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An Efficient and Practical Method for the Synthesis of Saxagliptin
Intermediate 2-(3-Hydroxy-1-adamantane)-2-oxoacetic Acid and
Its Optimization
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A mild and relatively simple way for preparation of 2-(3-hydroxy-1-adamantane)-2-oxoacetic acid (I) was reported. It was
prepared from 1-adamantanecarboxylic acid (II) via sulfuric acid/nitric acid to get 3-hydroxy-1-adamantanecarboxylic acid (III);
treated with the one-pot method through acylation, condensation, and decarboxylation to obtain 3-hydroxy-1-acetyladamantane
(IV); and finally oxidized by potassium permanganate (KMnO4) to get the target compound (I). 0e overall yield was about 60%,
which provides a new idea for commercial production of saxagliptin intermediate.

1. Introduction

Diabetes, a complex and chronic illness, is becoming a
public health problem and even a global societal catas-
trophe. According to the figures displayed in the 8th
edition of the Diabetes Atlas issued by the International
Diabetes Federation, until 2017, there were about 451
million adults who lived with diabetes all over the world,
and this number may rise to 693 million in 2045, if nothing
is done [1].

Dipeptidyl peptidase-4 (DPP-4) inhibitors are classic
antihyperglycemic agents used worldwide [2]. Up-to-date
studies and analysis reveal clearly that the overall tolerance/
safety profile of DPP-4 inhibitors appears better than that of
other oral glucose-lowering agents [3]. Compared with
sulfonylureas etc., DPP-4 inhibitors may represent a cost-
effective option [4].

Saxagliptin (Onglyza) is a highly potent and selective
DPP-4 inhibitor authorized by FDA in 2009 [5]. Due to its
distinctive mechanism of action and a series of clinical trials,
FDA approved its combination with metformin (Kombi-
glyze XR) and dapagliflozin (Qtern) in 2010 and 2017 [6].

0rough retrosynthesis analysis, we found that (S)-N-
Boc-3-hydroxyadamantylglycine is a key intermediate of
Saxagliptin [7], and it can be prepared economically and
efficiently from 2-(3-hydroxy-1-adamantyl)-2-oxoacetic
acid (I) by asymmetric reductive amination [8, 9]
(Figure 1).

Not surprising, much effort has been made to synthesize
this essential intermediate I (Figure 2). Politino et al. [10]
originally describe a method treating 1-bromoadamantane
as starting material, which reacted with silane coupling agent
to give α hydroxy acid and then through esterification,
Swern oxidation, hydroxylation, and hydrolysis to produce
the target compound I. However, harsh reaction conditions
involved in Swern oxidation (− 78°C) restrict the route for
commercial manufacturing.

Henryon et al. [11] developed an improved route to
start with 1-adamantanecarboxylic acid, which was acyl-
ated by thionyl chloride (SOCl2) and substituted by cyanide
reagent TMSCN to afford cyanide and then underwent
hydrolysis, esterification, and hydroxylation to obtain the
intermediate. But it was found that this route demanded
greatly multiple procedures as well as relatively complex
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operation. Furthermore, the overall yields were unsatisfactory
(28%) and thus were not adequate for implementation of a
large-scale work.

Our team [12] reported a method to prepare the target
compound. Regarded 1-adamantanecarboxylic acid as raw
material which was methylated by the one-pot method to
obtain 1-acetyladamantane and afterwards through oxi-
dation and hydroxylation to acquire compound I. 0e
scheme we came up with required inexpensively acceptable
materials and mild reaction conditions. But the yield of
hydroxylation is relatively low (68%) which limited the
application to industrial production.

In in-depth study, we found that the hydroxylation of
adamantane tertiary carbon was the key factor affecting the
total yield. A series of methods were reported, but the results
were disappointed (Figure 3). Berner et al. [13], using 1-
acetyladamantane as the first material via one-step oxida-
tion, introduced the hydroxyl and carboxyl group (36%). Li
et al.[12] used two-step oxidation and hydroxylation in the
second step, but they did not get the good result(61%).
Wilhelm et al. [14] made 1-adamantane glycine as the raw
material hydroxyl, but the yields are still low (66%). Venkat
et al. [15] protected the amino group; however, the hy-
droxylation yields lower (40%). Bertolini et al. [16] kept
hydroxylation as the last step of Saxagliptin synthesis, but the
yields are still low (74%).

To sum up, it seems to delay the hydroxylation step
always to reduce the yield. Our team analyzed the reason for
the low yield. We believe that the key to solve the problem
should be on the adamantane ring. 0e nature of hydrox-
ylation is adamantane oxidation. Due to the presence of
electron-withdrawing substituents, electron-withdrawing
effects may decrease the cloud density of the adamantane
ring and cause difficulty in oxidation. On the other hand, the
spatial effect may also increase steric hindrance, making it
difficult for oxidants to fully react with raw materials and
lead to low yields. 0us, if we change the oxidation sequence
and advance the hydroxylation to avoid the above problems,
it may be a feasible way to increase the yield.

2. Results and Discussion

On account of the above hypothesis, we made some im-
provements based on our laboratory previous work
[12, 17, 18] and developed an efficient and practical method
for the synthesis of I. 0e specific improvements of route are
depicted in Figure 4:

It was prepared from 1-adamantanecarboxylic acid (II)
via sulfuric acid/nitric acid to get 3-hydroxy-1-ada-
mantanecarboxylic acid (III); treated with the one-pot
method through acylation, condensation, and de-
carboxylation to obtain 3-hydroxy-1-acetyladamantane
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(IV); and finally oxidized by potassium permanganate
(KMnO4) to get the target compound (I).

In the process optimization, we focused on the synthesis
of IV and I. In the one-pot method step synthesis of IV, we
used acetyl chloride (CH3COCl) with lower activity instead
of SOCl2, aiming to shorten the duration of reactions and
improve production efficiency (Figure 5) because the latter
also led to chlorination of 3-hydroxy to form the byproduct,
which would increase our workload (Figure 6). In addition,
we optimized the step of acylation reaction via central
composite design-response surface methodology concen-
trate upon four vital factors after single factor experiment
study of 3-hydroxy-1-acetyladamantane [19].

Furthermore, the species of catalyst used in the synthesis
of I was screened, which represented a great improvement
compared with our previous work that increased the

reaction yield effectively. 0e optimized reaction conditions
shortened the reaction time, saved cost, and gave the target
compound with 60% yield, which was suitable for industrial
production.

Central composite design-response surface methodology
has been widely used for process optimization in recent
years, which has the advantages of high precision and good
predictability and being sensitive to examine the interaction
between the various factors [20, 21]. In the step of acylation
reaction, it was used to summarize the key factors affecting
the experiment, which optimized the experimental condi-
tions and achieve a better result.

0e factors influencing the yield of compound IV were
as follows: the species of the catalyst (Table 1), the catalyst
loading (Figure 7), the mole ratio of acetyl chloride to
compound III (Figure 8), reaction temperature (Figure 9),
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and reaction time (Figure 10). 0erefore, the five factors
above were set to several levels in the pre-experiment and
used single factor experiment study to investigate the effects
of them on the yield of compound IV. 0e specific result is
shown below.

After confirming the preliminary range of the variables
via single-factor experiment, a central composite design-
response surface methodology with four independent
factors (Xa, molar ratio of acetyl chloride to compound 3;
Xb, reaction time; Xc, reaction temperature; and Xd, the
pyridine loading) at five levels was performed. For statis-
tical calculation, the levels were coded as − 2, − 1, 0, +1, and
+2, respectively, in which − 2 corresponds to the low level of
each factor, +2 to the high level, and 0 to the midlevel. 0e
result of central composite design-response surface
methodology is described in Table 2. As seen from Table 2,
the complete design consisted of 30 experimental points,
and the experiment was carried out in a random order.
Each factor has been implemented multiple linear re-
gression and binomial fitting via the software of Design-
Expert 8.0.6 [18].

Multiple linear regression equation was

R(yield) � R1 � +60.31767 + 1.13750Xa − 0.53917Xb

+ 0.90417Xc + 0.82083Xd, r1 � 0.20.

(1)

0e binomial equation was

R(yield) � R2 � +73.39167 + 1.13750Xa − 0.53917Xb

+ 0.90417Xc + 0.82083Xd + 0.39625XaXb

+ 0.73625XaXc + 0.36125XaXd − 0.30375XbXc

− 1.02875XbXd

− 1.03875XcXd − 3.879372Xa2 − 3.12938Xb2

− 5.10437Xc2 − 4.229Xd2, r2 � 0.91.
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Table 1: 0e impact of catalyst on yield.

Catalyst 0e feed ratios of the catalyst to raw materials (mol/
mol) 0e yield of compound IV (%)

Pyridine 1.5 72.1
DMAP 1.5 65.3
Triethylamine 1.5 68.2
DMF 1.5 32.2
— — 43.0
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From the equation above, the correlation coefficient of
binomial equation (r2) was bigger than multiple linear re-
gression (r1) whichmeans the actual values were well in close
agreement with the predicted values, so we chose that the
binomial model was the better one ultimately.

According to the obtained binomial equation, the cor-
responding 3-D response surface plot of compound IV is
depicted in Figure 11. As shown in Figure 11, within limits,
the yield rose as the molar ratio of acetyl chloride to
compound III rose, reaction time prolonged, reaction
temperature increased, and the pyridine loading enhanced
and then reached the maximum value, but beyond a certain
level, the yield decreased. Each response surface has its
optimal interval, and higher yields could be obtained when
the reaction conditions were in the region, via overlapped
the optimal region of each response surface, optimized range
of producing compound 6 was obtained as shown below: Xa:
2.9 :1∼3.4 :1; Xb: 3∼4 h; Xc: 30∼55°C; and Xd: 1.4∼1.6 g.

However, with a view to operation of the process and
input-output ratio, the final reaction conditions we selected
among the above ranges were: 0e molar ratio of acetyl

chloride to compound III (3.1 :1), reaction time (4 h), re-
action temperature (40°C), and the pyridine loading(1.5 g).
Finally, we performed five parallel experiments under the
optimized reaction conditions, and compound IV was ob-
tained in 74.3%, 72.5%, 73.1%, 73.5%, and 72.0% yields,
respectively, with the purity reaching to 99%. 0e average
yield was 73.1% with a deviation of 0.66%.
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Table 2: 0e results of central composite design-response surface
methodology.

Number X a
(mol/mol) X b (h) X c (°C) X d (g)

Actual yield
(%)

1 0 0 0 2 53.3
2 2 0 0 0 56.9
3 0 − 2 0 0 58.9
4 0 0 2 0 50.5
5 1 − 1 1 1 63.22
6 − 1 − 1 1 1 60.7
7 0 0 0 − 2 50.3
8 0 0 0 0 72.6
9 − 1 1 − 1 1 60.3
10 − 1 − 1 1 − 1 55
11 − 1 − 1 − 1 − 1 56.44
12 1 − 1 − 1 − 1 55.5
13 1 1 1 − 1 62.7
14 − 2 0 0 0 49.5
15 1 1 − 1 1 59.9
16 0 0 − 2 0 46.1
17 − 1 − 1 − 1 1 60.5
18 0 0 0 0 73.45
19 1 1 1 1 61.22
20 0 2 0 0 53.5
21 1 1 − 1 − 1 57.9
22 0 0 0 0 74.7
23 − 1 1 1 − 1 60.2
24 0 0 0 0 75.8
25 0 0 0 0 73.9
26 0 0 0 0 69.9
27 1 − 1 1 − 1 59.7
28 1 − 1 1 1 56.9
29 − 1 1 1 1 54.9
30 1 − 1 − 1 1 61.2
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As for the oxidation step, Cheng et al. [22] reported a
method that treated 1-acetyladamantane with potassium
permanganate in pyridine to get the target compound;
however, pyridine is poisonous. So, we used nontoxic
t-butanol instead of pyridine. In addition, considering that
1-acetyladamantane and potassium permanganate are not
easily soluble in t-butanol, the phase transfer catalyst (PTC)
was added to improve the two-phase reaction system
[23, 24]. 0e types of PTC were also examined; we fixed the
mole ratio of PTC to compound IV to 1 : 20, reaction time to
2.5 h, reaction temperature to 40°C, and the mole ratio of
potassium permanganate to compound IV to 1.5 :1, to in-
vestigate the influence of PTC species on the yields (Table 3).

As shown in Table 3, the addition of phase transfer
catalyst can improve the reaction yield obviously. TBAB was
a good choice which raised the yield to 91%; therefore, TBAB
was added to the reaction solution to shorten the reaction
time and improve the yield.

3. Experimental

All reagents were purchased commercially and were used as
supplied unless otherwise specified. Melting points were
determined through SGW X-4 micromelting point appa-
ratus. IR was recorded using a Nicolet FTIR 5700 spec-
trophotometer, ESI-MS spectra were recorded from a

Finnigan LCQ Advantage Max spectrometer, and 1H-NMR
was recorded on a Bruker Avance III 600MHz
spectrometer.

3.1. Preparation of 3-Hydroxy-1-adamantanecarboxylic Acid
(III). A 150mL three-necked round bottom flask was
equipped with magnetic stirrer and thermometer. 0e flask
was charged with sulfuric acid (98%, 20mL) and nitric acid
(65%, 2mL) in turn. 0e mixed acid was stirred at 0°C for
1 h, followed by addition of 1-adamantanecarboxylic acid
(5.0 g, 0.028mol) in portions within 0.5 h while maintaining
the temperature at 0°C. 0ereafter, the reaction mixture was
stirred at room temperature for 12 hrs. Water (125mL) was
added to the reaction mixture and stirred for 5 hrs. 0en, the
suspension was filtered, and the filter cake was recrystallized
with propanone/water and dried over Na2SO4 to afford
purified compound III (4.90 g, 90.0% yield). M.p. 199∼200°C
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Table 3: Impact of the phase transfer catalyst on yield.

Phase transfer catalyst 0e yield of compound I (%)
— 70
PEG-400 81
TEBAC 89
TBAB 91
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(lit. [18] 199∼200°C); IR (KBr, cm− 1): 3460, 2850, 1680, 1200,
1100, 600; 1H NMR (600MHz, DMSO-d6) δ: 11.89 (br s, 1H,
COOH), 4.50 (br s, 1H, OH), 2.12∼2.14 (m, 2H, CH),
1.66∼1.48 (m, 12H, CH2); ESI-MS (m/z): 197 (M+ 1)+.

3.2. Preparation of 3-Hydroxy-1-acetyladamantane (IV).
A mixture of pyridine (4.5mL, 0.056mol) and compound
III (5.5 g, 0.028mol) was stirred in an ice-water bath for an
hour; then, acetyl chloride (10mL, 0.138mol) was added
dropwise to the mixture, and this solution was stirred at
25°C for 3 h. After that, pyridine hydrochloride was formed
and was filtered. 0e excess acetyl chloride of filtrate was
removed with reduced pressure, and the residue was 3-
hydroxy-1-adamantyl methacetic anhydride. A mixture of
diethyl malonate (7.4mL, 0.042mol) and petroleum ether
(20ml) were added dropwise to metallic sodium in pe-
troleum ether (100mL). 0e mixture was stirred for an-
other 15 h at room temperature to get white precipitates.
Afterwards, previously prepared 3-hydroxy-1-adamantyl
methacetic anhydride in petroleum ether (20mL) was
added to the preceding suspension slowly; then, the mix-
ture was stirred at room temperature for 12 h. Afterwards,
water (50ml) was added to the solution and stirred for
about 10 minutes, and the organic layers were separated
and concentrated with reduced pressure to give the oil
residue. After that, a mixed solution of acetic acid (20ml),
water (6ml), and sulfuric acid (2mL) was added to the
residue obtained as above, the reaction mixture was then
refluxed for 8 h and then poured into cold water (200mL),
which was extracted with ethyl acetate (3 ×10mL), and the
combined organic layers were washed with water (100mL),
dried over Na2SO4, and concentrated under reduced
pressure. 0e residue was recrystallized from methylene
chloride/hexane to give compound IV (3.69 g, 74.6%
yield).M.p. 89∼90°C(lit. [25] 89∼90°C); IR (KBr, cm− 1):
3380, 2880, 2850, 1750, 1410, 1000, 600; 1H NMR
(600MHz, DMSO-d6) δ: 4.52 (s, 1H, OH), 2.22 (br s, 2H,
CH), 2.05 (s, 3H, CH3), 1.62∼1.47 (m, 12H, CH2); ESI-MS
(m/z): 195 (M+ 1)+.

3.3. Preparation of 2-(3-Hydroxy-1-adamantyl)-2-Oxoacetic
Acid (I). 0e tert-butanol (10mL), 2% KOH (100mL),
compound IV (5.0 g, 0.026mol), and phase transfer catalyst
TBAB were added to a 250mL three-necked flask; then, the
mixture was stirred at 40°C, and potassium permanganate
(8.3 g, 0.052mol) was added in batches during a period of
1 h. After that, the solution was stirred for 5 h; then, sodium
sulfite (3.8 g, 0.026mol) was added and stirred for 10min,
and the mixture was filtered. 0e filtrate was adjusted to pH
1-2 and then extracted with ethyl acetate (10mL× 3), and the
organic phases were combined, which was concentrated
under reduced pressure to get a light yellow oil residue. 0e
residue was recrystallized by heptane and dried to obtain
compound I (5.3 g, 91.8% yield). M.p. 163–165°C (lit. [26]
164∼165°C); IR (KBr, cm− 1): 3380, 2920, 2850, 1713, 1680;
1H NMR (600MHz, DMSO-d6) δ: 14.2 (br s, 1H, COOH),
4.6 (br s, 1H, OH), 2.19 (s, 2H, CH), 1.72–1.46 (m, 12H,
CH2); ESI–MS (m/z): 225(M+ 1)+.

4. Conclusion

0is study provides a simple and economical method to
synthesis 2-(3-hydroxy-1-adamantane)-2-oxoacetic acid in
60% yield from 1-adamantanecarboxylic acid over five steps.
0e reaction is mild, simple, and inexpensive, which repre-
sents a great improvement compared with previously reported
methods and has a great foreground of development.
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