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A series of 5-hydroxypentenes was synthesized from the reaction mixture of Mg powder, 1,2-dibro-

moethane, 4-bromobutene and aldehydes in THF under ultrasound. This sonochemical Barbier reaction

provides a simple and alternative method for preparation of 5-hydroxypentene instead of the allylating re-

agent with epoxide.
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INTRODUCTION

5-Hydroxypentenes have received much attention as

synthetic intermediates for synthesis of biologically active

tetrahydrofuran derivatives.1-11 5-Hydroxypentenes have

been prepared by the reactions of allylic organometallics of

indium,12 magnesium,13 and tin,13 with epoxide or cyclo-

propylmethylmagnesium bromide14 with aldehyde. A mix-

ture of regioisomeric alcohols was generally produced.

High regioselectivity is usually manipulated by the tedious

reaction conditions or by limiting functionalized epoxide.

Only a few direct reactions of Grignard reagent of 4-bro-

mobutene with aldehydes or ketones to produce 5-hydroxy-

pentenes have been reported in the literature.15-17 Our pre-

vious studies showed that Barbier-type allylation reactions

of allylic bromide to aldehydes were successfully achieved

by introducing ultrasound or Lewis acid.18-20 Thus, we in-

troduced and investigated the addition reaction of 4-bro-

mobutene with aldehyde under Barbier reaction conditions.

Herewith, we wish to report a simple sonochemical Barbier

reaction condition for the synthesis of 5-hydroxypentene

(Scheme I).

RESULTS AND DISCUSSION

To a reaction mixture of magnesium powder, 1,2-di-

bromoethane and 4-bromobutene was added dropwise a so-

lution of benzaldehyde (0.2 M, THF) under ultrasound, and

the reaction mixture was continuously sonicated at room

temperature for 1-2 hours. The highest yield was obtained

when 3 equivalents of Mg, 1 equivalent of 1,2-dibromo-

ethane and 1.2 equivalents of 4-bromobutene were intro-

duced and sonicated for 2 hours (Scheme II). Increments of

Mg, 1,2-dibromoethane and 4-bromobutene produced a

25% yield of 5-hydroxypentene with a mixture of unidenti-

fied compounds.

We further investigated the substituent effect of sub-

strate under the reaction conditions. para-Methoxy- and

para-fluorobenzaldehydes were firstly chosen and investi-

gated. The much lower yield of 5-hydroxypentene and a
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Scheme I

Scheme II Aldehyde in THF (0.2 M) was added

dropwise



mixture of unidentified compounds were obtained when

the electron-donating group (-OMe) was introduced to the

substrate and investigated under the reaction conditions

(Table 1, Entry 2). It should be noted that a Cannizzaro-

type reaction21-23 and direct reduced products were ob-

tained when the electron-withdrawing group (-F) was at-

tached on the aldehyde. A mixture of 5-hydroxypentene

(40%), pentenone (12%) and phenylmethanol (27%) was

obtained under this sonochemical Barbier reaction condi-

tion (Table 1, Entry 3).

The experimental results showed that this reaction

condition also presents a direct reduction process by mag-

nesium metal and a competitive Cannizzaro-type reaction

process. The addition of 1,2-dibromoethane was used for

the activation of metal, and it reacted with Mg powder in

situ to generate Lewis acid MgBr2 and ethene.24 The pres-

ence of MgBr2 accelerates additional reaction, competitive

direct reduction25 and a Cannizzaro-type reaction.26 Thus,

decreasing the amount of 1,2-dibromoethane may retard

the undesirable process of direct reduction or Cannizzaro-

type reaction. A lower amount of 1,2-dibromoethane was

used and investigated under the reaction conditions. A

mixture of 3 equivalents of Mg, 0.5 equivalent of 1,2-

dibromoethane, 1.2 equivalents of 4-bromobutene and

para-fluorobenzaldehyde was sonicated at room tempera-

ture for two hours and a mixture of expected 5-hydroxy-

pentene (49%), unexpected petenone (13%) and phenyl-

methanol (12%) were obtained (Scheme III). Increasing the

amount of 4-bromobutene to 1.5 equivalents and shorten-

ing the sonication time improved the formation of expected

5-hydroxypentene dramatically to 78%. The longer sonica-

tion did not improve the formation yield of 5-hydroxy-

pentene.

A series of aldehydes was investigated under this

sonochemical Barbier reaction condition, and the results

are shown in Table 2. The experimental results showed that

an electron-withdrawing group attached to an aldehyde

usually gives a lower yield of 5-hydroxypentene because

the presence of competitive processes of direct reduction

and Cannizzaro-type reaction (Table 2, Entries 5, 6). The

1,2-addition reaction is the major reaction pathway for
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Scheme III Aldehyde in THF was added dropwise

Table 1. The sonochemical reaction of 4-bromobutene with aldehyde

Entry Aldehyde Product Yielda

a The yields were determined after chromatographic purification.
b Many unidentified compounds were not separated.
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�,�-unsaturated aldehyde under this reaction condition

(Table 2, Entry 2). Decomposition was observed when

thiophenylaldehyde was treated under the reaction condi-

tion (Table 2, Entry 8). The heterocyclic aldehydes were re-

acted and gave good yields under the reaction conditions

(Table 2, Entries 9, 12).

In conclusion, this reaction condition provides a sim-

ple method for the preparation of 5-hydroxypentene which

is an important synthetic intermediate for synthesis of

tetrahydrofuran compounds.

EXPERIMENTAL SECTION

All reagents were purchased from Aldrich and Riedel-

deHaen, and all were used directly without further purifica-

tion. The bath should be filled with water containing some

3-5% detergent. In our laboratory, we used Decon 90 which

permits much more even cavitation in bath water.

General Procedure for Synthesis of 5-Hydroxypentene

A solution of aldehyde (1.0 mmol in 1 mL THF) was
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Table 2. Synthesis of 5-hydroxypentenes

Entry Aldehyde Product Yielda

a The yields were determined after chromatographic purification.
b The yield is low because the product is highly volatile.
c 18% of p-bromophenylmethanol was also produced.
d 18% of naphthylmethanol was also produced.
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added dropwise to a reaction mixture of Mg powder (3.0

mmol), 1,2-dibromoethane (0.5 mmol), and 4-bromobu-

tene (1.5 mmol) in anhydrous THF (5.0 mL) under ultra-

sound and the reaction mixture was sonicated for an hour in

a commercial ultrasonic cleaning bath28 (Elma-T490DH,

50 kHz). After the sonication, a 2 M HCl solution was

added and the filtrate was extracted with ether (20 mL × 3).

The combined organic layer was washed with brine (20

mL), dried with MgSO4, filtered, and then the organic sol-

vent was removed under reduced pressure. Further purifi-

cation was achieved on a flash chromatograph with silica

gel and ethyl acetate/hexane as eluant.

Dec-1-en-5-ol (Table 2, Entry 1)
1H-NMR: � 0.85 (3H, t, J = 6.7 Hz), 1.26-1.53 (11H,

m), 2.03-2.15 (2H, m), 3.55 (1H, m), 4.88-5.02 (2H, m),

5.78 (1H, m). 13C-NMR: � 13.8, 22.5, 25.2, 29.9, 31.8,

36.5, 37.4, 71.3, 114.4, 138.6. IR (neat): 3343, 2929, 2859,

1641, 1455 cm-1. HRMS: 156.1520 (calcd. for C10H20O,

156.1514). MS: m/z 156 (1, M), 154 (13), 117 (72), 113

(11), 100 (11), 99 (base), 97 (15), 84 (40), 83 (40), 71 (36),

69 (26), 56 (26), 55 (61).

(E)-Deca-1,6-dien-5-ol (Table 2, Entry 2)
1H-NMR: � 0.88 (3H, t, J = 7.3 Hz), 1.36-1.44 (2H,

m), 1.56-1.65 (3H, m), 1.99-2.02 (2H, m), 2.10-2.14 (2H,

m), 4.07 (1H, m), 4.94-5.06 (2H, m), 5.46 (1H, m), 5.65

(1H, m), 5.84 (1H, m). 13C-NMR: � 13.4, 22.2, 29.6, 34.1,

36.4, 72.3, 114.4, 131.7, 133.1, 138.3. IR (neat): 3356, 2959,

2928, 2873, 1641, 1454 cm-1. HRMS: 154.1348 (calcd. for

C10H18O, 154.1348).

1-Cyclohexylpent-4-en-1-ol (Table 2, Entry 3)
1H-NMR: � 1.01-1.78 (14H, m), 2.09-2.30 (2H, m),

3.34-3.39 (1H, m), 4.94-5.07 (2H, m), 5.84 (1H, m).
13C-NMR: � 26.2, 26.3, 26.5, 27.7, 29.2, 30.3, 33.2, 43.7,

75.6, 114.6, 138.8. IR (neat): 3357, 2923, 2852, 1641, 1449

cm-1. HRMS: 168.1510 (calcd. for C11H20O, 168.1514).

MS: m/z 168 (M, 9), 151 (12), 135 (11), 126 (26), 121 (12),

113 (30), 111 (19), 95 (base), 86 (53), 85 (33), 84 (84), 67

(21), 55 (16).

1-Phenylpent-4-en-1-ol (Table 2, Entry 4)
1H-NMR: � 1.77-1.95 (3H, m), 2.10-2.20 (2H, m),

4.71 (1H, m), 4.97-5.07 (2H, m), 5.85 (1H, m), 7.27-7.36

(5H, m). 13C-NMR: � 29.6, 37.7, 73.3, 114.4, 125.7, 126.9,

127.9, 137.9, 144.4. IR (neat): 3348, 3030, 2937, 1641,

1494, 1453 cm-1. HRMS: 162.1041 (calcd. for C11H14O,

162.1045). MS: m/z 162 (M, 9), 145 (98), 144 (26), 120

(84), 107 (98), 104 (38), 79 (base), 77 (89), 51 (22), 50 (6).

1-(4-Fluorophenyl)pent-4-en-1-ol (Table 2, Entry 5)
1H-NMR: � 1.69-1.85 (2H, m), 2.01-2.11 (2H, m),

2.89 (1H, s), 4.59 (1H, m), 4.95-5.05 (2H, m), 5.74 (1H, m),

6.95-7.02 (2H, m), 7.21-7.27 (2H, m). 13C-NMR: � 29.9,

38.1, 73.3, 115.0, 115.3, 127.4, 127.5, 138.0, 140.3, 160.5,

163.8. IR (neat): 3355, 3078, 2937, 1641, 1605, 1509 cm-1.

HRMS: 180.0957 (calcd. for C11H13FO, 189.0950). MS:

m/z 180 (M, 14), 163 (70), 162 (48), 151 (14), 138 (49), 125

(base), 123 (13), 97 (20), 95 (5), 28 (75), 18 (9).

1-(4-Bromophenyl)pent-4-en-1-ol (Table 2, Entry 6)
1H-NMR: � 1.70-1.85 (2H, m), 2.03-2.12 (2H, m),

2.51 (1H, s), 4.59 (1H, m), 4.97-5.05 (2H, m), 5.81 (1H, m),

7.15-7.18 (2H, m), 7.42-7.46 (2H, m). 13C-NMR: � 29.8,

37.9, 73.2, 115.1, 121.1, 127.6, 131.4, 137.8, 143.5. IR

(neat): 3342, 3078, 2936, 1640, 1593, 1487 cm-1. HRMS:

240.0141 (calcd. for C11H13BrO, 240.0150). MS: m/z 240

(M, 2), 200 (25), 198 (26), 187 (93), 185 (base), 157 (13),

78 (34), 77 (76), 51 (12), 50 (7), 28 (49).

1-(4-Methoxyphenyl)pent-4-en-1-ol (Table 2, Entry 7)
1H-NMR: � 1.76-1.92 (2H, m), 2.04-2.14 (2H, m),

3.80 (3H, s), 4.65 (1H, m), 4.95-5.06 (2H, m), 5.84 (1H, m),

6.87-6.90 (2H, m), 7.25-7.28 (2H, m). 13C-NMR: � 30.0,

37.8, 55.1, 73.4, 113.7, 114.7, 127.1, 136.7, 138.2, 158. IR

(neat): 3380, 2936, 2837, 1640, 1612, 1586, 1512, 1442

cm-1. HRMS: 192.1149 (calcd. for C12H16O2, 192.1150).

MS: m/z 192 (M, 12), 150 (16), 138 (16), 137 (base), 135

(12), 109 (34), 94 (16), 77 (18), 66 (5), 65 (5).

1-(Thiophen-2-yl)pent-4-en-1-ol (Table 2, Entry 8)
1H-NMR: � 1.89-2.05 (3H, m), 2.09-2.22 (2H, m),

4.92-5.10 (3H, m), 5.85 (1H, m), 6.95-6.97 (2H, m), 7.24

(1H, m). 13C-NMR: � 30.0, 38.2, 69.7, 115.2, 123.7, 124.5,

126.6, 137.8, 148.6. IR (neat): 3346, 3075, 2937, 1640, 1440

cm-1. HRMS: 168.0623 (calcd. for C9H12OS, 168.0609).

1-(Pyridin-3-yl)pent-4-en-1-ol (Table 2, Entry 9)
1H-NMR: � 1.64-1.89 (2H, m), 1.98-2.14 (2H, m),
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4.63 (1H, m), 4.90-4.98 (2H, m), 5.75 (1H, m), 7.15-7.20

(1H, m), 7.65 (1H, d, J = 7.7 Hz), 8.25-8.31 (2H, m).
13C-NMR: � 29.8, 38.0, 71.1, 115.1, 123.5, 133.9, 137.8,

140.5, 140.7, 147.4, 148.2. IR (neat): 3243, 2936, 1641,

1581, 1428 cm-1. HRMS: 163.1013 (calcd. for C10H13NO,

163.0997). MS: m/z 163 (M, 5), 146 (18), 144 (10), 134 (9),

109 (13), 108 (base), 106 (18), 105 (18), 80 (56), 78 (15),

53 (19), 51 (10).

1-(Benzo[d][1,3]dioxol-6-yl)pent-4-en-1-ol (Table 2,

Entry 10)
1H-NMR: � 1.73-1.93 (3H, m), 2.03-2.15 (2H, m),

4.59 (1H, m), 4.96-5.06 (2H, m), 5.83 (1H, m), 5.94 (2H,

s), 6.75-6.83 (2H, m), 6.85 (1H, s). 13C-NMR: � 29.9,

37.9, 73.7, 100.8, 106.3, 107.9, 114.8, 119.2, 138.1, 138.6,

146.7, 147.6. IR (neat): 3361, 2914, 1640, 1503, 1486,

1441 cm-1. HRMS: 206.0942 (calcd. for C12H14O3, 206.0943).

MS: m/z 206 (M, 19), 164 (12), 152 (10), 151 (base), 149

(10), 137 (12), 123 (13), 122 (5), 121 (6), 94 (5), 93 (50), 77

(6).

1-(Naphthalen-4-yl)pent-4-en-1-ol (Table 2, Entry 11)
1H-NMR: � 1.97-2.12 (3H, m), 2.25-2.33 (2H, m),

5.02-5.13 (2H, m), 5.50 (1H, m), 5.91 (1H, m), 7.46-7.55

(3H, m), 7.66 (1H, d, J = 7.1 Hz), 7.79 (1H, d, J = 8.1 Hz),

7.91 (1H, m), 8.12 (1H, d, J = 1.7 Hz). 13C-NMR: � 30.4,

37.3, 70.6, 115.2, 122.9, 123.1, 125.4, 125.5, 126.0, 127.9,

127.9, 130.4, 133.8, 138.2, 140.3. IR (neat): 3395, 3070,

2925, 1640, 1510 cm-1. HRMS: 212.1201 (calcd. for C15H16O,

212.1201). MS: m/z 212 (M, 19), 194 (3), 179 (3), 170 (4),

158 (9), 157 (base), 155 (5), 130 (5), 129 (67), 128 (29),

127 (16).

1-(1-Tosyl-1H-indol-3-yl)pent-4-en-1-ol (Table 2, En-

try 12)
1H-NMR: � 1.95-2.02 (3H, m), 2.12-2.18 (2H, m),

2.33 (3H, s), 4.93-5.07 (3H, m), 5.84 (1H, m), 7.19-7.35

(4H, m), 7.50 (1H, s), 7.64 (1H, d, J = 7.8 Hz), 7.74-7.77

(2H, m), 7.99 (1H, d, J = 8.3 Hz). 13C-NMR: � 21.5, 30.0,

36.0, 67.5, 113.8, 115.2, 120.4, 122.7, 123.1, 124.8, 125.7,

126.8, 128.8, 129.8, 135.2, 135.6, 137.9, 144.9. IR (neat):

3394, 3006, 2989, 2386, 2349, 1640, 1597, 1447 cm-1.

HRMS: 355.1262 (calcd. for C20H21NO3S, 355.1242). MS:

m/z 355 (M, 23), 301 (24), 300 (base), 155 (30), 145 (7),

117 (10), 108 (21), 91 (48), 80 (81), 55 (9).
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