

Carbohydrate Research 265 (1994) 299-302

CARBOHYDRATE RESEARCH

Note

Synthesis of 5-fluorouridine 5'-diphosphate galactose from 5-fluorouridine by chemical phosphorylation and microbial uridylyl transfer

Ken-ichi Fujita ^a, Akira Matsukawa ^b, Kozo Shibata ^a, Toshio Tanaka ^{a,*}, Makoto Taniguchi ^a, Susumu Oi ^a

^a Faculty of Science, Osaka City University, 3-3-138, Sugimoto Sumiyoshi-ku, Osaka 558, Japan ^b Research and Development Department, Fuso Pharmaceutical Industries, Ltd., 3-30-2, Morinomiya Joto-ku, Osaka 536, Japan

Received 28 January 1994; accepted 19 May 1994

Keywords: Synthesis; Fluorouridine 5'-diphosphate galactose, 5-; Fluorouridine, -5; Chemical phosphorylation; Microbial uridylyl transfer

The sugar nucleotide analogue 5-fluorouridine 5'-diphosphate galactose (2) has been detected in several lines of tumor cells treated with 5-fluorouridine or 5-fluorouracil [1], though the physiological meaning of accumulated 2 has not been assessed so far. The intracellular pool of fluorinated sugar nucleotides may account for delayed drug effects by gradually liberating 5-fluorouridine monophosphate (1) or diphosphate, which is subsequently converted into 5-fluoro-2'-deoxyuridine monophosphate, an inhibitor of thymidy-late synthase, or perhaps incorporated into RNA. The chemotherapeutic effect of 2 is presumably exerted via enzymatic degradation to 5-fluorouridine monophosphate by nucleotide pyrophosphatase (phosphodiesterase) [2].

* Corresponding author.

Compound 2 has previously been prepared by chemical coupling of the imidazolidate of 1 with the tributylammonium salt of D-galactose 1-phosphate in hexamethylphosphoric triamide [3]. On the other hand, the preparation of uridine 5'-diphosphate galactose has been achieved by enzymatic transfer of a uridylyl group to D-galactose 1-phosphate [4], or directly from D-galactose and uridine 5'-monophosphate by microbial fermentation [5]. We have applied the method for the microbial production of uridine 5'-diphosphate galactose to the synthesis of 2, and describe the results here. Our procedure involves the fermentative formation of 2 from 1 and added D-galactose, in the presence of inorganic phosphate and magnesium ions, by dried cells of *Candida saitoana* IFO 0768 (formerly *Torulopsis candida* IFO 0768) grown on a lactose medium. The necessary starting material 1 was obtained by the reaction of 5-fluorouridine with phosphoryl chloride in anhydrous trimethyl phosphate at 0°C [6].

1. Experimental

General methods.—HPLC analyses were performed on an AM-312 ODS reversed phase column (6×150 mm, YMC, Japan). The conditions were as follows: isocratic elution at room temp with 50 mM NH₄H₂PO₄; flow rate, 1 mL min⁻¹; detector sensitivity at 260 nm, 0.02 AUFS. The ¹H and ¹³C NMR spectra were recorded in D₂O at 40°C with H₂O (δ 4.70) and pyridine- d_5 (δ 149.5), respectively, as internal references, on a Jeol JNM-400GX spectrometer operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR.

5-Fluorouridine 5'-monophosphate (1), barium salt.—Phosphoryl chloride (400 µmol, 330 μ L) was mixed with 5 mL of anhyd trimethyl phosphate in an ice bath, and 1.9 mmol of 5-fluorouridine (Sigma Chemical Co., St. Louis, MO, USA) was added with stirring to the above solution. After standing at 0°C for 16 h the mixture was poured into 100 mL of cold water. Compound 1, obtained in 73% yield based on HPLC analysis, was then purified by ion-exchange chromatography on Dowex 1-X8 (Cl⁻) resin. The mixture was applied to the column $(3 \times 15 \text{ cm})$, and the resin was washed with 2 L of aq 50% MeOH. The product was eluted with 4 L of 0.01 N HCl containing a linear gradient of 0-0.2 M LiCl. The fractions containing 1 were combined, adjusted to pH 7.5 with 1 N LiOH, and concentrated to 50 mL at 45°C in vacuo. Active carbon (4 g) was added to the solution which had been adjusted to pH 3.8 with 1 N HCl, and then filtered off and washed thoroughly with distilled water. Compound 1 was eluted with 200 mL of 45:50:5 EtOH-H₂O-NH₄OH, and the eluate was concentrated to 10 mL by evaporation at 45°C. Barium acetate (400 μ mol) was added to the concentrated solution to form a precipitate of the barium salt of 1, and the excess was removed by two extractions of the precipitate with aq 70% EtOH and one with abs EtOH. The purified 1 (506 mg, 53%) was a white powder; NMR data are given in Table 1. Anal. Calcd for C₂H₁₀FN₂O₂P·Ba·3H₂O: C, 20.34; H, 3.03; N, 5.27; P, 5.83. Found: C, 19.93; H, 2.92; N, 4.97; P, 5.75.

5-Fluorouridine 5'-(α -D-galactopyranosyl diphosphate) (2, 5-fluorouridine 5'-diphosphate galactose), barium salt.—Candida saitoana IFO 0678 was grown in 5% lactose, 0.5% peptone, 0.2% yeast extract, 0.2% KH₂PO₄, 0.2% (NH₄)₂HPO₄, and 0.1% MgSO₄ · 7H₂O (pH 6.2) at 30°C for 24 h with vigorous shaking. The cells were harvested by centrifugation and washed 3 times with cold distilled water. The washed cells were then

Position	5-Fluorouridine *		5-Fluorouridine 5'-monophos- phate		5-Fluorouridine 5'-diphosphate galactose	
	¹ H shift	¹³ C shift	¹ H shift	¹³ C shift	¹ H shift	¹³ C shift
6	7.83 (d, 6.4)		8.11 (d, 6.4)	· · · · · · · · · · · · · · · · · · ·	7.98 (d, 6.4)	
1′	5.87 (dd, 4.3, 1.5)	91.33	5.90 (dd, 4.9, 1.5)	90.79	6.03 (dd, 4.9, 1.83)	90.13
2'	4.19 (t, 5.5)	75.48	4.29 (t, 5.2)	75.86	,	74.99
3′	4.26 (t, 5.5)	71.14	4.31 (t, 5.2)	71.98		70.53 ^b
4′	4.10 (m)	85.67	4.20 (m)	85.91 (d, 8.8)		84.20 (d, 10)
5'	3.89 (dd, 12.8,	62.53	4.02 (ddd, 12.0,	65.97	3.89 (dt, 10.4,	66.35 (d, 6)
	3.0)		5.5, 3.1)		3.2)	
	3.80 (dd, 12.8,		3.97 (ddd, 12.0,		3.98 (dd, 10.4,	
	4.3)		5.5, 3.4)		3.3)	
1″					5.72 (dd, 7.0, 3.4)	97.04 (d, 6)
2″					,	69.76 (d, 7)
3″						70.96 ^b
4″						70.72 ^ь
5″						73.15
6″					3.79 (dd, 11.9,	62.35
					5.5)	
					3.82 (dd, 11.9,	
					7.3)	

 Table 1

 NMR spectra of the fluorinated derivatives

^a Values measured on an authentic sample. ^b These assignments may be interchanged.

dried thoroughly under reduced pressure over P_2O_5 . The mixture for the production of 2 contained 400 μ mol of 1 barium salt, 4 mmol of D-galactose, 240 μ mol of MgSO₄ · 7H₂O, and 2 g of the dried cells in 20 mL of 200 mM potassium phosphate buffer (pH 7.0). This mixture was incubated at 30°C for 16 h with continuous shaking, the microbial reaction was stopped by heating at 100°C for 10 min, and the mixture was cooled immediately in an ice bath, then centrifuged at 10 000g for 10 min. Compound 2 was obtained in 96% yield based on HPLC analysis. The supernatant from the centrifugation was adjusted to pH 3.8 with 1 N HCl, and 4 g of active carbon was added. The active carbon was washed thoroughly with distilled water, and the adsorbed nucleotides were eluted with 200 mL of 45:50:5 EtOH-H₂O-NH₄OH. The eluate was concentrated to 5 mL by evaporation under vacuum at 45°C, and the purification of 2 was accomplished by ion-exchange chromatography on Dowex 1-X8 (Cl⁻) resin. The concentrated mixture was applied to the column (3×30) cm), and the resin was washed with 2 L of distilled water. Compound 2 was eluted with 4 L of 0.01 N HCl containing a linear gradient of 0-0.2 M LiCl. Fractions from the column were combined, adjusted to pH 7.5 with 1 N LiOH, and concentrated to 50 mL. Active carbon (4 g) was added to the solution which had been adjusted to pH 3.8 with 1 N HCl, then filtered off and washed thoroughly with distilled water, and compound 2 was eluted with of 200 mL 45:50:5 EtOH-H₂O-NH₄OH. The eluate was concentrated to 10 mL by evaporation at 45°C. Barium acetate ($600 \mu mol$) was then added to the concentrated solution

to form a precipitate of the barium salt of 2, and the excess reagent was removed by extraction of the precipitate with aq 70% EtOH (2×), then abs EtOH. Purified 2 (252 mg, 74%) was a slightly yellow powder; NMR data are shown in Table 1. Anal. Calcd for $C_{15}H_{21}FN_2O_{17}P_2 \cdot 2/3Ba \cdot 4H_2O$: C, 20.93; H, 3.40; N, 3.25; P, 7.20. Found: C, 20.54; H, 3.34; N, 3.27; P, 7.10.

Structural elucidation.—The structures of 1 and 2 were elucidated by comparison of their ¹H and ¹³C NMR data with those of authentic 5-fluorouridine, shown in Table 1. The positions of attachment of the phosphate groups were confirmed by observation of the ³¹P–¹H and ³¹P–¹³C hetero spin–spin couplings. Thus, in the spectra of 1 the signals assigned to C-4' and C-5' were observed as doublets due to ³¹P–¹³C coupling, and the two H-5' signals at δ 4.02 and 3.97 appeared as ddd due to ³¹P–¹H coupling. Also, in the spectra of 2 couplings similar to those shown by 1 were observed in the signals assigned to C-4', C-5', C-1'', C-2'', H-5', and H-1''. Finally, elemental analyses supported the formulas assigned to 1 and 2 by their good agreement with the calculated values.

References

- A.L. Pogolotti, Jr., P.A. Nolan, and D.V. Santi, Anal. Biochem., 117 (1981) 178–186; C. Heidelbelger, P.V. Danenberg, and R.G. Molan, Adv. Enzymol., 54 (1983) 58–119; W.R.P. Rijcken, F. Telleman, G.J. Peters, and W. Ferwerda, Adv. Exp. Med. Biol., 253 (1989) 313–320.
- [2] E. Bischoff, J. Wilkening, T.-A. Tran-Thi, and K. Decker, Eur. J. Biochem., 62 (1976) 279–283; W. Deppert and G. Walter, J. Cell. Physiol., 90 (1976) 41–52.
- [3] G. Weckbecker and D.O.R. Keppler, Biochem. Pharmacol., 33 (1984) 2291-2298.
- [4] E.S. Maxwell, J. Biol. Chem., 229 (1957) 139–151; E.P. Anderson, E.S. Maxwell, and R.M. Burton, J. Am. Chem. Soc., 81 (1959) 6514–6517.
- [5] T. Tochikura, K. Kawaguchi, H. Kawai, Y. Mugibayashi, and K. Ogata, J. Ferment. Technol., 46 (1968) 970–983.
- [6] M. Yoshikawa, T. Kato, and T. Takenishi, *Tetrahedron Lett.*, 50 (1967) 5065–5068; M. Yoshikawa, T. Kato, and T. Takenishi, *Bull. Chem. Soc. Jpn.*, 42 (1969) 3505–3508.