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In recent years, curved p-conjugated molecules such as
fullerenes and carbon nanotubes have attracted much atten-
tion not only in chemistry but also in materials science.[1]

Their intra/intermolecular interactions within/between three-
dimensional (3D) curved p-electron networks play intrinsi-
cally vital roles in their unique properties and functionalities.
Among them, intramolecular magnetic interaction between
electronic spins on a curved p surface was extensively studied
for ionic species of C60 such as C60

2� and C60
3�.[2] Their

electronic structures are greatly influenced by not only the
dynamic spin polarization of electrons but also the negative
charges on the spherical p-conjugated system and the
countercation.

Thus, we have focused on neutral diradical systems, which
are known to be the most useful probes for studying
intramolecular magnetic interactions in organic molecules.[3]

While many neutral diradical derivatives relevant to planar p-
conjugated systems have so far been investigated, studies on
curved p-conjugated neutral diradicals are limited to a single
C60-based system in which [60]fullerene is linked to two

nitroxide radicals.[4] However, their intramolecular exchange
interaction J through the C60 skeleton was very weak (j Jk�1

B j
< 0.1 K)[4b] because of the small spin delocalization onto the
C60 p network from the nitroxide radicals with spin-localized
nature on the NO moieties. Therefore, in order to evaluate an
intramolecular exchange interaction in a curved p-conjugated
system in a quantitative manner, synthesis and isolation of a
stable neutral diradical derivative with extensively spin-
delocalized nature on its curved p-conjugated system have
been the focus of current attention in molecular magnetism
and open-shell chemistry.[2, 5]

Recently, we studied corannulene[6]-based stable neutral
monoradical systems,[7] such as a phenoxyl radical derivative
1[7d] with highly spin-delocalized nature on the intrinsically 3D
bowl-shaped and nonalternant p-conjugated network. These

studies inspired us to propose a 3D intramolecular exchange
interaction in this class of curved p radicals: in terms of
geometry, they are intermediate between a planar p radical
such as a phenalenyl system[8] and a tetrahedral s radical. We
have now, for the first time, synthesized and isolated a
corannulene-based neutral diradical, namely, 2, which has two
phenoxyl radical moieties, as air-stable crystals. Due to its
highly spin-delocalized nature, 2 shows strong intramolecular
exchange interaction (Jk�1

B =�405� 2 K) through the 3D
corannulene p-electron network. Bond-length analyses and
DFT calculations showed that 2 has contributions from
diradical canonical forms a–g and closed Kekul� structure d
(Scheme 1). Furthermore, in the crystalline state the presence
of three crystallographically independent diradical molecules
with different curvature enabled us to study the relationship
between the curvature of the corannulene p skeleton and the
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magnitude of the intramolecular exchange interaction or
diradical character.

A synthetic route for 2 is depicted in Scheme 2. The
diradical precursor, bis-phenol derivative 3, was obtained as
yellow blocks[9] by Suzuki coupling reaction of dibromo
derivative 4[10] with boronic acid 5, followed by deprotection
of the methoxymethyl (MOM) groups. Oxidation of 3 with an
excess of PbO2 and subsequent recrystallization gave single
crystals of 2 suitable for X-ray crystal structure analysis. In the
crystalline state, most of 2 survives in air at �30 8C for a few
weeks. Diradical 2 is also stable in degassed solution.

The crystal structure of 2 is illustrated in Figure 1. This is
the first X-ray structure analysis of neutral diradical deriva-
tives with a curved p-conjugated system. The unit cell
contains three crystallographically independent molecules
2A, 2B, and 2C (Figure 1c).[11] They stack in a convex–
concave fashion.[12] Judging from their bowl depths[13] and p-
orbital axis vector (POAV) angles[14, 15] of the corannulene
skeleton (2A : 0.84 �, 7.88 ; 2B : 0.80 �, 7.78 ; 2 C : 0.85 �, 8.18 ;
3 : 0.88 �, 8.38), the curvature decreases in the order 3> 2C>

2A> 2B. As shown in Figure 1b,[11] the O1�C1 and O2�C7
bond lengths of 2 (1.282 �) are
shorter than those of 3
(1.385 �) and are close to the
corresponding C�O bond
length of 1 (1.250 �)[7d] and
the C=O bond length of p-
terphenoquinone (1.231 �).[16]

This indicates that the O1�C1
and O2�C7 bonds of 2 have a
certain degree of C�O double-
bond character.[17] In addition,
we found that significant
changes of bond lengths arise
in the two six-membered rings
(C1–C6 and C7–C12) and the
C4�C13 and C10�C18 bonds.
On the other hand, the C23�
C28, C24�C29, and C28�C29
bond lengths in the corannulene
skeleton of 2 remain almost
unchanged from those of 3

(Figure 1b). Thus, 2 has much larger
contributions of the diradical structures
with quinoidal character such as b and
g[18] than closed Kekul� structure d
(Scheme 1). These significant diradical
contributions are strongly supported by
natural orbital occupation number
(NOON) analysis[19] (see below) and
comparison between the observed and
calculated bond lengths.[20] Further-
more, the dihedral angles between the
corannulene skeleton and the phenoxyl
or phenol moieties are significantly
decreased (by 11–198) in 2 from 3.[9,11]

These changes can be interpreted as a
result of the shortened C4�C13 and
C10�C18 bond lengths in 2 and their

increased double-bond character. These bond-length and
dihedral-angle analyses experimentally illustrate that two
electronic spins of 2 are delocalized onto the corannulene
skeleton with retention of diradical character in the crystal.

Scheme 1. Canonical resonance structures of 2.

Scheme 2. Synthesis of 2. a) [Pd(PPh3)4] , Na2CO3, toluene/EtOH/H2O,
100 8C; b) 2m HCl, AcOH, 40 8C, 73% in two steps; c) PbO2, CH2Cl2,
room temperature, 100%.

Figure 1. a) Molecular structure 2A and c) packing structure of 2 along the a axis. # denotes the
symmetry operation x + 1,y,z. The thermal ellipsoids are scaled to the 50% probability level. Hydrogen
atoms are omitted for clarity. b) Major changes of bond lengths in 2 relative to 3. Red bonds are shorter
and blue bonds are longer than the corresponding bonds in 3.
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To evaluate the intramolecular magnetic interaction
through the corannulene p-conjugated network, we carried
out temperature-dependent magnetic susceptibility measure-
ments on a polycrystalline sample of 2 in the range of 1.9–
298 K.[21] Because of the lack of effective intermolecular
magnetic contacts,[12] we concluded that the very strong
intramolecular antiferromagnetic interaction (Jk�1

B =�405�
2 K) occurs through the curved and nonalternant 3D p con-
jugation of corannulene in the crystalline state. Thus, diradical
2 has a singlet (S = 0) ground state and a thermally accessible
excited triplet (S = 1) state. The singlet–triplet energy gap
2Jk�1

B is estimated to be �810 K. In addition, we experimen-
tally determined the magnitude and relative sign of hyperfine
coupling constants (hfccs) of the triplet species by solution-
phase ESR and 1H ENDOR/TRIPLE spectroscopy (Fig-
ure 2a,b).[22] Glass-phase ESR measurements (Figure 2c)
gave the characteristic fine structure (DMs =� 1) and for-
bidden transition (DMs =� 2). The zero-field splitting param-
eters (D, E) and principal g values were determined by
spectral simulation.[22] Estimating the spin–spin distance
suggested considerable contributions of canonical resonance
structures b and g (Scheme 1) in the triplet state. In this
estimation, we carefully noted that a nonvanishing E value is
consistent with significant contributions of the structures b
and g. All these experimental results demonstrate that the

extensive spin delocalization onto the corannulene moiety
(Figure 3, see below) results in significant electronic-spin
communication via the curved and nonalternant p-surface of

corannulene.[23] Furthermore, in terms of the curved p-
conjugated structure, we believe that diradical 2 has its own
place as an intermediate case between thus-far reported
planar p-conjugated systems and completely 3D p-conjugated
species such as neutral C60 in the triplet state, noting that spin–
orbit contributions are relevant to the particular canonical
resonance structures (see Figure S12 in the Supporting
Information).[2d,f]

Calculated spin-density distributions obtained by DFT
methods[24] indicate an extensive spin-delocalized nature of 2
in both broken-symmetry (BS) singlet and triplet states
(Figure 3).[25] Especially in the BS singlet state (Figure 3a),
rings A, B, and C of corannulene have a large amount of spin
density, and rings D and E a relatively small amount. Thus, the
unbalanced spin-delocalized nature, that is, spin-rich
(rings A–C) and spin-poor regions (rings D and E) on the
curved p-conjugated system of corannulene, is generated in
the diradical system 2 as well as in the monoradical system
1.[7c,d] The origin of this unique nature is the topological effect
arising from the nonalternant p conjugation of the corannu-
lene system, which is illustrated by the canonical resonance
structures.[26] Furthermore, the differences in spin-density
distributions between the two spin states (see Figure S13 in
the Supporting Information) affect sensitively their curved
aromaticity, as suggested by the nucleus-independent chem-
ical shift (NICS)[27] method.[28]

Furthermore, we have found that the calculated intra-
molecular exchange interactions J[29] and singlet diradical
characters of the three crystallographically independent

Figure 2. a) 1H ENDOR (290 K) and b) TRIPLE (290 K, pump frequency
18.674 MHz) spectra of 2 in a degassed toluene solution
(1.3 � 10�3

m). The vertical arrows in (b) denote increase or decrease in
intensity when the outermost ENDOR line at 18.674 MHz is pumped.
The intensity of the pumped line decreased. c) Fine-structure ESR
spectra of 2 (DMs =�1: microwave frequency 9.40792 GHz,
DMs =�2 (inset): microwave frequency 9.40799 GHz) in a degassed
frozen toluene glass (1.3 � 10�3

m) at 158 K. The black and red lines
indicate observed and simulated spectra, respectively.

Figure 3. Calculated spin-density distributions of a) BS singlet state
and b) triplet state for 2A at the UB3LYP/6-31G(d,p) level. Red:
positive, blue: negative spin densities.
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diradical molecules 2A–2C with different curvature provide
very intriguing findings for this class of curved diradical
systems. Diradicals 2 A–2C all show large negative J values
(2A : �425.0 K, 2 B : �525.4 K, 2C : �339.5 K), which means
the occurrence of strong antiferromagnetic intramolecular
exchange interaction. Their average value (Jk�1

B =�430.0 K)
reproduces well the experimentally obtained one (Jk�1

B =

�405� 2 K). In addition, we are interested in the consider-
able differences between the calculated J values of 2A–2 C.
Detailed studies on their structural differences related to such
differences in J value strongly suggest that the magnitude of
the J value becomes larger when the curvature of the
corannulene p-conjugated system decreases.[30] It is notable
that such small differences in curvature of 2A–2C (0.05 � in
bowl depth) give rise to very large differences in the J values
(186 K).[31] This is due to the enhancement of the p conjuga-
tion between the corannulene skeleton and the radical
moiety. An NOON analysis[19] also indicates that 2A–2C in
the singlet ground state have much larger contributions of
diradical structures [ca. 83% (2 A : 83.7 %, 2B : 80.1%, 2C :
84.6%)] than of the closed Kekul� structure (ca. 17%; see
also Table S4 in the Supporting Information). This pro-
nounced diradical character is probably attributable to
aromatic stabilization of the corannulene p system, which
prevents 2 from forming Kekul� structure d with fewer 6p

benzene-structure contributions than b and g (Scheme 1).[26]

Importantly, the difference in curvature also correlates with
the magnitude of the diradical character of 2 as well as the
intramolecular exchange interaction J. These results suggest
that the singlet diradical character of 2 decreases with
increasing magnitude of the antiferromagnetic intramolecular
exchange interaction J. In this context, a theoretical analysis
of the zero-field splitting tensor for 2 in the thermally
accessible triplet state gives a clue to understanding the three-
dimensional electronic-spin structure in a straightforward
manner (see the Supporting Information).

In summary, corannulene-based stable neutral diradical 2
bearing two phenoxyl radical moieties has been synthesized
and isolated as crystals stable in air. Thanks to the high
stability and the sizable spin delocalization onto the coran-
nulene skeleton from the radical moieties, we have exper-
imentally revealed, for the first time, the occurrence of 3D
intramolecular exchange interaction via the curved and
nonalternant p-conjugated system of corannulene. Further-
more, we have successfully illustrated that the magnitude of
the intramolecular exchange interaction is enhanced by
decreasing the curvature of the corannulene skeleton. In
addition to this geometrical effect, we have illustrated the
topological effect of the nonalternant p-conjugated network,
which influences the spin-delocalized nature, diradical char-
acter, and curved aromaticity of 2. These findings demon-
strate the intriguing aspects of a 3D intramolecular exchange
interaction of neutral diradical systems having curved and
nonalternant p-conjugated networks. Thus, we believe that
our present study will contribute not only to opening up a new
field of open-shell chemistry and molecular magnetism with
dynamic electronic-spin behaviors arising from bowl-to-bowl
inversion behavior,[7e,32] but also to developing functionalities
based on 3D intra/intermolecular interactions of molecular

assemblies composed of bowl-shaped p-conjugated open-
and/or closed-shell molecules with unique geometrical and
topological features.[6, 7,33]
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