

Stoichiometric and Catalytic Aryl–Perfluoroalkyl Coupling at Tri-*tert*-butylphosphine Palladium(II) Complexes

Devin M. Ferguson,[†] James R. Bour,[†] Allan J. Canty,[‡] Jeff W. Kampf,[†] and Melanie S. Sanford^{*,†}

[†]Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States [‡]School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia

Supporting Information

ABSTRACT: This Communication describes studies of Ph–R_F (R_F = CF₃ or CF₂CF₃) coupling at Pd complexes of general structure (P^tBu₃)Pd^{II}(Ph)(R_F). The CF₃ analogue participates in fast Ph-CF₃ coupling (<5 min at 80 °C). However, the formation of side products limits the yield of this transformation as well as its translation to catalysis. DFT and experimental studies suggest that the side products derive from facile α -fluoride elimination at the 3-coordinate Pd^{II} complex. Furthermore, they show that this undesired pathway can be circumvented by changing from a CF₃ to a CF₂CF₃ ligand. Ultimately, the insights gained from stoichiometric studies enabled the identification of Pd(P^tBu₃)₂ as a catalyst for the Pd-catalyzed cross-coupling of aryl bromides with TMSCF₂CF₃ to afford pentafluoroethylated arenes.

 ${\bf F}$ luoroalkyl (R_F) groups, such as CF_3 and CF_2CF_3 , appear in a variety of pharmaceuticals 1 and agrochemicals. 2 These substituents are commonly appended to aromatic rings to enhance the lipophilicity and oxidative stability of bioactive molecules. A variety of synthetic methods have been developed to form aryl– R_F bonds. 3 Among these, $Pd^{0/II}$ -catalysis is the least developed, despite the widespread utility of other $Pd^{0/II}$ catalyzed C–C coupling processes. 4 This has largely been attributed to challenges associated with the product-release step of the catalytic cycle, which involves aryl– R_F coupling from $L_nPd^{II}(Aryl)(R_F)$ intermediates (Figure 1a). 4a,5 To date, only

Figure 1. (a) Challenging aryl– R_F coupling step; (b) ligands known to promote aryl– R_F coupling; (c) this study.

three ligands, Xantphos, ^{5c} dfmpe, ^{5d} and BrettPhos, ^{4a} have been shown to enable high-yielding aryl– R_F coupling from isolated Pd^{II} complexes (Figure 1b).⁶ Furthermore, only BrettPhos and related RuPhos have been successfully translated to Pd^{0/II}- catalyzed aryl-fluoroalkylation processes.^{4a}

We sought to identify new ligands that promote $aryl-R_F$ coupling at Pd^{II} centers. Additionally, we aimed to identify key obstacles to the translation of stoichiometric aryl-R_E coupling reactions to catalysis. We noted that BrettPhos forms monophosphine Pd^{II} complexes of general structure A (Figure 1c), which are stabilized by a hemilabile Pd^{II}-O interaction.^{4a}, Inspired by the work of Hartwig,8 we hypothesized that P^tBu₃ would form related 3-coordinate monophosphine complexes (1) that might be even more reactive toward $aryl-R_{\rm F}$ coupling.⁸⁻¹¹ Herein, we describe DFT and experimental studies of $(P^tBu_3)Pd^{II}(Ph)(R_F)$ $(R_F = CF_3 \text{ or } CF_2CF_3)$. We show that both complexes undergo $Ph-R_{E}$ coupling under mild conditions (within 15 min at 80 °C). However, studies of the CF₃ analogue reveal that an α -fluoride elimination pathway limits the selectivity and efficiency of both stoichiometric and catalytic transformations. We demonstrate that this pathway can be circumvented by moving from $R_{\rm F}$ = CF_3 to $R_F = CF_2CF_3$. Ultimately, these stoichiometric studies enabled the development of the $Pd(P^tBu_3)_2$ -catalyzed pentafluoroethylation of aryl bromides.

We first studied complex 1-CF₃ using DFT calculations involving the dispersion functional B3LYP-D3.12 The lowest energy ground-state structure is T-shaped, with the fluoroalkyl ligand trans to P^tBu_3 (Figure 2). The isomer with the Ph ligand trans to P^tBu₃ (1-I-CF₃) is 5.8 kcal/mol higher in energy, consistent with the stronger trans influence of Ph versus CF₃.^{4a,5a-d} The formation of PhCF₃ from 1-CF₃ can occur via two distinct pathways, both of which have been proposed previously for related systems.^{7,13} The first involves direct Ph-CF₃ coupling via the concerted transition state TS-1-CF₃-RE, with a calculated barrier of 27.0 kcal/mol.¹⁴ The second involves initial α -fluoride elimination to form difluorocarbene intermediate A.^{5b,15} Subsequent phenyl migration to form difluorobenzyl complex B^{16} is followed by C–F coupling via TS-B-CF₃-RE to yield PhCF₃. The highest energy transition state in this latter sequence is for the phenyl migration step (21.8 kcal/mol). Overall, these calculations predict that 1-CF₃ could form PhCF₃ via either pathway under relatively mild conditions.

Received: May 19, 2017

Figure 2. Reaction coordinate from DFT calculations of 1-CF₃. Energies ΔG (ΔH) in kcal/mol.

To test this experimentally, 1-CF₃ was synthesized via the treatment of $[P(o-tol)_3]_2Pd^{II}(CF_3)(OC(O)CF_3)^{17}$ with P^tBu_3 followed by Ph₂Zn (eq 1). The X-ray structure of 1-CF₃ shows

a T-shaped complex with the CF₃ ligand trans to P^tBu₃ (eq 1). A Pd-H-C agostic interaction is predicted from placing the H atoms in idealized positions (Pd-H = 2.18 Å).^{Sc} The P-Pd bond distance (2.372 Å) is significantly longer than that in (P^tBu₃)Pd^{II}(Ph)(Br) (2.285 Å),^{Sc} reflecting the greater trans influence of CF₃ versus Br. In solution, 1-CF₃ shows a ¹⁹F NMR resonance at -28 ppm (d) and a ³¹P NMR resonance at 55 ppm (q). No agostic interaction is detected by ¹H NMR spectroscopy down to -70 °C in CD₂Cl₂.

Heating a benzene solution of $1\text{-}CF_3$ in the presence of 5 equiv of P^tBu₃ at 80 °C for 5 min resulted in the complete consumption of the starting material and the formation of PhCF₃ in 41% yield (Scheme 1a).^{18–20} Notably, these conditions are similarly mild to those required for aryl–CF₃ coupling from (BrettPhos)Pd^{II}(aryl)(CF₃) ($t_{1/2} = 22-24$ min at 80 °C).^{4a} The high conversion of 1-CF₃ but modest yield of PhCF₃ in our system suggests that there are competing decomposition pathways. Indeed, ¹⁹F NMR spectroscopic analysis shows the presence of two major side products: difluorodiphenylmethane (2, 20% yield) and Pd^{II} difluorobenzyl complex 3 (8% yield).^{21,22}

We hypothesize that 2 and 3 are formed from the α -fluoride elimination/phenyl migration intermediate **B**. As shown in Scheme 1b, transmetalation between **B** and L_nPd(CF₃) would form side product 3. Analogous exchange with L_nPd(Ph) would yield **C**, and subsequent C–C coupling from **C** would release 2. Notably, the Pd-fluoride intermediate **B** was not detected by ¹⁹F NMR spectroscopy during this reaction. However, we hypothesized that **B** could be trapped *in situ* with TMSCF₃ to generate 3.^{5c} Indeed, allowing 1-CF₃ to stand at 25 °C in the presence of excess TMSCF₃ afforded 3 in 19% isolated yield (Scheme 1c). Overall, the formation of **2** and **3** provides strong evidence that α -fluoride elimination pathways are accessible

Scheme 1. (a) Thermolysis of 1-CF₃; (b) Proposed pathway to 2 and 3; (c) Independent synthesis of 3

from 1-CF $_3^{23}$ and, further, that these could be problematic in catalysis.²⁴

Literature reports suggest that CF_2CF_3 ligands are less susceptible to α -fluoride elimination relative to their CF_3 counterparts.²⁵ Indeed, DFT studies of **1-CF_2CF_3** predict a 34.7 kcal/mol barrier for α -fluoride elimination/phenyl migration (Figure 3).²⁶ This is almost 14 kcal/mol higher than the

Figure 3. Reaction coordinate from DFT calculations of $1-CF_2CF_3$. Energies ΔG (ΔH) in kcal/mol.

analogous transformation at $1-CF_3$. In contrast, the predicted barrier for concerted Ph $-CF_2CF_3$ coupling from $1-CF_2CF_3$ is very similar to that from $1-CF_3$ (27.5 kcal/mol vs 27.0 kcal/mol, respectively).²⁷

On this basis, we hypothesized that reductive elimination from $1-CF_2CF_3$ would proceed selectively via this latter pathway to afford PhCF₂CF₃ in increased yield and selectivity relative to that of $1-CF_3$. Complex $1-CF_2CF_3$ was prepared in 74% yield via an analogous procedure to that for $1-CF_3$. Consistent with our hypothesis, heating $1-CF_2CF_3$ for 5 min at 80 °C in C₆D₆ in the presence of 5 equiv of P^tBu₃ afforded PhCF₂CF₃ in 92% yield (with 95% conversion of the starting material). Heating for an additional 5 min resulted in 96% yield of PhCF₂CF₃ with quantitative conversion (eq 2).¹⁹ No products

derived from α -fluoride elimination were detected by NMR spectroscopy or GC–MS.

To translate these results to catalysis, we first explored the cross-coupling of 1-butyl-4-chlorobenzene with TESCF₃ using various P^tBu_3 -ligated Pd catalysts (Table S4). The best result was obtained with 10 mol % of Pd(P^tBu_3)₂ at 120 °C for 20 h, which afforded 4 in 22% yield (eq 3a).²⁸ Consistent with the

stoichiometric studies, difluorodiarylmethane 5 was detected as a side product of this reaction. This suggests that α -fluoride elimination intermediate B may be formed and undergo undesired side reactions under catalytic conditions.^{29,30}

We next explored the catalytic coupling of 1-butyl-4chlorobenzene with $TMSCF_2CF_3$. Under otherwise identical conditions, this transformation afforded **6** in 64% yield (eq 3b). The increase in yield relative to trifluoromethylation is consistent with the stoichiometric studies. We also note that this is the first reported example of $Pd^{0/II}$ -catalyzed pentafluoroethylation of an aryl halide. Additional optimization revealed that aryl bromides afford higher yields than aryl chlorides and that catalysis proceeds at 80 °C. Under the optimized

Figure 4. Scope of $Pd(P^tBu_3)_2$ -catalyzed pentafluoroethylation of aryl bromides. ^{*a* 19}F NMR yield. ^{*b*} 24 h.

conditions (10 mol % of Pd(P^tBu₃)₂, 2 equiv of TMSCF₂CF₃, 2 equiv of KF in dioxane at 80 °C for 16 h), **6** was obtained in 73% isolated yield.³¹ A preliminary evaluation of substrate scope showed that this transformation proceeds with electronically diverse aryl and heteroaryl bromides to afford **6-21** in yields ranging from 53 to 80% (Figure 4).³²

In summary, this Communication describes aryl– R_F coupling reactions at Pd^{II} complexes of general structure (P'Bu₃)-Pd^{II}(Ph)(R_F). With $R_F = CF_3$, the complex is susceptible to α -fluoride elimination. DFT calculations suggest that this pathway provides a kinetically viable route to PhCF₃. However, experimental studies show that competitive side reactions preclude selective Ph-CF₃ coupling. In contrast, an α -fluoride elimination pathway is not accessible with the CF₂CF₃ derivative. As such, this system can be leveraged to achieve the first example of Pd^{0/II}-catalyzed pentafluoroethylation of aryl bromides.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b05216.

Experimental details, characterization data for new compounds, and DFT calculations(PDF) Data for C1-CF₃(CIF)

AUTHOR INFORMATION

Corresponding Author

*mssanfor@umich.edu

ORCID 0

Allan J. Canty: 0000-0003-4091-6040

Melanie S. Sanford: 0000-0001-9342-9436

Funding

This work was supported by the NSF (CHE 1361542, CHE 0840456 for X-ray instrumentation, and a graduate fellowship to J.R.B.) and the Australian Research Council.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) (a) Andrzejewska, M.; Yépez-Mulia, L.; Cedillo-Rivera, R.; Tapia, A.; Vilpo, L.; Vilpo, J.; Kazimierczuk, Z. *Eur. J. Med. Chem.* **2002**, *37*, 973. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* **2008**, *37*, 320.

(2) (a) Jeschke, P. ChemBioChem 2004, 5, 570. (b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10. (c) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.

(3) (a) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (b) Chen, P.; Liu, G. Synthesis 2013, 45, 2919. (c) Alonso, C.; de Marigorta, E. M.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847. (4) (a) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679. (b) Samant, B. S.; Kabalka, G. W. Chem. Commun. 2011, 47, 7236.

(5) (a) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.
(b) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 4632.
(c) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644.
(d) Nielsen, M. C.; Bonney, K. J.; Schoenebeck, F. Angew. Chem., Int. Ed. 2014, 53, 5903.

(6) Aryl– R_F coupling from (RuPhos)Pd^{II}(Aryl)(R_F) has also been reported, albeit in moderate yield. See: Maleckis, A.; Sanford, M. S. Organometallics **2014**, 33, 2653.

(7) Zhang, S.-L.; Huang, L.; Sun, L.-J. Dalton Trans. 2015, 44, 4613.
(8) (a) Stambuli, J. P.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9346. (b) Roy, A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003,

Journal of the American Chemical Society

125, 13944. (c) Stambuli, J. P.; Incarvito, C. D.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184. (d) Yamashita, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5344.

(9) For theoretical investigations of reductive elimination from Pd^{II}, see: (a) Tatsumi, K.; Hoffmann, R.; Yamamoto, A.; Stille, J. K. Bull. Chem. Soc. Jpn. **1981**, 54, 1857. (b) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Eur. J. Inorg. Chem. **2007**, 2007, 5390. (c) Ariafard, A.; Yates, B. F. J. Am. Chem. Soc. **2009**, 131, 13981.

(10) Moncho, S.; Ujaque, G.; Lledós, A.; Espinet, P. Chem. - Eur. J. 2008, 14, 8986.

(11) For aryl– CF_3 coupling from 3-coordinate Au^{III} , see: Winston, M. S.; Wolf, W. J.; Toste, F. D. J. Am. Chem. Soc. **2014**, 136, 7777.

(12) B3LYP-D3 has been used for related systems. See: Lyngvi, E.; Sanhueza, I. A.; Schoenebeck, F. Organometallics **2015**, *34*, 805.

(13) Bakhmutov, V. I.; Bozoglian, F.; Gómez, K.; González, G.; Grushin, V. V.; Macgregor, S. A.; Martin, E.; Miloserdov, F. M.; Novikov, M. A.; Panetier, J. A.; Romashov, L. V. Organometallics **2012**, *31*, 1315.

(14) Reductive elimination from the other isomer of this complex (1- $I-CF_3$) occurs with a similar overall energy (26.6 kcal/mol).

(15) For examples of α -fluoride elimination, see: (a) Brothers, P. J.; Roper, W. R. Chem. Rev. **1988**, 88, 1293. (b) Harrison, D. J.; Gorelsky, S. I.; Lee, G. M.; Korobkov, I.; Baker, R. T. Organometallics **2013**, 32, 12. (c) Pell, C. J.; Zhu, Y.; Huacuja, R.; Herbert, D. E.; Hughes, R. P.; Ozerov, O. V. Chem. Sci. **2017**, 8, 3178.

(16) Similar insertion reactions at Pt/Ir: (a) Appleton, T. G.; Hall, J. R.; Mathieson, M. T.; Neale, D. W. J. Organomet. Chem. **1993**, 453, 307. (b) Hughes, R. P. J. Fluorine Chem. **2010**, 131, 1059.

(17) Maleckis, A.; Sanford, M. S. Organometallics 2014, 33, 3831.

(18) The addition of P^tBu_3 improved the reaction yield (Table S1). A previous report on the reductive elimination of triarylamines from Pd^{II} P^tBu_3 complexes also used 5 equiv of P^tBu_3 (ref 8d).

(19) The major Pd^0 product of this reaction is $Pd(P'Bu_3)_2$ (as determined by ³¹P NMR spectroscopy). No Pd black is observed.

(20) Attempts to increase the yield of $PhCF_3$ by variation of the temperature, solvent, and/or concentration were unsuccessful.

(21) Another possible competing side reaction would be exchange between the substituents on phosphorus and the phenyl or CF_3 ligands of Pd. However, GC–MS analysis of the reaction mixtures showed no products consistent with this reaction.

(22) The reported products account for 66% of the fluorine mass balance. The crude reaction mixtures were analyzed by 19 F NMR spectroscopy and GC–MS; however, the rest of the fluorine could not be accounted for (see p. S12 for details).

(23) Efforts to probe the operating mechanism of $PhCF_3$ formation from 1-CF₃ were inconclusive. See p. S17 for details.

(24) This side reaction may be limited with BrettPhos based on its hemilabile nature.

(25) Leclerc, M. C.; Bayne, J. M.; Lee, G. M.; Gorelsky, S. I.; Vasiliu, M.; Korobkov, I.; Harrison, D. J.; Dixon, D. A.; Baker, R. T. *J. Am. Chem. Soc.* **2015**, *137*, 16064.

(26) Notably in this system the α -fluoride elimination/phenyl migration is concerted, and no fluorocarbene intermediate could be located.

(27) Rotation of the CF_2CF_3 ligand was found to occur prior to reductive elimination via TS-1-CF₂CF₃-RE.

(28) No TESCF₃ remains after 20 h. However, after 11 h the yield of $ArCF_3$ is nearly identical (22%), whereas 52% of TESCF₃ remains. This suggests that the reaction yield is not limited by the decomposition of TESCF₃.

(29) Difluorobenzyl complex 3 is catalytically inactive for the Pdcatalyzed aryl trifluoromethylation of Ar-Cl. As such, the formation of this side product appears to be a dead-end for catalysis. See p. S22 for details.

(30) For a discussion of other potential issues that might limit catalytic turnover, see p. S28.

(31) Translating these conditions to the trifluoromethylation of 1butyl-4-bromobenzene with TMSCF₃ afforded 3% of the trifluoromethylated arene as determined by ¹⁹F NMR. (32) For a comparison with literature methods for arene pentafluoroethylation, see p. S40.