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A facile two-step sequence (9?10?1) of regioselective assembly of 3,4-dihydroisoquinoline derivatives
1 is reported. The halogen derivatives provide opportunity for Suzuki, Buchwald, and related coupling
reactions useful for expanding the scaffold and lead optimization in drug discovery.
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Alkaloids are an important class of natural products that are
widely distributed in nature and produced by a large variety of
organisms. The tetrahydroisoquinoline core is a structural center-
piece found in a number of biologically active synthetic and natural
products with a wide spectrum of biological activities and for
many years was used in folk medicines (Fig. 1).1–7

The importance of these natural products in inspiring drug dis-
covery programs is proven and, therefore, their continued synthe-
sis is of significant interest. The Bischler–Napieralski reaction is a
commonly used strategy to achieve the synthesis of alkaloids and
has been well documented.8–12 For example in Scheme 1, the key
intermediate 3,4-dihydroisoquinoline 1, generated from 2 by the
Bischler–Napieralski reaction, was reported to undergo dehydra-
tion to isoquinoline derivatives 3,9,13 and reduction to tetrahydro-
isoquinoline analogs 4,10,14 and condensation of 2 with alkyl vinyl
ketone (MVK) to form b-keto-tertiary amine intermediates 515

from which more complex alkaloids could be derived. Thus, the
synthesis of the key intermediate 3,4-dihydroisoquinoline 1 is a
cornerstone for the synthesis of many of these alkaloids.

In our ongoing drug discovery program, we needed to synthe-
size a series of the target molecules based on the isoquinolone scaf-
fold with wide range of functional groups R1 and R2 (Scheme 1).
The most direct route would be via the intermediates 1 and 5 using
the Bischler–Napieralski reaction as a key step.

The Bischler–Napieralski reaction16 is an intramolecular elec-
trophilic aromatic substitution reaction that allows for the
cyclization of b-arylethyl amides or b-arylethyl carbamates. Gener-
ally speaking, the reaction favors the b-arylethyl amides with
ll rights reserved.
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electron-rich functional groups, such as alkoxy (2, R1, R2 = alkoxy),
at the aromatic ring C6 and C7 positions. We were surprised to find
that Bischler–Napieralski reactions bearing groups such as halo-
gens in the aromatic ring at the C6 and C7 positions were, to the
best of our knowledge, poorly precedented in the literature17,18 de-
spite their importance and potential utilities in construction of
synthetic building blocks. We needed to explore structural–activity
relationships (SAR) and to replace the metabolically labile 6-meth-
oxy group19 with metabolically stable functional groups. More
importantly, we were interested in preparing the 6-bromo deriva-
tives (1, R1 = Br) as scaffolds to synthesize more complex com-
pounds via Suzuki and Buchwald coupling or related reactions.
Herein, we describe a facile two-step sequence of regioselective
assembly of 3,4-dihydroisoquinoline derivatives 1 bearing groups
positioned for further elaboration of this scaffold.

We commenced our initial exploration of Bischler–Napieralski
reaction of the N-formyl compound 2 to the 3,4-dihydroisoquino-
line 1 (R1 = F, R2 = OCH3) (Scheme 1) under the standard literature
reaction conditions (P2O5 or POCl3, toluene).20,21 Only black tar
was obtained in many trials under a range of temperatures (80–
120 �C). There was no desired product 1 (R1 = F, R2 = OCH3) detected
(LC/MS). When CH3CN was used as the solvent and POCl3 as the
catalyst at lower temperature (80 �C, 25 h), a small amount of the
desired product was isolated (1, R1 = F, R2 = OCH3: <5% yield; 1,
R1 = CH3, R2 = OCH3: 20% yield) with the dimers, trimers, and tetra-
mers (by LC/MS) as the major side products. We hypothesized that
the polymerization could be avoided by masking the free-hydrogen
on nitrogen of the b-arylethyl amine intermediate with a proper
protecting group and then condense this material with formalde-
hyde to achieve cyclization. The protecting group could be removed
and the imine functionality could be subsequently introduced to
realize the desired 3,4-dihydroisoquinoline intermediate 1
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Figure 1. Natural products and bioactive drug candidates containing tetrahydroisoquinoline core structures.
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(Scheme 2). In order to test this hypothesis, the 6-bromo-7-
methyoxyphenethylamine was protected as N-formyl, was then
condensed with paraformaldehyde under Pictet–Spengler condi-
tions.21 The desired products were observed in good yield (97% col-
lectively). Unfortunately, the formation of regioisomers 6 and 7
(2.5–1 by NMR) arose as a new issue (Scheme 2). To demonstrate
the usefulness of this strategy for ultimate synthesis of intermedi-
ate 1, the desired regioisomer 6 was isolated, and was then
hydrolyzed (NaOH, EtOH, 80 �C, 10 h) to obtain the tetrahydroiso-
quinoline 8 in quantitative yield. Subsequently, 8 was transformed
into imine 1 under known conditions.22

With these preliminary results in hand, we initiated optimiza-
tion of the reaction conditions to improve the regioselectivity.
We thought a bulkier protecting group might be able to direct
the regiochemistry toward the desired regioisomer 6. Tosyl was
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Scheme 1. The Bischler–Napieralski reactio
chosen as a N-protecting group and the reaction of 9?10 was con-
ducted under our new conditions (paraformaldehyde, TFA, toluene,
60 �C). The reaction was very clean and provided 10 in 81% yield.
None of the regioisomer was detected by LC/MS (Scheme 3).

The next task was to remove the tosyl protecting group. Under
various conditions (KOH, EtOH, reflux overnight; KOBut, THF, reflux
overnight), mainly starting material 10 was recovered with only a
small amount of desired product 11 isolated along with a small
amount of 1 detected (LC/MS). Clearly, 1 (R1 = Br, R2 = OCH3) was
generated via an elimination mechanism. This observation led us
to explore a stronger base to promote elimination. LDA (�78 �C,
THF, 10 min) was tried initially. The elimination reaction was read-
ily achieved in 80—100% yield for variety of substrates (Table 1).

The cyclization reaction conditions were further refined by
using dimethoxymethane instead of paraformaldehyde and dilute
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Scheme 3. Two-step sequence for construction of Bischler–Napieralski product. Reagents and conditions: (a) Dimethoxymethane, toluene, H3PO4 (85%, w/w), 60 �C, 25 h,
91%. (b) KOH, EtOH, reflux overnight; (c) LDA (1.0 equiv), THF, �78 �C, 10 min 92%.
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Scheme 2. Exploration of the Bischler–Napieralski reaction conditions. Reagents and conditions: (a) Paraformaldehyde, TFA, toluene, 60 �C, 97%; (b) NaOH, EtOH, 80 �C, 10 h,
100%; (c) NBS, DCM, rt, 15 min; NaOH, EtOH, rt, 4 h, 94%.

Table 1
Reaction scopea

NH

R1

R2 S
OO

R3
R1

R2 S
OO

N

R3 R1

R2
N

R3

19 10

Step 1 Step 2

Product R1 R2 R3 Step 1 reaction time (h) Step 1 yieldb (%) Step 2 yieldb (%)

1a Br MeO H 25 91 92
1b F MeO H 25 88 80
1c Cl MeO H 12 86 88
1d CH3 MeO H 12 100 95
1e Et MeO H 12 100 95
1f Br H H 15 90 70
1g H MeO H 15 91 88
1h OMe F H 12 87 85
1i OMe H Et 15 65 72

a General procedure: To a solution of sulfonamide in toluene and dimethoxymethane (1:1, v/v) (1.6 ml/mmol of sulfonamide) was added 60% (w/w) sulfuric acid. The
reaction was stirred at 50–60 �C for the time specified. The product was isolated by separating the two layers and extracting the aqueous layer with ether.

b Isolated yield.
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phosphoric acid or sulfuric acid instead of TFA. The major advan-
tage for using dimethoxymethane was a liquid biphasic reaction
instead of a solid–liquid heterogeneous mixture. In addition, the
product could be obtained simply by separation of the two layers
and extraction. The typical reaction sequence23 is shown in Scheme
3 in which the tosyl protected 6-bromo-7-methyoxyphenethyl-
amine was heated (50–60 �C) with dimethoxymethane in toluene
(1:1, v/v) and catalyzed by dilute sulfuric acid (60%, w/w) or
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phosphoric acid (85%, w/w). The product obtained was treated
with 1.0 equiv of LDA in THF at �78 �C for 10–15 min to yield
the desired Bischler–Napieralski product 1a.

With this preliminary protocol in hand, we explored the scope
of the reaction starting from 9 with a variety of substituents in
the aromatic ring. The reaction is tolerant of a range of substituents
at different positions (Table 1).

In conclusion, we have developed a facile two-step sequence
(9?10?1) to achieve the synthesis of 3,4-dihydroisoquinoline
derivatives 1 in good yield bearing groups positioned for further
elaboration of the scaffold. The functional groups at C6, especially
6-halogen analogs, offer opportunities for Suzuki, Buchwald, and
related coupling reactions to open another dimension of diversity
in medicinal chemistry lead optimization for drug discovery.
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