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ABSTRACT: This Communication describes studies of
Ph—R; (R; = CF; or CF,CF;) coupling at Pd complexes
of general structure (P'Buy)Pd"(Ph)(Rg). The CF,
analogue participates in fast Ph-CF; coupling (<S min at
80 °C). However, the formation of side products limits the
yield of this transformation as well as its translation to
catalysis. DFT and experimental studies suggest that the
side products derive from facile a-fluoride elimination
at the 3-coordinate Pd" complex. Furthermore, they show
that this undesired pathway can be circumvented by
changing from a CF; to a CF,CF; ligand. Ultimately, the
insights gained from stoichiometric studies enabled the
identification of Pd(P'Bus), as a catalyst for the Pd-catalyzed
cross-coupling of aryl bromides with TMSCEF,CF; to afford
pentafluoroethylated arenes.

luoroalkyl (Rg) groups, such as CF; and CF,CF;, appear

in a variety of pharmaceuticals' and agrochemicals.” These
substituents are commonly appended to aromatic rings to
enhance the lipophilicity and oxidative stability of bioactive
molecules. A variety of synthetic methods have been developed
to form aryl-R; bonds.” Among these, Pd”"-catalysis is the
least developed, despite the widespread utility of other Pd®"-
catalyzed C—C coupling processes.” This has largely been
attributed to challenges associated with the product-release step
of the catalytic cycle, which involves aryl-R; coupling from
L,Pd"(Aryl)(Rg) intermediates (Figure 1a).* To date, only
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Figure 1. (a) Challenging aryl—R; coupling step; (b) ligands known to
promote aryl—R; coupling; (c) this study.
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three ligands, Xantphos,SC dfmpe,Sd and BrettPhos,* have been
shown to enable high-yielding aryl—Rg coupling from isolated
Pd" complexes (Figure 1b).° Furthermore, only BrettPhos and
related RuPhos have been successfully translated to Pd®/'-
catalyzed aryl-fluoroalkylation processes.**

We sought to identify new ligands that promote aryl—Rg
coupling at Pd" centers. Additionally, we aimed to identify key
obstacles to the translation of stoichiometric aryl—R; coupling
reactions to catalysis. We noted that BrettPhos forms mono-
phosphine Pd" complexes of general structure A (Figure 1c),
which are stabilized by a hemilabile Pd"~O interaction.™’
Inspired by the work of Hartwig,8 we hypothesized that
P‘Bu; would form related 3-coordinate monophosphine com-
plexes (1) that might be even more reactive toward aryl—Rg
coupling.g_11 Herein, we describe DFT and experimental
studies of (P'Bu;)Pd"(Ph)(Rz) (R = CF; or CF,CF;).
We show that both complexes undergo Ph—R; coupling
under mild conditions (within 15 min at 80 °C). However,
studies of the CF; analogue reveal that an a-fluoride elimi-
nation pathway limits the selectivity and efficiency of both
stoichiometric and catalytic transformations. We demonstrate
that this pathway can be circumvented by moving from R; =
CF; to Ry = CF,CF;. Ultimately, these stoichiometric studies
enabled the development of the Pd(P'Bu,),-catalyzed penta-
fluoroethylation of aryl bromides.

We first studied complex 1-CF; using DFT calculations
involving the dispersion functional B3LYP-D3."” The lowest
energy ground-state structure is T-shaped, with the fluoroalkyl
ligand trans to P‘Bus (Figure 2). The isomer with the Ph ligand
trans to P'Bu; (1-I-CF;) is 5.8 kcal/mol higher in energy,
consistent with the stronger trans influence of Ph versus
CF;."**~4 The formation of PhCF; from 1-CF; can occur via
two distinct pathways, both of which have been proposed pre-
viously for related systems.”'” The first involves direct Ph—CF,
coupling via the concerted transition state TS-1-CF;-RE,
with a calculated barrier of 27.0 kcal/mol.'* The second
involves initial a-fluoride elimination to form difluorocarbene
intermediate A.”"° Subsequent phenyl migration to form
difluorobenzyl complex B'® is followed by C—F coupling via
TS-B-CF;-RE to yield PhCF;. The highest energy transition
state in this latter sequence is for the phenyl migration step
(21.8 kcal/mol). Overall, these calculations predict that 1-CF;
could form PhCF; via either pathway under relatively mild
conditions.
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Figure 2. Reaction coordinate from DFT calculations of 1-CFs;.
Energies AG (AH) in kcal/mol.

To test this experimentally, 1-CF; was synthesized via the
treatment of [P(o-tol),],Pd"(CF,;)(OC(O)CF;)"” with P'Bu,
followed by Ph,Zn (eq 1). The X-ray structure of 1-CF; shows
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P(otol); -35°Ctort Ph 0
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a T-shaped complex with the CF; ligand trans to P‘Bu; (eq 1).
A Pd—H-—C agostic interaction is predicted from glacing the H
atoms in idealized positions (Pd—H = 2.18 A).*® The P—Pd
bond distance (2.372 A) is significantly longer than that in
(P'Bu;)Pd"(Ph)(Br) (2.285 A),* reflecting the greater trans
influence of CF; versus Br. In solution, 1-CF; shows a °F
NMR resonance at —28 ppm (d) and a *P NMR resonance at
55 ppm (q). No agostic interaction is detected by "H NMR spec-
troscopy down to —70 °C in CD,Cl,.

Heating a benzene solution of 1-CF; in the presence of
S equiv of P‘Buy at 80 °C for S min resulted in the complete
consumption of the starting material and the formation of
PhCF; in 41% yield (Scheme 1a)."*"*° Notably, these condi-
tions are similarly mild to those required for aryl—CF; coupling
from (BrettPhos)Pd" (aryl) (CF,) (t,/, = 22—24 min at 80 °C)."
The high conversion of 1-CF; but modest yield of PhCF; in
our system suggests that there are competing decomposition
pathways. Indeed, '”F NMR spectroscopic analysis shows the
presence of two major side products: difluorodiphenylmethane
(2, 20% yield) and Pd" difluorobenzyl complex 3 (8% yield).”"**

We hypothesize that 2 and 3 are formed from the a-fluoride
elimination/phenyl migration intermediate B. As shown in
Scheme 1b, transmetalation between B and L,Pd(CF;) would
form side product 3. Analogous exchange with L,Pd(Ph) would
yield C, and subsequent C—C coupling from C would release 2.
Notably, the Pd-fluoride intermediate B was not detected
by 'F NMR spectroscopy during this reaction. However, we
hypothesized that B could be trapped in situ with TMSCEF; to
generate 3.>° Indeed, allowing 1-CF; to stand at 25 °C in the
presence of excess TMSCEF; afforded 3 in 19% isolated yield
(Scheme 1c). Overall, the formation of 2 and 3 provides strong
evidence that a-fluoride elimination pathways are accessible

Scheme 1. (a) Thermolysis of 1-CF;; (b) Proposed pathway
to 2 and 3; (c) Independent synthesis of 3
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from 1-CF;** and, further, that these could be problematic in
catalysis.”*

Literature reports suggest that CF,CF; ligands are less
susceptible to a-fluoride elimination relative to their CF;
counterparts.”” Indeed, DFT studies of 1-CF,CF, predict a
34.7 kcal/mol barrier for a-fluoride elimination/phenyl migra-
tion (Figure 3).% This is almost 14 kcal/mol higher than the
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Figure 3. Reaction coordinate from DFT calculations of 1-CF,CF;.
Energies AG (AH) in kcal/mol.

analogous transformation at 1-CF;. In contrast, the predicted
barrier for concerted Ph—CF,CF; coupling from 1-CF,CF; is
very similar to that from 1-CF; (27.5 kcal/mol vs 27.0 kcal/mol,
respectively).”’

On this basis, we hypothesized that reductive elimination
from 1-CF,CF; would proceed selectively via this latter
pathway to afford PhCF,CF; in increased yield and selectivity
relative to that of 1-CF;. Complex 1-CF,CF; was prepared
in 74% vyield via an analogous procedure to that for 1-CF;.
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Consistent with our hypothesis, heating 1-CF,CF; for 5 min at
80 °C in C¢Dg in the presence of S equiv of P‘Bu; afforded
PhCF,CF, in 92% yield (with 95% conversion of the starting
material). Heating for an additional S min resulted in 96% yield
of PhCF,CF; with quantitative conversion (eq 2)."” No products

5 equiv PBu,
‘BugP—Pd—CF,CF; Ph—CF,CF, (2
| CeDs )
Ph 80 °C, time 5min: 92%
10 min: 96%

(1-CF,CF3)

derived from o-fluoride elimination were detected by NMR
spectroscopy or GC—MS.

To translate these results to catalysis, we first explored the
cross-coupling of 1-butyl-4-chlorobenzene with TESCF; using
various P‘Buy-ligated Pd catalysts (Table S4). The best result
was obtained with 10 mol % of Pd(P'Bu,), at 120 °C for 20 h,
which afforded 4 in 22% yield (eq 3a).”® Consistent with the

a
Cl 10 mol % Pd(PBug),
/©/ + TESCF, __2equivkF O
"By (2 equiv) dloxane 120 °C
Ar—Cl
( ) 22% side producr
b detected G
Cl 10 mol % Pd(P'Bug), CF,CFs
+ TMSCFCF,  2equvkF
"Bu (2 equiv) dioxane, 130 °C "Bu (6)
16h 64%

stoichiometric studies, difluorodiarylmethane § was detected as
a side product of this reaction. This suggests that a-fluoride
elimination intermediate B may be formed and undergo
undesired side reactions under catalytic conditions.””*’

We next explored the catalytic coupling of 1-butyl-4-
chlorobenzene with TMSCF,CF;. Under otherwise identical
conditions, this transformation afforded 6 in 64% yield (eq 3b).
The increase in yield relative to trifluoromethylation is con-
sistent with the stoichiometric studies. We also note that this
is the first reported example of Pd”"-catalyzed pentafluo-
roethylation of an aryl halide. Additional optimization revealed
that aryl bromides afford higher yields than aryl chlorides
and that catalysis proceeds at 80 °C. Under the optimized
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Figure 4. Scope of Pd(P'Bu,),-catalyzed pentafluoroethylation of aryl
bromides. * '°F NMR yield. * 24 h.

conditions (10 mol % of Pd(P'Buy),, 2 equiv of TMSCF,CF;,
2 equiv of KF in dioxane at 80 °C for 16 h), 6 was obtained in
73% isolated yield>' A preliminary evaluation of substrate
scope showed that this transformation proceeds with electroni-
cally diverse aryl and heteroaryl bromides to afford 6-21 in
yields ranging from 53 to 80% (Figure 4).””

In summary, this Communication describes aryl—Rg coupling
reactions at Pd" complexes of general structure (P'Bus)-
Pd"(Ph)(Rg). With Rz = CF;, the complex is susceptible to
a-fluoride elimination. DFT calculations suggest that this pathway
provides a kinetically viable route to PhCF;. However, experi-
mental studies show that competitive side reactions preclude
selective Ph-CF; coupling. In contrast, an a-fluoride elimination
pathway is not accessible with the CF,CF; derivative. As such,
this system can be leveraged to achieve the first example of
Pd*"catalyzed pentafluoroethylation of aryl bromides.
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