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Monofluorinated 3-alkyl-2-hydroxy-1,4-naphthoquinone 4 was prepared in eight steps from commer-
cially available 8-bromooctanoic acid (10). The key step involved L-proline-catalyzed three-component
reductive alkylation (TCRA) of 2-hydroxy-1,4-naphthoquinone (5) with the optically active aldehyde 7.

� 2015 Elsevier Ltd. All rights reserved.
Atovaquone (1, Fig. 1) is a 2-hydroxynaphthoquinone that is a generated by L-proline-catalyzed three-component reductive

potent anti-malarial compound in current clinical use, and which
competitively inhibits the cytochrome bc1 complex of the malaria
parasite Plasmodium falciparum.1

Due to the resistance developed to atovaquone,2 other hydroxy-
naphthoquinones have been investigated for comparable anti-
malarial properties.3–5 For example, we found that S-10576 (2) is
a potent inhibitor of the yeast cytochrome bc1 complex that
exhibits species selectivity higher than that of atovaquone.3 Despite
its efficacy, S-10576 (2) is readily metabolized in human cells via
hepatic P450-mediated hydroxylation and subsequent oxidative
carboxylation at the terminal position of the alkyl chain.6 On the
other hand, NQ1 (3), the trifluorinated analog of 2, is metabolically
stable and strongly inhibits atovaquone-resistant P. falciparum
sporozoites. However, its species selectivity is significantly lower
than that of S-10576 (2).4,7 Based on molecular modeling studies
and biological assays, we and others believe that the bulkiness of
the trifluoromethyl group may be responsible for this reduced
selectivity.5,7 Thus, we surmised that a monofluorinated 8-carbon
side chain would enhance the poor species selectivity of 3, while
retaining its metabolic stability, and would also recover the inhibi-
tion potency of 2.5,7 This led us to pursue the synthesis of monoflu-
orinated 3-alkyl-2-hydroxy-1,4-naphthoquinone derivative 4.

The retrosynthetic analysis of 4 is outlined in Scheme 1. Our
target molecule 4 can be partitioned into 2-hydroxy-1,4-naphtho-
quinone (5) and S-aldehyde 7. We envisioned that 4 might be
alkylation (TCRA) of 5 with 7. The optically active aldehyde 7
would be obtained by chiral auxiliary-mediated asymmetric a-
methylation of commercially available 8-bromocarboxylic acid 10
or 8-fluorocarboxylic acid 9, itself obtained by fluorination of 10.

We initially attempted the synthesis of 8-fluorocarboxylic acid
9 by treating the commercially available 8-bromooctanoic acid
(10) with TBAF at 70 �C in tert-butanol. However, this reaction gave
an inseparable mixture consisting majorly of the corresponding
nine-membered lactone (not shown) and only a trace of the
desired product 9. A search of the literature revealed a precedent
for TBAF-induced intramolecular SN2-type cyclization/lactoniza-
tion of halo-carboxylic acids.8 To circumvent this side reaction,
the carboxylic acid moiety in 10 was masked as its methyl ester
11 (Scheme 2). In the event, treating 10 with K2CO3 and iodo-
methane afforded a 2:1 mixture (85%) of the desired product 11
and its iodo-analog 12, respectively.9 No attempt was made to sep-
arate the mixture of 11 and 12 since both were anticipated to
undergo fluorination in the next step.10 The fluorination of the
mixture of 11 and 12 gave the desired product 13 (75%) and a small
amount of the Hoffmann elimination side product 14 (5%).11

Attempts to separate the mixture by column chromatography were
not successful. Fortunately, though, pure fluoro ester 13 was
obtained by vacuum distillation using a Vigreux column.12 Finally,
saponification (LiOH, H2O/MeOH) of fluoro ester 13 furnished the
corresponding fluoro acid 9 in 95% yield. Overall, even with two
additional steps for the protection of the carboxylic acid moiety
and subsequent deprotection, this three-step fluorination method
is a more efficient alternative for the preparation of fluoro acid 9
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Figure 1. 3-Alkyl-2-hydroxy-1,4-naphthoquinones that inhibit the cytochrome bc1
complex and our synthetic target 4.

Scheme 2. Synthesis of 8-fluorooctanoic acid (9).

Scheme 3. Synthesis of aldehyde 7.
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than that described in the literature, in which 9 was synthesized in
5 steps (61%).13

The enantioselective a-methylation was performed as shown in
Scheme 3. Thex-fluorocarboxylic acid 9was first treated with oxa-
lyl chloride to form 8-fluorooctanoyl chloride, followed by the
addition of (S)-4-benzyl-2-oxazolidinone using triethylamine and
DMAP to give 15 in 87% yield.14

The a-methylation using NaHMDS and iodomethane furnished
the oxazolidinone 16 in 83% yield.14 Reductive cleavage of the
chiral auxiliary from 16 using LiAlH4 produced the alcohol 17 in
a yield of 92%.15 Dess–Martin oxidation provided aldehyde 7
(92%) that was used without further purification.16

We conducted the L-proline-catalyzed three-component reduc-
tive alkylation of naphthoquinone 5 with aldehyde 7 and the
Hantzsch ester (18) under the conditions reported by Ramach-
ary.17–19 Even though the authors reported good yields during
the synthesis of several 3-substituted 2-hydroxy-1,4-naphtho-
quinones at room temperature,17 in our case, the reactions at room
temperature furnished the desired product 4 in only 33% yield even
with extended reaction times (more than 48 h). However, refluxing
CH2Cl2 not only accelerated the reaction but also improved the
yield from 33% to 84% (Scheme 4).20,21 Overall, the best yields were
obtained by using 2 equiv of the aldehyde 7, consistent with the
examples reported by Ramachary.17 Purification of the final pro-
duct 4was complicated by the presence of the pyridine by-product
(19) from the oxidation of the Hantzsch ester (18), which exhibited
the same Rf value as 4. Attempts to remove 19 by washing the
mixture with 2 N HCl failed. Alternatively, stirring the mixture
with LiOH in H2O/MeOH at room temperature for 4 h followed
by acid work up afforded the desired product 4 as a pale yellow
solid. It is important to note that the addition of LiOH to the
H2O/MeOH solution of the crude reaction mixture could have
certainly furnished the final product 4; however, we ran column
Scheme 1. Retrosynthetic analysis.
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chromatography prior to hydrolysis in order to recover and recycle
the excess aldehyde 7.

The alternative strategy, which delayed the introduction of the
terminal fluorine until the final step, achieved the synthesis of
brominated 3-alkyl-2-hydroxy-1,4-naphthoquinone 6 in five steps
from bromooctanoic acid 10 (Scheme 5). This approach essentially
mirrored the sequence of steps presented in Scheme 3. Moreover,
the TCRA reaction of naphthoquinone 5 with aldehyde 8
(Scheme 1), the bromo analog of the aldehyde 7, furnished the bro-
mide 6 in 78% yield. Crystallization gave needle crystals of 6,
enabling us to assign its structure and absolute configuration using
X-ray crystallography. However, the conversion of 6 to 4 using
TBAF and tert-butanol was plagued by purification issues, in which
4 could not be separated from its mixture with other side products.
In an attempt to optimize nucleophilic fluorination, we screened
Scheme 4. Synthesis of target compound 4 via a TCRA method.
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Scheme 5. Summary of two different approaches to the total synthesis of 4.
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different reaction conditions: CsF in tert-amyl alcohol,22 TBAF in
tert-amyl alcohol,11 and TBAF in acetonitrile in ‘wet’
conditions.23,24 All these conditions invariably produced mixtures
consisting of the product 4, alkene elimination product, and other
unidentified side products that were inseparable by chromato-
graphic techniques. Also, vacuum distillation, which had
completely removed the fluorination side products in the first syn-
thetic approach (vide supra), could not be employed in this case
due to the solid nature of 4. Thus, even though the second
approach with fluorination at the last step would have shortened
the total synthesis by two steps, the first approach with early
fluorination was ultimately used to obtain pure and reliable
quantities of the target compound 4.

In conclusion, we have synthesized monofluorinated 3-alkyl-2-
hydroxy-1,4-naphthoquinone 4 in 8 steps in 31% overall yield from
8-bromooctanoic acid (10).25–31 Biological evaluation of this
compound as an inhibitor of the cytochrome bc1 complex of the
malaria parasite is in progress and will be reported in due course.
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1H), 7.73–7.76 (td, J = 7.48, 1.33 Hz, 1H), 7.66–7.69 (td, J = 7.45, 1.21 Hz, 1H),
7.33 (s, 1H), 3.39 (t, J = 7.21 Hz, 2H), 2.57–2.61 (dd, J = 12.31, 5.96 Hz, 1H),
2.42–2.45 (dd, J = 12.51, 8.41 Hz, 1H), 1.81–1.85 (m, J = 7.56 Hz, 3H), 1.29–1.42
(m, 8H), 0.88 (d, J = 6.52 Hz, 3H). 13C NMR (150 MHz, CDCl3) d 185.1, 181.6,
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153.7, 135.1, 133.2, 133.1, 129.7, 127.0, 126.3, 124.2, 37.3, 34.2, 33.0, 33.0,
30.9, 29.1, 28.4, 27.1, 19.9. FT-IR (CH2Cl2, cm�1) estim. 3350, 2900, 1630, 1600,
1350, 1250, 700. HRMS (ESI) calcd for C19H24O3Br: 379.0909, found 379.0894.
[a]D23 +0.9 (CH2Cl2).
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