3 H, COC*H*₃) ppm. ¹³C NMR (125 MHz, D₂O): $\delta = 173.8$, 80.6, 74.5, 73.3, 69.8, 69.3, 67.8, 60.6, 51.6, 40.1, 20.5 ppm. HRMS: calcd. for C₁₂H₂₁NO₈ [M + H]⁺ 308.1345; found 308.1344.

(2R,3R,4S,5R,6S,10R,11R)-2-(Acetoxymethyl)-8-acetyl-1-oxa-8-azaspiro[5.5]undeca-ne-3,4,5,10,11-pentayl Pentaacetate (18): Compound 18 was prepared by general procedure B. Yield: 83% (30 mg), oil. $R_{\rm f} = 0.20$ (hexane/ethyl acetate, 1:9). $[a]_{\rm D}^{28} = +30.0$ (c = 0.55, CH₂Cl₂). IR (neat): \tilde{v} = 2923, 2853, 1753, 1650, 1370, 1235 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 5.34 (t, J = 10.3 Hz, 1 H, H-4), 5.28 (br. s, 1 H, H-10), 5.25 (d, J = 10.3 Hz, 1 H, H-5), 5.21 (d, *J* = 14.9 Hz, 1 H, H-7a), 5.03 (t, *J* = 10.3 Hz, 1 H, H-3), 4.72 (d, J = 3.4 Hz, 1 H, H-11), 4.34–4.31 (m, 1 H, H-2), 4.19 (dd, J = 2.3, 12.3 Hz, 1 H, CHOAc), 4.01 (dd, J = 4.8, 12.3 Hz, 1 H, CHOAc), 3.95 (d, J = 15.1 Hz, 1 H, H-9a), 3.38 (d, J = 15.2 Hz, 1 H, H-9b), 2.74 (d, *J* = 14.6 Hz, 1 H, H-7b), 2.11 (s, 3 H, COC*H*₃), 2.07 (s, 3 H, COCH₃), 2.04 (s, 3 H, COCH₃), 2.03 (s, 3 H, COCH₃), 2.02 (s, 6 H, 2 COCH₃), 1.97 (s, 3 H, COCH₃) ppm. ¹³C NMR $(125 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 170.6, 170.5, 170.4, 170.2, 169.9, 169.8,$ 169.1, 76.8, 71.1, 70.6, 68.8, 68.7, 68.7, 66.8, 62.8, 49.0, 40.7, 21.3, 20.9, 20.8, 20.7–20.6 (m, COCH₃) ppm. HRMS: calcd. for $C_{24}H_{33}NO_{14}$ [M + H]⁺ 560.1979; found 560.1978.

Benzyl [(2R,3R,4S,5R,6R)-2-Allyl-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-pyran-2-yl]methylcarbamate (21): To a suspension of LiAlH₄ (166.4 mg, 4.38 mmol) in dry ether (10 mL) was added dropwise glycosyl cyanide 20 (860 mg, 1.46 mmol, 12 mL of Et₂O), and the mixture was stirred for 30 min at 0-5 °C under a nitrogen atmosphere. The reaction mixture was stirred overnight at room temperature. After completion of the reaction, the reaction mixture was cooled to 0 °C, and the excess amount of LiAlH₄ was quenched with EtOAc and 30% NaOH (5–6 mL). The reaction mixture was then filtered through Celite and washed thoroughly with diethyl ether $(3 \times 30 \text{ mL})$. The filtrate was dried (Na₂SO₄) and concentrated under reduced pressure. Liquid crude product 10b (871 mg, 1.467 mmol) was dissolved in MeOH/H₂O (9:1) and CbzCl (0.3 mL, 2.20 mmol) was added at 0 °C followed by NaHCO₃ (185.2 mg, 2.20 mmol). The reaction mixture was stirred for 24 h at room temperature. After completion of the reaction, methanol was evaporated under reduced pressure and worked up with ethyl acetate, dried with Na₂SO₄, and the crude product was purified by silica gel column chromatography to afford product

21. Yield: 74% (785 mg), colorless liquid. $R_{\rm f} = 0.50$ (hexane/ethyl acetate, 7:3). $[a]_{D}^{28} = +40.76$ (c = 0.65, CH₂Cl₂). IR (neat): $\tilde{v} = 3431$, 3031, 2920, 2856, 1724, 1640, 1514, 1453 cm⁻¹. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.34-7.18 \text{ (m, 25 H, Ar-H)}, 5.90-5.87 \text{ (m, })$ 1 H, CH=CH₂), 5.15–5.11 (m, 2 H, -NH, CH=CH_aH_b), 5.09 (s, 2 H, PhC H_2), 5.03 (d, J = 17.4 Hz, 1 H, CH=CH_a H_b), 4.88 (d, J =11.0 Hz, 1 H, PhCH), 4.87 (d, J = 10.5 Hz, 1 H, PhCH), 4.82–4.78 (m, 2 H, 2 PhCH), 4.66 (d, J = 11.0 Hz, 1 H, PhCH), 4.60–4.56 (m, 2 H, 2 PhCH), 4.53 (d, J = 11.9 Hz, 1 H, PhCH), 3.87 (t, J = 9.1 Hz, 1 H), 3.68–3.55 (m, 6 H), 3.48 (t, J = 9.1 Hz, 1 H, PhCH), 2.56 (dd, J = 4.6, 14.7 Hz, 1 H, $CH_aH_bCH=CH_2$), 2.35 (dd, J =8.9, 14.4 Hz, 1 H, CH_aH_bCH=CH₂) ppm. ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 156.8, 138.4, 138.3, 138.1, 136.7, 133.5, 128.7-127.1$ (m, Ar-C), 84.4, 81.3, 78.9, 78.2, 75.7, 75.2, 75.1, 73.5, 73.0, 69.4, 66.8, 40.9, 39.7 ppm. HRMS: calcd. for C₄₆H₄₉NO₇ [M + H]⁺ 728.3587; found 728.3587.

Benzylallyl {[(2*R*,3*R*,4*S*,5*R*,6*R*)-2-Allyl-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2*H*-pyran-2-yl]methyl}carbamate (22): A procedure similar to that described for the synthesis of **13** was employed. Yield: 93% (883 mg, from 900 mg, 1.237 mmol of **21**), colorless liquid. *R*_f = 0.50 (hexane/ethyl acetate, 4:1). [*a*]_D²⁸ = +43.75 (*c* = 1.2, CH₂Cl₂). IR (neat): \ddot{v} = 3031, 2918, 2859, 1701, 1454 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, mixture of rotamers 1:1 ratio): δ = 7.36–7.17 (m, 50 H, Ar-*H*), 5.94–5.92 (m, 2 H), 5.74–5.72 (m, 2 H), 5.24–5.03 (m, 10 H), 4.92–4.51 (m, 18 H), 4.37–4.17 (m, 4 H), 3.91– 3.43 (m, 16 H), 2.57–2.48 (m, 3 H), 2.36–2.31 (m, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 157.3, 156.7, 138.7, 138.5, 138.0, 136.9, 136.8, 134.4, 134.3, 133.7, 133.5, 128.6–127.1 (m, Ar-C), 118.4, 116.6, 83.8, 81.6, 81.4, 80.5, 80.3, 79.0, 75.7, 75.4, 74.9, 73.5, 72.8, 69.7, 69.6, 67.4, 49.6, 42.8, 41.8, 38.4 ppm. HRMS: calcd. for C₄₉H₅₃NO₇ [M + H]⁺ 768.3900; found 768.3900.

(2R,3R,4S,5R,6R)-Benzyl-3,4,5-tris(benzyloxy)-2-(benzyloxymethyl)-1-oxa-8-azaspiro[5.6]dodec-10-ene-8-carboxylate (23): To a stirred solution of compound 22 (485 mg, 0.632 mmol) in dry CH₂Cl₂ (10 mL) at room temperature was added the Grubbs 1st generation catalyst (5 mol-%, 26 mg). The mixture was heated at reflux in CH₂Cl₂ and stirred overnight under a nitrogen atmosphere. After completion of the reaction, the solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography to obtain compound 23. Yield: 88% (411 mg), liquid. $R_{\rm f} = 0.2$ (hexane/ethyl acetate, 4:1). $[a]_{\rm D}^{28} = +33.33$ $(c = 0.3, CH_2Cl_2)$. IR (neat): $\tilde{v} = 3030, 2922, 2851, 1702, 1604,$ 1453, 1419 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, mixture of rotamers 1:1 ratio): δ = 7.33–7.12 (m, 50 H, Ar-*H*), 5.69–5.61 (m, 4 H), 5.29– 5.03 (m, 4 H), 4.92 (d, J = 11.0 Hz, 1 H), 4.87 (d, J = 11.1 Hz, 1 H), 4.85–4.73 (m, 6 H), 4.69 (d, J = 11.1 Hz, 1 H), 4.67 (d, J =11.1 Hz, 1 H), 4.62 (d, J = 12.2 Hz, 1 H), 4.56 (d, J = 11.0 Hz, 1 H), 4.55–4.38 (m, 5 H), 4.28 (d, J = 15.6 Hz, 1 H), 4.27 (d, J =14.9 Hz, 1 H), 4.12–4.09 (m, 1 H), 4.07 (d, J = 15.3 Hz, 1 H), 3.84 (dd, J = 3.8, 17.2 Hz, 1 H), 3.78-3.56 (m, 10 H), 3.41-3.39 (m, 2)H), 3.33 (dd, J = 3.4, 11.1 Hz, 1 H), 2.24 (dd, J = 1.1, 11.1 Hz, 1 H)2.58–2.53 (m, 2 H), 2.44–2.41 (m, 2 H) ppm. ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 156.4, 156.2, 138.7 - 138.3$ (m, Ar-C), 137.1, 136.6, 128.6-127.5 (m, Ar-C), 127.2, 126.6, 126.1, 86.6, 86.2, 83.8, 83.7, 80.7, 79.5, 78.9, 78.7, 75.7, 75.6, 75.5, 74.9, 74.8, 73.5, 73.4, 72.9, 69.1, 68.6, 67.6, 67.1, 48.3, 46.7, 45.6, 44.3, 38.3, 37.8 ppm. HRMS: calcd. for $C_{47}H_{49}NO_7 [M + H]^+$ 740.3587; found 740.3584.

(2R,3R,4S,5R,6R,10R,11S)-Benzyl-3,4,5-tris(benzyloxy)-2-(benzyl-oxymethyl)-10,11-dihydroxy-1-oxa-8-azaspiro[5.6]dodecane-8-carb-oxylate (24): To a stirred solution of compound 23 (330 mg, 0.446 mmol) in acetone/water/*l*BuOH (2:2:1) at room temperature was added NMO·H₂O (78.4 mg, 0.669 mmol) and OsO₄ (25 mg/

mL solution in tBuOH, 0.02 mL, 0.002 mmol). The reaction mixture was stirred for 24 h and then treated with $Na_2S_2O_5$ (127.1 mg, 0.669 mmol). The reaction mixture was stirred for another 1 h and extracted with EtOAc $(3 \times 40 \text{ mL})$. The organic layer was washed with 1 N HCl, water, and finally with brine. Usual workup thereafter gave a crude product, which was purified by column chromatography to give diol 24 as a major product. Yield: 86% (297 mg), oil. $R_{\rm f} = 0.3$ (hexane/ethyl acetate, 1:1). $[a]_{\rm D}^{28} = +26.67$ (c = 0.45, CH₂Cl₂). IR (neat): \tilde{v} = 3442, 3031, 2923, 1700, 1453, 1422 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, mixture of rotamers 1:1 ratio): $\delta = 7.33-7.14$ (m, 50 H, Ar-H), 5.10 (d, J = 12.3 Hz, 1 H), 5.06 (s, 2 H), 4.97 (d, J = 12.3 Hz, 1 H), 4.92 (d, J = 10.9 Hz, 1 H), 4.88 (d, J = 11.2 Hz, 1 H), 4.86 (d, J = 10.8 Hz, 1 H), 4.83– 4.77 (m, 5 H), 4.68 (d, J = 11.2 Hz, 2 H), 4.59 (d, J = 12.0 Hz, 1 H), 4.58 (d, J = 10.9 Hz, 1 H), 4.52 (d, J = 12.3 Hz, 1 H), 4.51 (d, J = 10.3 Hz, 1 H), 4.45–4.40 (m, 3 H), 4.22–4.11 (m, 5 H), 3.97 (d, J = 15.2 Hz, 1 H), 3.87 (dd, J = 4.8, 14.6 Hz, 1 H), 3.78 (dd, J =2.8, 10.9 Hz, 1 H), 3.75-3.58 (m, 7 H), 3.50 (d, J = 9.7 Hz, 1 H), 3.39 (dd, J = 4.0, 10.9 Hz, 1 H), 3.34–3.30 (m, 3 H), 3.21 (dd, J = 6.9, 14.6 Hz, 1 H), 3.15 (d, J = 15.2 Hz, 1 H), 2.77 (dd, J = 10.6, 17.15 Hz, 1 H), 2.61–2.04 (m, 4 H), 1.61 (d, J = 13.7 Hz, 1 H, -OH), 1.52 (d, J = 14.3 Hz, 1 H, -OH) ppm. ¹³C NMR (125 MHz, CDCl₃): *δ* = 157.3, 155.9, 138.5–138.1 (m, Ar-C), 136.8, 136.2, 128.6-127.7 (m, Ar-C), 86.0, 85.8, 83.8, 83.6, 78.7, 78.6, 78.3, 78.2, 76.1, 75.6, 75.0, 74.8, 73.5, 73.4, 72.4, 72.1, 69.7, 69.6, 69.2, 69.0, 67.9, 67.4, 67.1, 66.6, 51.1, 50.5, 47.9, 47.0, 41.6, 41.4 ppm. HRMS: calcd. for C₄₇H₅₁NO₉ [M + H]⁺ 774.3642; found 774.3641.

(2R,3S,4S,5R,6R,10R,11S)-2-(Hydroxymethyl)-1-oxa-8-azaspiro[5.6]dodecane-3,4,5,10,11-pentaol (25): The benzyl-protected spiro sugar (75 mg, 0.269 mmol) was dissolved in MeOH (10 mL) and 20%Pd(OH)₂/C (50 mg) and trifluoroacetic acid (0.5 mL) were added. The reaction mixture was stirred under 50 psi H₂ pressure for 3-4 d at room temperature. The catalyst was filtered off through Celite, concentrated, and the filtrate was passed through Dowex (50X) basic resin column to obtain polyhydroxylated spiro azepane 25. Yield: 76% (21 mg), liquid. $[a]_{D}^{28} = -60.0$ (c = 0.3, MeOH). ¹H NMR (500 MHz, D_2O): $\delta = 4.09$ (br. d, J = 9.1 Hz, 1 H), 3.87 (br. s, 1 H), 3.71–3.69 (m, 1 H), 3.58–3.51 (m, J = 2H Hz), 3.42 (td, J= 3.0, 9.5 Hz, 1 H), 3.27–3.17 (m, 2 H), 3.14 (dd, J = 2.7, 9.5 Hz, 1 H), 3.01–2.98 (m, 1 H), 2.83–2.78 (m, 2 H), 2.57–2.52 (m, 1 H) 1.38 (d, J = 14.5 Hz, 1 H) ppm. ¹³C NMR (125 MHz, D₂O): $\delta =$ 77.2, 76.9, 73.7, 73.1, 72.9, 70.1, 67.7, 61.1, 51.6, 47.9, 39.4 ppm. HRMS: calcd. for C₁₁H₂₁NO₇ [M + H]⁺ 280.1396; found 280.1398.

(2R,3R,4S,5R,6R,10R,11S)-2-(Acetoxymethyl)-8-acetyl-1-oxa-8-azaspiro[5.6]dodecane-3,4,5,10,11-pentayl pentaacetate (26): Compound 26 was prepared by general procedure B: Yield: 79% (32 mg), light yellow oil. $R_f = 0.20$ (hexane/ethyl acetate, 1:9). $[a]_{D}^{28} = +16.0 \ (c = 0.5, CH_2Cl_2)$. IR (neat): $\tilde{v} = 2923, 2852, 1746$, 1656, 1370 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 5.49 (br. s, 1 H, H-10), 5.33 (t, J = 10.1 Hz, 1 H, H-4), 5.25–5.23 (m, 1 H, H-11), 5.00 (d, J = 10.0 Hz, 1 H, H-5), 4.99 (t, J = 9.6 Hz, 1 H, H-3), 4.85 (d, J = 15.1 Hz, 1 H, H-7a), 4.38–4.36 (m, 1 H, H-2), 4.15 (dd, J = 5.0, 12.3 Hz, 1 H, CHOAc), 4.02 (dd, J = 5.9, 15.1 Hz, 1 H, H-9a), 3.97 (dd, J = 2.2, 12.3 Hz, 1 H, CHOAc), 3.26 (dd, J = 5.5, 15.1 Hz, 1 H, H-9b), 3.06 (d, J = 15.1 Hz, 1 H, H-7b), 2.28-2.23 (m, 1 H, H-7a), 1.77 (d, J = 14.2 Hz, 1 H, H-7a), 2.15 (s, 3 H, COCH₃), 2.09 (s, 3 H, COCH₃), 2.08 (s, 3 H, COCH₃), 2.06 (s, 3 H, COCH₃), 2.01 (s, 3 H, COCH₃), 1.99 (s, 3 H, COCH₃), 1.97 (s, 3 H, COCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 171.2, 170.8, 170.2, 169.9, 169.8, 169.7, 169.5, 75.9, 74.8, 71.6, 69.9, 69.5, 68.8, 67.9, 50.4, 45.1, 38.8, 22.1, 21.0-20.7 (m, 6 COCH₃) ppm. HRMS: calcd. for $C_{25}H_{35}NO_{14}$ [M + H]⁺ 574.2136; found 574.2136.

N-{[(2*R*,3*R*,4*S*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-6-(benzyloxymethyl)-2-vinyltetrahydro-2*H*-pyran-2-yl]methyl}acrylamide (27): Compound 27 was prepared by general procedure C. Yield: 56 % (520 mg), liquid. $R_f = 0.30$ (hexane/ethyl acetate, 3:2). $[a]_D^{28} = +35.0$ $(c = 0.7, CH_2Cl_2)$. IR (neat): $\tilde{v} = 3418, 2917, 1661, 1626, 1453 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.33-7.19$ (m, 20 H, Ar-*H*), 6.17– 6.13 (m, 2 H), 5.90–5.97 (m, 2 H), 5.48–5.42 (m, 2 H), 5.21 (dd, *J* = 0.9, 10.7 Hz, 1 H), 4.93–4.82 (m, 4 H, 2 PhC*H*₂), 4.65–4.49 (m, 4 H, 2 PhC*H*₂), 3.90 (t, *J* = 9.2 Hz, 1 H), 3.83–3.57 (m, 6 H), 3.50 (t, *J* = 9.7 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.0$, 138.7, 138.6, 138.4, 138.2, 138.0, 130.9, 128.6–127.6 (m, Ar-C), 126.0, 116.2, 81.2, 80.7, 78.1, 76.1, 74.4, 74.2, 73.5, 72.8, 71.7, 70.1, 37.2 ppm. HRMS: calcd. for C₄₀H₄₃NO₆ [M + H]⁺ 634.3169; found 634.3165.

N-{[(2R,3R,4S,5R,6R)-2-Allyl-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-pyran-2-yl]methyl}acrylamide (28): Compound 28 was prepared by general procedure C. Yield: 63% (550 mg), solid. $R_{\rm f} = 0.30$ (hexane/ethyl acetate, 3:2). $[a]_{\rm D}^{28} = +50.0$ $(c = 0.55, CH_2Cl_2)$. IR (neat): $\tilde{v} = 3318, 3030, 2917, 2864, 1663,$ 1628, 1453 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.19 (m, 20 H, Ar-H), 6.15–6.10 (m, 2 H, -NH, -CH=CH₂), 5.91–5.84 (m, 1 H, $-CH=CH_2$), 5.72 (dd, J = 10.2, 16.8 Hz, 1 H, $-CH=CH_aH_b$), 5.42 (dd, J = 1.2, 10.2 Hz, 1 H, -CH=CH_aH_b), 5.12 (br. d, J =10.2 Hz, 1 H, $-CH=CH_{a}H_{b}$), 5.03 (br. d, J = 17.0 Hz, 1 H, -CH=CH_aH_b), 4.88 (2 d, J = 11.2 Hz, 2 H, PhCH₂), 4.81 (2 d, J = 11.0 Hz, 2 H PhCH₂), 4.65 (d, J = 11.2 Hz, 1 H, PhCH), 4.59–4.51 (m, 3 H, 3 PhCH), 3.88 (t, J = 9.2 Hz, 1 H), 3.81-3.52 (m, 6 H), 3.39 (t, J = 9.5 Hz, 1 H), 2.50 (dd, J = 5.1, 14.6 Hz, 1 H, $-CH_{a}H_{b}CH=CH_{2}$), 2.35 (dd, J = 9.0, 14.6 Hz, 1 H, $-CH_{a}H_{b}$ -CH=CH₂) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 167.7, 140.1, 140.0, 139.9, 139.7, 135.0, 132.8, 130.3-129.2 (m, Ar-C), 127.9, 120.7, 86.4, 83.2, 80.8, 79.6, 77.6, 77.1, 76.9, 75.4, 74.8, 71.5, 41.8, 41.3 ppm. HRMS: calcd. for C₄₁H₄₅NO₆ [M + H]⁺ 648.3325; found 648.3322.

(2R,3R,4S,5R,6R)-3,4,5-Tris(benzyloxy)-2-(benzyloxymethyl)-1oxa-8-azaspiro[5.5]undec-10-en-9-one (29): To a stirred solution of compound 27 (180 mg, 0.284 mmol) in dry CH₂Cl₂ (3-4 mL) at room temperature was added the Grubbs 2nd generation catalyst (12 mg, 0.014 mmol). The mixture was heated at reflux for 24 h, and after completion of the reaction, the solvent was evaporated and the residue was purified by column chromatography. Yield: 67% (115 mg), liquid. $R_{\rm f} = 0.20$ (hexane/ethyl acetate, 2:3). $[a]_{\rm D}^{28} =$ +24.0 (c = 0.5, CH₂Cl₂). IR (neat): $\tilde{v} = 3383$, 3030, 2922, 2852, 1685, 1619, 1453 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.32–7.13 (m, 20 H, Ar-*H*), 6.22 (d, *J* = 9.9 Hz, 1 H, -C*H*=CH-), 6.0 (d, *J* = 9.9 Hz, 1 H, -CH=CH-), 5.67 (br. s, 1 H, -NH), 4.83 (m, 2 H, PhCH₂), 4.79 (d, J = 10.7 Hz, 1 H, PhCH), 4.76 (d, J = 11.1 Hz, 1 H, PhCH), 4.64 (d, J = 10.7 Hz, 1 H, PhCH), 4.59 (d, J = 12.3 Hz, 1 H, PhCH), 4.53 (d, J = 10.3 Hz, 1 H, PhCH), 4.49 (d, J = 12.2 Hz, 1 H, PhCH), 3.84 (d, J = 13.8 Hz, 1 H), 3.72–3.58 (m, 7 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 164.6, 143.1, 138.2, 138.0, 137.9, 137.5, 128.7–127.8 (m, Ar-C), 127.1, 83.1, 82.8, 78.1, 75.7, 75.6, 75.1, 73.7, 73.5, 72.7, 68.8, 41.3 ppm. HRMS: calcd. for $C_{38}H_{39}NO_6 \ [M + H]^+$ 606.2856; found 606.2859.

(2*R*,3*R*,4*S*,5*R*,6*R*)-3,4,5-Tris(benzyloxy)-2-(benzyloxymethyl)-1oxa-8-azaspiro[5.6]dodec-10-en-9-one (30): A procedure similar to that described for the synthesis of 29 was employed. Yield: 75% (350 mg, from 488 mg, 0.754 mmol of 28), liquid. $R_{\rm f} = 0.30$ (hexane/ethyl acetate, 1:1). $[a]_{\rm D}^{28} = +29.28$ (c = 0.7, CH₂Cl₂). IR (neat): $\tilde{v} = 3290$, 2923, 2854, 2852, 1669, 1621, 1454 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.35-7.13$ (m, 20 H, Ar-*H*), 6.24–6.19 (m, 1 H, C*H*=CH-), 5.99 (br. s, 1 H, -N*H*), 5.94 (d, *J* = 12.0 Hz, 1 H,

-CH=C*H*-), 4.92 (d, *J* = 11.1 Hz, 1 H, PhC*H*), 4.91 (d, *J* = 10.8 Hz, 1 H, PhC*H*), 4.89–4.78 (m, 2 H, PhC*H*₂), 4.66–4.59 (m, 2 H, PhC*H*₂), 4.57 (d, *J* = 10.5 Hz, 1 H, PhC*H*), 4.50 (d, *J* = 12.3 Hz, 1 H, PhC*H*), 3.77 (t, *J* = 9.2 Hz, 1 H), 3.73–3.64 (m, 3 H), 3.55 (dd, *J* = 5.4, 15.1 Hz, 1 H), 3.45–3.43 (m, 2 H), 3.36 (dd, *J* = 6.8, 15.2 Hz, 1 H), 2.65 (ddd, *J* = 1.4, 5.1, 16.6 Hz, 1 H, -CH_aH_bCH= CH-), 2.35 (dd, *J* = 5.7, 16.6 Hz, 1 H, -CH_aH_bCH=CH-) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 171.21, 138.3, 138.2, 138.1, 138.0, 137.9, 128.6–127.7 (m, Ar-C), 125.6, 84.5, 84.4, 81.3, 78.5, 75.8, 75.7, 75.1, 73.6, 73.3, 68.8, 42.7, 40.2 ppm. HRMS: calcd. for C₃₉H₄₁NO₆ [M + H]⁺ 620.3012; found 620.3012.

(2*R*,3*S*,4*S*,5*R*,6*R*)-3,4,5-Trihydroxy-2-(hydroxymethyl)-1-oxa-8-azaspiro[5.5]undec-an-9-one (31): Compound 31 was prepared by general procedure A. Yield: quantitative (24 mg), liquid. $R_f = 0.40$ (MeOH/ethyl acetate, 1:4). $[a]_D^{28} = +31.82$ (c = 1.1, MeOH). ¹H NMR (500 MHz, D₂O): $\delta = 3.70$ (d, J = 12.6 Hz, 1 H), 3.58 (dd, J = 4.9, 12.6 Hz, 1 H), 3.48 (d, J = 14.5 Hz, 1 H), 3.42 (t, J =9.9 Hz, 1 H), 3.36–3.15 (m, 4 H), 2.49–2.42 (m, 1 H), 2.29–2.09 (m, 2 H), 1.63–1.55 (m, 1 H) ppm. ¹³C NMR (125 MHz, D₂O): $\delta =$ 175.6, 74.9, 73.7, 73.5, 73.3, 70.2, 60.9, 39.2, 29.2, 26.2 ppm. HRMS: calcd. for C₁₀H₁₇NO₆ [M + H]⁺ 248.1134; found 248.1137.

(2*R*,3*S*,4*S*,5*R*,6*R*)-3,4,5-Trihydroxy-2-(hydroxymethyl)-1-oxa-8-aza-spiro[5.6]dodec-an-9-one (32): Compound 32 was prepared by general procedure A. Yield: quantitative (25 mg), liquid. $R_{\rm f} = 0.40$ (MeOH/ethyl acetate, 1:4). $[a]_{\rm D}^{28} = +39.4$ (c = 0.9, MeOH). ¹H NMR (500 MHz, D₂O): $\delta = 3.72$ (dd, J = 2.2, 12.3 Hz, 1 H), 3.61 (dd, J = 4.8, 12.6 Hz, 1 H), 3.56 (t, J = 9.1 Hz, 1 H), 3.47 (d, J = 16.0 Hz, 1 H), 3.37 (d, J = 14.9 Hz, 1 H), 3.28 (d, J = 10.0 Hz, 1 H), 3.24–3.21 (m, 1 H), 3.18 (d, J = 9.4 Hz, 1 H), 2.03 (td, J = 5.1, 13.7 Hz, 1 H), 1.75–1.62 (m, 3 H) ppm. ¹³C NMR (125 MHz, D₂O): $\delta = 181.9$, 77.5, 74.4, 73.9, 73.1, 70.0, 60.8, 40.8, 39.4, 34.6, 17.0. HRMS: calcd. for C₁₁H₁₉NO₆ [M + H]⁺ 262.1291; found 262.1292.

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-8-acetyl-9-oxo-1-oxa-8-azaspiro[5.5]undecane-3,4,5-trivl Triacetate (33): Compound 33 was prepared by general procedure B: Yield: 92%, liquid. $R_{\rm f} = 0.7$ (hexane/ethyl acetate, 3:7). $[a]_{D}^{28} = +49.0$ (c = 1.0, CH₂Cl₂). IR (neat): $\tilde{v} = 2925, 2853, 1755, 1711, 1444 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃): δ = 5.33 (t, J = 9.6 Hz, 1 H, H-4), 5.11 (d, J = 10.1 Hz, 1 H, H-5), 5.00 (t, J = 10.1 Hz, 1 H, H-3), 4.90 (d, J = 15.1 Hz, 1 H, H-7a), 4.12 (dd, J = 5.9, 12.3 Hz, 1 H, CH_aH_bOAc), 3.93 (dd, $J = 1.8, 12.3 \text{ Hz}, 1 \text{ H}, \text{CH}_{a}H_{b}\text{OAc}), 3.74-3.71 \text{ (m, 1 H, H-2)}, 3.34$ (d, J = 14.7 Hz, 1 H, H-7b), 2.70–2.63 (m, 1 H), 2.54 (s, 3 H, COCH₃), 2.52–2.46 (m, 1 H), 2.04 (s, 3 H, COCH₃), 2.03 (s, 3 H, COCH₃), 2.00 (s, 3 H, COCH₃), 2.00–1.97 (m, 1 H), 1.97 (s, 3 H, COCH₃), 1.91–1.88 (m, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 172.9, \, 172.3, \, 170.5, \, 170.1, \, 169.6, \, 169.4, \, 74.6, \, 73.1, \, 71.5, \, 70.0,$ 68.9, 62.6, 40.8, 31.3, 30.8, 27.2, 20.8, 20.7, 20.6 ppm. HRMS: calcd. for C₂₀H₂₇NO₁₁ [M + H]⁺ 458.1662; found 458.1663.

(2*R*,3*R*,4*S*,5*R*,6*R*)-2-(Acetoxymethyl)-8-acetyl-9-oxo-1-oxa-8-azaspiro[5.6]dodecane-3,4,5-triyl Triacetate (34): Compound 34 was prepared by general procedure B: Yield: 87%, liquid. $R_{\rm f} = 0.75$ (hexane/ethyl acetate, 3:7). $[a]_{\rm D}^{28} = +66.0$ (c = 0.75, CH₂Cl₂). IR (neat): $\tilde{v} = 2924$, 2851, 1754, 1710, 1434 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 5.41$ (t, J = 9.6 Hz, 1 H, H-4), 5.18 (d, J = 16.0 Hz, 1 H, H-7a), 5.00 (d, J = 10.0 Hz, 1 H, H-5), 4.92 (t, J = 10.1 Hz, 1 H, H-3), 4.12 (dd, J = 6.4, 11.9 Hz, 1 H, CH_aH_bOAc), 3.84 (d, J = 11.9 Hz, 1 H, CH_aH_bOAc), 3.77–3.74 (m, 1 H, H-2), 3.32 (d, J = 16.0 Hz, 1 H, H-7b), 2.70–2.59 (m, 2 H), 2.53 (s, 3 H, COCH₃), 2.06 (s, 3 H, COCH₃), 2.05 (s, 3 H, COCH₃), 2.01 (s, 3 H, COCH₃), 1.97 (s, 3 H, COCH₃), 1.94–1.64 (m, 4 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 176.5, 173.9, 170.8, 170.1, 169.7, 169.5, 76.0, 74.5, 71.7, 70.2, 68.8, 62.9, 41.9, 40.1, 38.7, 27.5, 20.9, 20.8, 20.7, 18.1 ppm. HRMS: calcd. for C₂₁H₂₉NO₁₁ [M + H]⁺ 472.1819; found 472.1817.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra of all new compounds, and DEPT-135, 2D-COSY, and nOe spectra of some selected compounds.

Acknowledgments

We thank the Council of Scientific and Industrial Research, New Delhi for financial support [Grant No. 01(2298)/09/EMR-II]. A.P.J.P. and P.G. thank University Grant Commission, New Delhi, for Senior Research Fellowship and Y.S.R. thanks the Council of Scientific and Industrial Research, New Delhi, for a Senior Research Fellowship.

- [1] For some recent accounts on glycosidases and their inhibitors, see: a) P. Compain, O. R. Martin, Iminosugars, Wiley, England, 2007; b) B. G. Winchester, Tetrahedron: Asymmetry 2009, 20, 645-651; c) B. G. Davis, Tetrahedron: Asymmetry 2009, 20, 652-671; d) P. Compain, V. Chagnault, O. R. Martin, Tetrahedron: Asymmetry 2009, 20, 672-711; e) V. H. Lillelund, H. H. Jensen, X. Liang, M. Bols, Chem. Rev. 2002, 102, 515-553; f) K. Afarinkia, A. Bahar, Tetrahedron: Asymmetry 2005, 16, 1239-1287; g) D. L. Zechel, S. G. Withers, Acc. Chem. Res. **2000**, 33, 11–18; h) T. D. Heightman, A. T. Vasella, Angew. Chem. Int. Ed. 1999, 38, 750-770; i) G. M. Gloster, G. J. Davies, Org. Biomol. Chem. 2010, 8, 305-320; j) A. E. Stuetz, Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, Wiley-VCH, Weinheim, Germany, 1999; k) Y. Ichikawa, Y. Igarashi, M. Ichikawa, Y. Suhara, J. Am. Chem. Soc. 1998, 120, 3007-3018.
- [2] a) T. Tsuruoka, H. Fukuyasu, M. Ishii, T. Usui, S. Shibahara, S. Inouye, *J. Antibiot.* **1996**, *49*, 155–161; b) P. E. Gross, M. A. Baker, J. P. Carver, J. W. Dennis, *Clin. Cancer Res.* **1995**, *1*, 935– 944.
- [3] a) P. S. Johnston, H. E. Lebovitz, R. F. Coniff, D. C. Simonson, P. Raskin, C. L. Munera, *J. Clin. Endocrinol. Metab.* **1998**, *83*, 1515–1522; b) P. B. Anzeveno, L. J. Creemer, J. K. Daniel, C.-H. R. King, P. S. Liu, *J. Org. Chem.* **1989**, *54*, 2539–2542; c) J. A. Balfour, D. McTavish, *Drugs* **1993**, *46*, 1025–1054.
- [4] T. D. Butters, R. A. Dwek, F. M. Platt, Chem. Rev. 2000, 100, 4683–4696 and references cited therein.
- [5] C. U. Kim, W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swaminathan, N. Bischofberger, M. S. Chen, D. B. Mendel, C. Y. Tai, W. G. Laver, R. C. Stevens, J. Am. Chem. Soc. 1997, 119, 681–690.
- [6] L. Ratner, N. V. Heyden, D. Dedera, Virology 1991, 181, 180– 192 and references cited therein.
- [7] a) A. M. S. Mayer, M. Guzman, R. Peksa, M. Hall, M. J. Fay, P. B. Jacobson, A. M. Romanic, S. P. Gunasekera, *Diab. Res. Clin. Prac.* 2007, 78, 30–33; b) S. Alfasano, P. Pampin, J. Estrada, J. C. R. Rey, P. Giraldo, J. Sancho, M. Pocovi, *Blood Cells Mol. Dis.* 2005, 35, 268–276; c) S. Yamagishi, T. Matsui, S. Ueda, K. Fukami, S. Okuda, *Curr. Drug Met.* 2009, 10, 159– 163.
- [8] T. D. Butters, R. A. Dwek, F. M. Platt, Curr. Top. Med. Chem. 2003, 3, 561–574.
- [9] T. M. Jespersen, W. Dong, M. R. Sierks, T. Skrydstrup, I. Lundt, M. Bols, Angew. Chem. Int. Ed. Engl. 1994, 33, 1778– 1779.
- [10] A. E. Nerm, Tetrahedron 2000, 56, 8579-8629.
- [11] H. Yoda, H. Katoh, K. Takabe, *Tetrahedron Lett.* 2000, 41, 7661–7665.
- [12] K. Burgess, I. Henderson, Tetrahedron 1992, 48, 4045-4066.
- [13] a) B. Gopal Reddy, Y. D. Vankar, Angew. Chem. Int. Ed. 2005, 44, 2001–2004; b) K. Jayakanthan, Y. D. Vankar, Tetrahedron

FULL PAPER

Lett. 2006, 47, 8667–8671; c) K. Jayakanthan, Y. D. Vankar, Org. Lett. 2005, 7, 5441–5444; d) V. R. Doddi, Y. D. Vankar, Eur. J. Org. Chem. 2007, 5583–5589; e) M. A. Alam, A. Kumar, Y. D. Vankar, Eur. J. Org. Chem. 2008, 4972–4980; f) M. A. Alam, Y. D. Vankar, Tetrahedron Lett. 2008, 49, 5534–5536; g) V. R. Doddi, H. P. Kokatla, A. P. John Pal, R. K. Basak, Y. D. Vankar, Eur. J. Org. Chem. 2008, 5731–5739; h) A. Kumar, G. K. Rawal, Y. D. Vankar, Tetrahedron 2008, 64, 2379–2390; i) P. Gupta, Y. D. Vankar, Eur. J. Org. Chem. 2009, 1925–1933; j) N. Kumari, B. G. Reddy, Y. D. Vankar, Eur. J. Org. Chem. 2009, 160–169.

- [14] A. P. John Pal, Y. D. Vankar, *Tetrahedron Lett.* **2010**, *51*, 2519–2524.
- [15] a) X. Li, H. Ohtake, H. Takahashi, S. Ikegami, *Tetrahedron* 2001, 57, 4297–4309; b) P. A. V. van Hooft, M. A. Leeuwenburgh, H. S. Overkleeft, G. A. van der Marel, C. A. A. van Boeckel, J. H. van Boom, *Tetrahedron Lett.* 1998, 39, 6061– 6064.
- [16] T. Yamanoi, Y. Nara, S. Matsuda, Y. Oda, A. Yoshida, K. Katsuraya, M. Watanabe, *Synlett* 2007, 785–789.
- [17] E. N. Shaitanova, I. I. Gerus, M. Yu. Belik, V. P. Kukhar, Tetrahedron: Asymmetry 2007, 18, 192–198.

- [18] U. K. Pandit, H. S. Overkleeft, B. C. Borer, H. Bieraugel, Eur. J. Org. Chem. 1999, 959–968.
- [19] a) P. Dupau, R. Epple, A. A. Thomas, V. V. Fokin, K. B. Sharpless, *Adv. Synth. Catal.* 2002, *344*, 421–433; b) M. Schroder, *Chem. Rev.* 1980, *80*, 187–213.
- [20] a) S. D. Markad, N. S. Karanjule, T. Sharma, S. B. Sabharwal,
 V. Puranik, D. D. Dhavale, *Org. Biomol. Chem.* 2006, *4*, 2549–2555;
 b) V. R. Doddi, A. Kumar, Y. D. Vankar, *Tetrahedron* 2008, *64*, 9117–9122.
- [21] a) B. Plietker, M. Niggemann, J. Org. Chem. 2005, 70, 2402–2405; b) P. Tiwari, A. K. Misra, J. Org. Chem. 2006, 71, 2911–2913.
- [22] a) M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. 1982, 104, 4976–4978; b) E. Brenna, C. Fuganti, P. Grasselli, S. Serra, S. Zambotti, Chem. Eur. J. 2002, 8, 1872–1878.
- [23] Y. Oda, T. Yamanoi, Synthesis 2007, 3021-3031.
- [24] K. Zhang, F. Schweizer, Synlett 2005, 3111-3115.
- [25] Y.-T. Li, S.-C. Li, *Methods in Enzymology* (Ed.: V. Ginsberg), Academic Press, New York, **1972**, p. 702.

Received: August 5, 2010 Published Online: November 17, 2010