

Available online at www.sciencedirect.com

Chinese Chemical Letters 22 (2011) 505-507

www.elsevier.com/locate/cclet

Synthesis of (3S, 4R)-bengamide E

Qi Jun Liu^{a,b}, Hong Li^{a,b}, Shao Peng Chen^a, Guo Chun Zhou^{a,b,c,*}

^a Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China ^b Graduate School of Chinese Academy of Sciences, Beijing 100039, China

^c College of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing 210009, China

Received 16 September 2010 Available online 3 March 2011

Abstract

(3S,4R)-Bengamide E (2) was synthesized starting from D-glucono- δ -lactone (3) and the key deoxygenation step from 13 to 15 was achieved by the application of NaBH₃CN and ZnI₂. Compared with natural bengamide E (1), the synthetic compound (3S,4R)-bengamide E (2) was inactive against the cell growth of HUVEC and cancer cells. These data represent the significance of the stereochemistry at C-3 and C-4 of bengamides for structural recognition and binding with the target(s).

© 2010 Guo Chun Zhou. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: (3S,4R)-Bengamide E; Stereocenter; Deoxygenation

Bengamides were first isolated by Crews and co-workers from *Jaspis* sponges [1,2], which are classified as fused ketide-amino acid derivatives. It was demonstrated that bengamides are a family of potent cancer cell growth inhibitors [3,4] and anti-angiogenesis agents [5] as unique inhibitors of methionine aminopeptidase type I and type II (MetAP 1 and MetAP 2). Bengamide E (1) (Fig. 1), a representative member of bengamides, exhibits 3.3 μ mol/L against MDA-MB-435 (human breast carcinoma cell) [4]. To investigate the importance of the stereochemistry at C-3 and C-4 of bengamide ketide side chain, we herein report the synthesis and biological evaluation of (3*S*,4*R*)-bengamide E (2) (Fig. 1).

The (3S,4R)-bengamide E was synthesized starting from D-glucono- δ -lactone (3) (Scheme 1). Bis-acetonide 4 was prepared from 3 according to the literature [6]; *O*-Methylation of 4 was done by MeI and NaH to afford 5 in 72% yield at -20 °C in THF without C-2 epimerization. After the reduction of carboxyl group of 5 into terminal alcohol 6 by LiAlH₄, compound 7 was prepared from 6 by using benzyl bromide and NaH with the catalysis of Bu₄NI and diol 8 was generated by removal of terminal acetonide protection of 7. Then primary and secondary hydroxyl groups of 8 were protected by acetyl group and tetrahydropyranyl (THP) group, respectively. After a new chiral center was introduced by the THP protection, every succeeding product bearing THP has a diastereomer counterpart. Subsequently, treatment of the mixture of 9 with K₂CO₃ hydrolyzed acetyl group to give separable products of 10A (more polar, 51% yield) and 10B (less polar, 41% yield) and oxidation of 10A and 10B by Swern oxidation afforded aldehyde 11A and 11B, respectively. Julia olefination of aldehyde 11A or 11B gave low *E*-selectivity and yield (data not shown), whereas, Wittig–Horner reaction [7] of aldehyde 11A or 11B produced a single product of *E*-olefin 12A or

^{*} Corresponding author at: Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China. *E-mail address:* allspringzhou@yahoo.com (G.C. Zhou).

^{1001-8417/\$-}see front matter © 2010 Guo Chun Zhou. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2010.11.023

Fig. 1. Structures of bengamide E (1) and (3S,4R)-bengamide E (2).

12B in a good yield as expected, which was the required geometrical isomer. Reaction of **12A** with Grignard reagent MeMgI in Et₂O at 0 °C generated a tertiary alcohol **13A**. Strategically, removal of allylic tertiary hydroxyl group in **13A** could achieve the same olefin moiety as bengamide E side chain. Many approaches including Pd/C in EtOH, Pd(OH)₂ in EtOH, Raney Ni in EtOH or in H₂O and Et₃SiH in CH₂Cl₂ failed to deoxygenate **13A**. At the end, deoxygenation of **13A** was accomplished by the reduction with NaBH₃CN and ZnI₂ in CH₂Cl₂, which was modified from the literature [8]. Reductive deoxygenation of **13A** by 3.0 equiv. NaBH₃CN and 1.0 equiv. ZnI₂ afforded desired key intermediate **15** as well as THP-protected **14A** that was easily transformed into **15** by PPTS in 72% yield. As a result, the two-step process generated **15** in 62% yield in total without obvious dimerized and olefin isomerized byproducts. Through the same reactions as **12A** to **15**, the key intermediate **15** was furnished with the similar yields starting from less polar **12B**. The diastereomer mixtures were used for the subsequent production of **15** on a larger scale.

With the key intermediate **15** in hand, the free secondary hydroxyl group was protected with acetyl group, and subsequent debenzylation of terminal protection was carried out by DDQ at room temperature to afford C-1 primary alcohol **17**. Sequential oxidations of **17** with Dess-Martin periodinane (DMP) and NaClO₂ buffered with KH₂PO₄ generated carboxylic acid **18** [9]. Activation of carboxylic acid **18** was carried out by *N*-hydroxysuccinimide (NHS) with *N*,*N*'-dicyclohexylcarbodiimide (DCC) and then coupling reaction was conducted by treatment of NHS-activated **18** with freshly prepared L-(-)- α -amino- δ -caprolactam [10] to furnish the coupled compound **19**. Finally, (3*S*,4*R*)-bengamide E (**2**) [11] was achieved by the treatment of **19** with dilute TFA at 0 °C (Scheme 2).

Scheme 1. Condition and regent: (a) Ref. [6]; (b) NaH, MeI, THF, $-20 \degree C$, 72%; (c) LiAlH₄, THF, $0 \degree C$, 70%; (d) BnBr, NaH, Bu₄N⁺I⁻, THF, 86%; (e) 50% HOAc, 67%; (f) pyridine, AcCl, CH₂Cl₂, $-80 \degree C$, 63%; (g) DHP, PPTS, CH₂Cl₂; (h) K₂CO₃, MeOH/H₂O, 51% for **10A** (the more polar product) and 41% for **10B** (the less polar product); (i) Swern oxidation; (j) NaH, THF, (EtO)₂P(O)CH₂CO₂Et, $0 \degree C$ to rt, 82% for**12A** from **10A** and 72% for **12B** from **10B**; (k) MeMgI, Et₂O, $0 \degree C$, 77% for **13A**, 86% for **13B**; (l) NaBH₃CN, ZnI₂, CH₂Cl₂, rt, 22% for **14A** and 47% for **15** from **13B**; (m) PPTS, EtOH, 50 °C, 72%.

Scheme 2. Condition and regent: (a) Ac₂O, TEA, CH₂Cl₂, 89%; (b) DDQ, CH₂Cl₂, 61%; (c) DMP, CH₂Cl₂; (d) NaClO₂, KH₂PO₄, acetone/H₂O, 86%; (e) NHS, DCC, DMAP, CH₂Cl₂, rt; (f) dioxane, saturated K₂CO₃, L-(-)- α -amino- δ -caprolactam, 42%; (g) 3:1:3 THF-H₂O-TFA, 0 °C, 61%.

Compound **2** was inactive up to 50.0 μ mol/L against the cell growth of HUVEC (human umbilical vein endothelial cell), A549 (human non-small cell lung cancer cell), Bel-7402 (human hepatocarcinoma cell) and MCF-7 (human breast cancer cell) [12,13]. These structural modifications at C-3 and C-4 of bengamide side chain damaged biological activity severely, thus, suggesting that strict stereochemistry at C-3 and C-4 of bengamides is important for structural recognition and binding with the target(s).

Acknowledgments

We are grateful for the financial supports from National Basic Research Program of China (No. 2007CB914504) and Natural Science Foundation of China (No. 30973621).

References

- [1] E. Quinoa, M. Adamczeski, P. Crews, J. Org. Chem. 51 (1986) 4492.
- [2] M. Adamczeski, E. Quinoa, P. Crews, J. Am. Chem. Soc. 111 (1989) 647.
- [3] Z. Thale, F.R. Kinder, K.W. Bair, J. Org. Chem. 66 (2001) 1733.
- [4] F.R. Kinder, R.W. Versace, K.W. Bair, J. Med. Chem. 44 (2001) 3692.
- [5] H. Towbin, K.W. Bair, J.A. DeCaprio, et al. J. Biol. Chem. 278 (2003) 52964.
- [6] D.D. Long, M.D. Smith, A. Martin, J. Chem. Soc. Perkin Trans. 1 (2002) 1982.
- [7] L. Horner, H.M.R. Hoffmann, H.G. Wippel, Ber 91 (1958) 61.
- [8] C.K. Lau, C. Dufresne, P.C. Belanger, J. Org. Chem. 51 (1986) 3038.
- [9] M.T. Crimmins, R.S. Al-awar, I.M. Vallin, J. Am. Chem. Soc. 118 (1996) 7513.
- [10] (a) R. Pellegata, M. Pinza, G. Pifferi, Synthesis (1978) 614;
 (b) W.J. Boyle, S. Sifniades, J.F. Van Peppen, J. Org. Chem. 44 (1979) 4841.
- [11] Compound 2: colorless semisolid; $[\alpha]_D^{20} + 33.8 (c \ 0.71, CH_3OH)$; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (m, 1H), 6.40 (m, 1H), 5.76 (dd, 1H, J = 6.4, 15.6 Hz), 5.49 (m, 1H), 4.58 (m, 1H), 4.25 (m, 1H), 4.11 (m, 1H), 3.84 (m, 1H), 3.72 (m, 1H), 3.48 (s, 3H), 3.28 (m, 2H), 2.29 (m, 1H), 2.03 (m, 1H), 1.83 (m, 2H), 1.62 (m, 1H), 1.43 (m, 1H), 0.99 (d, 6H, J = 6.8 Hz); ¹H NMR (400 MHz, DMSO- d_6): δ 8.00 (m, 1H), 7.79 (d, 1H, J = 6.0 Hz), 5.58 (dd, 1H, J = 6.4, 15.6 Hz), 5.49 (dd, 1H, J = 6.0 Hz), 5.58 (dd, 1H, J = 6.4, 15.6 Hz), 5.49 (dd, 1H, J = 6.0, 16.0 Hz), 4.68 (d, 1H, J = 5.7 Hz), 4.49 (d, 1H, J = 6.4 Hz), 4.34 (m, 1H), 4.29 (d, 1H, J = 6.4 Hz), 3.87 (m, 1H), 3.68 (d, 1H, J = 5.2 Hz), ~3.35 (s, 3H, overlapped with HDO/H₂O), 3.19 (m, 1H), 3.08 (m, 1H), 2.26 (m, 1H), 1.92 (m, 2H), 1.75 (m, 1H), 1.67 (m, 1H), 1.35 (m, 1H), 1.16 (m, 1H), 0.96 (d, 6H, J = 6.4 Hz). ¹³C NMR (100 MHz, DMSO- d_6): δ 174.6, 169.9, 137.8, 129.0, 83.8, 73.8, 71.7, 70.9, 58.7, 51.8, 41.2, 31.2, 30.7, 29.1, 28.0, 22.8, 22.7; HRESIMS calcd. for C₁₇H₃₀N₂NaO₆ 381.1996, found 381.1991 [M+Na]⁺.
- [12] Y. Chen, S. Chen, X. Lu, et al. Bioorg. Med. Chem. Lett. 19 (2009) 1851.
- [13] M.C. Alley, D.A. Scudiero, A. Monks, et al. Cancer Res. 48 (1988) 589.