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ABSTRACT: This Communication describes studies of
Ph−RF (RF = CF3 or CF2CF3) coupling at Pd complexes
of general structure (PtBu3)Pd

II(Ph)(RF). The CF3
analogue participates in fast Ph-CF3 coupling (<5 min at
80 °C). However, the formation of side products limits the
yield of this transformation as well as its translation to
catalysis. DFT and experimental studies suggest that the
side products derive from facile α-fluoride elimination
at the 3-coordinate PdII complex. Furthermore, they show
that this undesired pathway can be circumvented by
changing from a CF3 to a CF2CF3 ligand. Ultimately, the
insights gained from stoichiometric studies enabled the
identification of Pd(PtBu3)2 as a catalyst for the Pd-catalyzed
cross-coupling of aryl bromides with TMSCF2CF3 to afford
pentafluoroethylated arenes.

Fluoroalkyl (RF) groups, such as CF3 and CF2CF3, appear
in a variety of pharmaceuticals1 and agrochemicals.2 These

substituents are commonly appended to aromatic rings to
enhance the lipophilicity and oxidative stability of bioactive
molecules. A variety of synthetic methods have been developed
to form aryl−RF bonds.3 Among these, Pd0/II-catalysis is the
least developed, despite the widespread utility of other Pd0/II-
catalyzed C−C coupling processes.4 This has largely been
attributed to challenges associated with the product-release step
of the catalytic cycle, which involves aryl−RF coupling from
LnPd

II(Aryl)(RF) intermediates (Figure 1a).4a,5 To date, only

three ligands, Xantphos,5c dfmpe,5d and BrettPhos,4a have been
shown to enable high-yielding aryl−RF coupling from isolated
PdII complexes (Figure 1b).6 Furthermore, only BrettPhos and
related RuPhos have been successfully translated to Pd0/II-
catalyzed aryl-fluoroalkylation processes.4a

We sought to identify new ligands that promote aryl−RF
coupling at PdII centers. Additionally, we aimed to identify key
obstacles to the translation of stoichiometric aryl−RF coupling
reactions to catalysis. We noted that BrettPhos forms mono-
phosphine PdII complexes of general structure A (Figure 1c),
which are stabilized by a hemilabile PdII−O interaction.4a,7

Inspired by the work of Hartwig,8 we hypothesized that
PtBu3 would form related 3-coordinate monophosphine com-
plexes (1) that might be even more reactive toward aryl−RF
coupling.8−11 Herein, we describe DFT and experimental
studies of (PtBu3)Pd

II(Ph)(RF) (RF = CF3 or CF2CF3).
We show that both complexes undergo Ph−RF coupling
under mild conditions (within 15 min at 80 °C). However,
studies of the CF3 analogue reveal that an α-fluoride elimi-
nation pathway limits the selectivity and efficiency of both
stoichiometric and catalytic transformations. We demonstrate
that this pathway can be circumvented by moving from RF =
CF3 to RF = CF2CF3. Ultimately, these stoichiometric studies
enabled the development of the Pd(PtBu3)2-catalyzed penta-
fluoroethylation of aryl bromides.
We first studied complex 1-CF3 using DFT calculations

involving the dispersion functional B3LYP-D3.12 The lowest
energy ground-state structure is T-shaped, with the fluoroalkyl
ligand trans to PtBu3 (Figure 2). The isomer with the Ph ligand
trans to PtBu3 (1-I-CF3) is 5.8 kcal/mol higher in energy,
consistent with the stronger trans influence of Ph versus
CF3.

4a,5a−d The formation of PhCF3 from 1-CF3 can occur via
two distinct pathways, both of which have been proposed pre-
viously for related systems.7,13 The first involves direct Ph−CF3
coupling via the concerted transition state TS-1-CF3-RE,
with a calculated barrier of 27.0 kcal/mol.14 The second
involves initial α-fluoride elimination to form difluorocarbene
intermediate A.5b,15 Subsequent phenyl migration to form
difluorobenzyl complex B16 is followed by C−F coupling via
TS-B-CF3-RE to yield PhCF3. The highest energy transition
state in this latter sequence is for the phenyl migration step
(21.8 kcal/mol). Overall, these calculations predict that 1-CF3
could form PhCF3 via either pathway under relatively mild
conditions.

Received: May 19, 2017Figure 1. (a) Challenging aryl−RF coupling step; (b) ligands known to
promote aryl−RF coupling; (c) this study.
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To test this experimentally, 1-CF3 was synthesized via the
treatment of [P(o-tol)3]2Pd

II(CF3)(OC(O)CF3)
17 with PtBu3

followed by Ph2Zn (eq 1). The X-ray structure of 1-CF3 shows

a T-shaped complex with the CF3 ligand trans to PtBu3 (eq 1).
A Pd−H−C agostic interaction is predicted from placing the H
atoms in idealized positions (Pd−H = 2.18 Å).8c The P−Pd
bond distance (2.372 Å) is significantly longer than that in
(PtBu3)Pd

II(Ph)(Br) (2.285 Å),8c reflecting the greater trans
influence of CF3 versus Br. In solution, 1-CF3 shows a 19F
NMR resonance at −28 ppm (d) and a 31P NMR resonance at
55 ppm (q). No agostic interaction is detected by 1H NMR spec-
troscopy down to −70 °C in CD2Cl2.
Heating a benzene solution of 1-CF3 in the presence of

5 equiv of PtBu3 at 80 °C for 5 min resulted in the complete
consumption of the starting material and the formation of
PhCF3 in 41% yield (Scheme 1a).18−20 Notably, these condi-
tions are similarly mild to those required for aryl−CF3 coupling
from (BrettPhos)PdII(aryl)(CF3) (t1/2 = 22−24 min at 80 °C).4a
The high conversion of 1-CF3 but modest yield of PhCF3 in
our system suggests that there are competing decomposition
pathways. Indeed, 19F NMR spectroscopic analysis shows the
presence of two major side products: difluorodiphenylmethane
(2, 20% yield) and PdII difluorobenzyl complex 3 (8% yield).21,22

We hypothesize that 2 and 3 are formed from the α-fluoride
elimination/phenyl migration intermediate B. As shown in
Scheme 1b, transmetalation between B and LnPd(CF3) would
form side product 3. Analogous exchange with LnPd(Ph) would
yield C, and subsequent C−C coupling from C would release 2.
Notably, the Pd-fluoride intermediate B was not detected
by 19F NMR spectroscopy during this reaction. However, we
hypothesized that B could be trapped in situ with TMSCF3 to
generate 3.5c Indeed, allowing 1-CF3 to stand at 25 °C in the
presence of excess TMSCF3 afforded 3 in 19% isolated yield
(Scheme 1c). Overall, the formation of 2 and 3 provides strong
evidence that α-fluoride elimination pathways are accessible

from 1-CF3
23 and, further, that these could be problematic in

catalysis.24

Literature reports suggest that CF2CF3 ligands are less
susceptible to α-fluoride elimination relative to their CF3
counterparts.25 Indeed, DFT studies of 1-CF2CF3 predict a
34.7 kcal/mol barrier for α-fluoride elimination/phenyl migra-
tion (Figure 3).26 This is almost 14 kcal/mol higher than the

analogous transformation at 1-CF3. In contrast, the predicted
barrier for concerted Ph−CF2CF3 coupling from 1-CF2CF3 is
very similar to that from 1-CF3 (27.5 kcal/mol vs 27.0 kcal/mol,
respectively).27

On this basis, we hypothesized that reductive elimination
from 1-CF2CF3 would proceed selectively via this latter
pathway to afford PhCF2CF3 in increased yield and selectivity
relative to that of 1-CF3. Complex 1-CF2CF3 was prepared
in 74% yield via an analogous procedure to that for 1-CF3.

Figure 2. Reaction coordinate from DFT calculations of 1-CF3.
Energies ΔG (ΔH) in kcal/mol.

Scheme 1. (a) Thermolysis of 1-CF3; (b) Proposed pathway
to 2 and 3; (c) Independent synthesis of 3

Figure 3. Reaction coordinate from DFT calculations of 1-CF2CF3.
Energies ΔG (ΔH) in kcal/mol.
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Consistent with our hypothesis, heating 1-CF2CF3 for 5 min at
80 °C in C6D6 in the presence of 5 equiv of PtBu3 afforded
PhCF2CF3 in 92% yield (with 95% conversion of the starting
material). Heating for an additional 5 min resulted in 96% yield
of PhCF2CF3 with quantitative conversion (eq 2).

19 No products

derived from α-fluoride elimination were detected by NMR
spectroscopy or GC−MS.
To translate these results to catalysis, we first explored the

cross-coupling of 1-butyl-4-chlorobenzene with TESCF3 using
various PtBu3-ligated Pd catalysts (Table S4). The best result
was obtained with 10 mol % of Pd(PtBu3)2 at 120 °C for 20 h,
which afforded 4 in 22% yield (eq 3a).28 Consistent with the

stoichiometric studies, difluorodiarylmethane 5 was detected as
a side product of this reaction. This suggests that α-fluoride
elimination intermediate B may be formed and undergo
undesired side reactions under catalytic conditions.29,30

We next explored the catalytic coupling of 1-butyl-4-
chlorobenzene with TMSCF2CF3. Under otherwise identical
conditions, this transformation afforded 6 in 64% yield (eq 3b).
The increase in yield relative to trifluoromethylation is con-
sistent with the stoichiometric studies. We also note that this
is the first reported example of Pd0/II-catalyzed pentafluo-
roethylation of an aryl halide. Additional optimization revealed
that aryl bromides afford higher yields than aryl chlorides
and that catalysis proceeds at 80 °C. Under the optimized

conditions (10 mol % of Pd(PtBu3)2, 2 equiv of TMSCF2CF3,
2 equiv of KF in dioxane at 80 °C for 16 h), 6 was obtained in
73% isolated yield.31 A preliminary evaluation of substrate
scope showed that this transformation proceeds with electroni-
cally diverse aryl and heteroaryl bromides to afford 6-21 in
yields ranging from 53 to 80% (Figure 4).32

In summary, this Communication describes aryl−RF coupling
reactions at PdII complexes of general structure (PtBu3)-
PdII(Ph)(RF). With RF = CF3, the complex is susceptible to
α-fluoride elimination. DFT calculations suggest that this pathway
provides a kinetically viable route to PhCF3. However, experi-
mental studies show that competitive side reactions preclude
selective Ph-CF3 coupling. In contrast, an α-fluoride elimination
pathway is not accessible with the CF2CF3 derivative. As such,
this system can be leveraged to achieve the first example of
Pd0/II-catalyzed pentafluoroethylation of aryl bromides.
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