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Dermatan sulfate (DS) is composed of a repeating disaccharide unit containing iduronic acid (IdoA) and
N-acetylgalactosamine (GalNAc). In the divergent synthesis of DS disaccharide, it is important to prepare
the IdoA moiety with a diverse set of protecting groups. IdoA was efficiently obtained from glucose in 20
steps with some modifications following the method reported by van Boeckel et al. A disaccharide build-
ing block for constructing the DS disaccharide was synthesized by the glycosylation of the designed IdoA
moiety with GalNAc. The disaccharide building block was used in the synthesis of DS-B disaccharide and
its ligand conjugate.

� 2016 Elsevier Ltd. All rights reserved.
Dermatan sulfate (DS) is a sulfated polysaccharide, belonging to
glycosaminoglycan (GAG) superfamily such as chondroitin sulfate
(CS), heparan sulfate (HS), and heparin (HP). DS usually binds to
a core protein and forms the corresponding glycoprotein, namely,
DS–proteoglycan (DS–PG). DS–PG is a component of cell surface
and extracellular matrix and interacts with many bioactive pro-
teins such as cell surface receptors, growth factors, and cytokines
to regulate their activity.1–7 The structure of DS consists of repeat-
ing disaccharide units containing iduronic acid (IdoA) and
N-acetylgalactosamine (GalNAc). However, a DS polysaccharide
chain is in fact heterogeneous and has various sugar and sulfation
patterns because it is biologically synthesized from chondroitin
(CH) or a CS chain by random enzymatic modification such as
C-5 epimerization and O-sulfation.8,9 Recently, the specific micro-
domain structure in a DS polysaccharide chain has been considered
to be very important for the expression of DS biofunction;10 struc-
turally defined DS oligosaccharides are eager for elucidating the
structure–function relationship of DS at the molecular level.
Although many methods have been reported for the synthesis of
DS and CS oligosaccharides,11–21 it is still challenging to design
building blocks for the efficient synthesis of their oligosaccharides
with a diverse set of sulfation patterns, because the previous meth-
ods are not suitable for library synthesis. In this study, we report
the efficient synthesis of a DS disaccharide building block and its
usage for the preparation of ligand conjugates of DS disaccharide
structure toward the construction of a DS disaccharide library.

For the synthesis of DS disaccharide structures based on a com-
binatorial approach, a disaccharide building block 1 was designed.
Building block 1 has orthogonally removable protecting groups at
the sulfated and glycosidic positions. Because the 3-O-sulfated
structure on uronic acid (UroA) has been discovered in a CS chain
obtained from lower marine organisms22 but not yet in a DS chain,
the building block was designed by considering all the possible 16
types of DS disaccharide structures. DS ligand conjugates (Fig. 1)
were selected to fabricate ‘Sugar Chips’20,21,23,24 and investigate
the binding properties of GAG-binding protein using a surface plas-
mon resonance (SPR) biosensor.

First, the monosaccharide moiety was synthesized as shown in
Scheme 1. GalNTroc 320 was synthesized from galactosamine
hydrochloride in three steps using easily manipulated protecting
groups:20 The amino group was protected with a triethoxy car-
bonyl (Troc) group, the anomeric position was protected with an
allyl group, and the OH groups at the 4- and 6-positions were pro-
tected with a benzylidene group.

IdoA 15was synthesized from D-glucose as the starting material
following the method reported by van Boeckel et al.25 with slight
modifications. D-Glucose was converted to diisopropylidene gluco-
furanose, and the remaining OH group at the 3-position was
protected with a p-nitrobenzyl (PNB) group.26 3-O-PNB 5 was
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Figure 1. Designed disaccharide building block 1 and target DS ligand conjugates.
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Scheme 1. Syntheses of GalNAc 4 and IdoA 15. Reagents and conditions: (a) TrocCl, NaHCO3 in H2O, 0 �C; (b) AllylOH, Dowex 50 W-X8 (H+), reflux; (c) PhCH(OMe)2, CSA in
CH3CN, 66% yield (a only, three steps); (d) H2SO4 in acetone, 44% yield; (e) PNBBr, Ag2O, MS 4A in Et2O, 94% yield; (f) 60% AcOH aq, 40 �C; (g) MsCl in pyridine, 0 �C; (h) AcOK,
18-crown-6 in CH3CN, reflux, 53% yield (three steps); (i) t-BuOK in t-BuOH/CH2Cl2 (10:1 v/v), 40 �C; (j) TFA aq; (k) Ac2O in pyridine, 66% yield (three steps); (l) AllylOTMS,
SnCl4, MS 4A in CH2Cl2, �18 �C, 86% yields; (m) NH3 aq in MeOH, 0 �C; (n) p-MeO-PhCH(OMe)2, CSA in CH3CN, 67% yield (two steps); (o) BzCl in pyridine, 95% yield; (p) TFA,
NaBH3CN, MS 4A in DMF, 72% yield; (q) TBDMSOTf, TEA, MS 4A in CH2Cl2; (r) DDQ, H2O in CH2Cl2, 92% yield (two steps); (s) TEMPO, NaHCO3, KBr, NaOCl, H2O in CH3CN, 0 �C;
(t) TMSCHN2 in MeOH, 0 �C, 95% yield (two steps); (u) Ir[(COD)(PMePh2)2]PF6, H2 in THF; (v) H2O, I2 in THF, 90% yield (two steps).
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converted into monomesylate 6 via the selective removal of the
5,6-isopropylidene group, followed by 5,6-di-O-mesylation and
6-O-acetylation. Epoxide 7 was synthesized from monomesylate
6 using t-BuOK as the base in a mixture of CH2Cl2/t-BuOH (1:10
v/v). The PNB group could not be removed under this condition.
Epoxide 7 was converted into tetraacetate 8 after acidic hydrolysis
with TFA and acetylation. The anomeric position was then pro-
tected with an allyl group by glycosylation with (allyloxy)
trimethylsilane (AllylOTMS) in the presence of SnCl4. The de-O-
acetylation was performed with aqueous NH3 under mild basic
conditions because the PNB group is unstable under strong basic
conditions such as MeONa. p-Methoxybenzylidenation of the
resulting compound afforded p-methoxybenzylidene 10. Benzoyla-
tion at the 2-position, followed by the reductive ring opening of the
p-methoxybenzylidene group with TFA and NaBH3CN27 afforded
4-OH compound 12. After the silylation of the 4-OH group with
tert-butyldimethylsilyl triflate (TBDMSOTf) and triethylamine
(TEA), the p-methoxybenzyl (MPM) group was removed with
2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), affording 6-OH
compound 13. Oxidation of the 6-position of 13 with (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO) and NaOCl, followed by
methyl esterification with trimethylsilyldiazomethane afforded a
fully protected IdoA 14. Deprotection of the allyl group of IdoA
14 furnished 1-OH derivative 15, which is used as a glycosyl donor
after converting to an imidate.

With both the glycosyl donor and acceptor moieties in hand,
disaccharide building block 1 and trisaccharide intermediate 21
were synthesized (Scheme 2). After conversion of 1-OH derivative
15 to glycosyl imidate 16, the glycosylation of GalNTroc acceptor 4
with IdoA donor 16 was performed with TMSOTf, affording the
desired building block 1 in 69% yield. Stereochemistry of the
anomeric position was confirmed by NMR analysis; it was deter-
mined to be the a-anomer (d 5.28 ppm, br s). Disaccharide 1 was
then converted to disaccharide donor 18 by the deprotection of
the allyl group, followed by the treatment with CCl3CN. The glyco-
sylation of donor 18 with glucose 19, acting as the hydrophilic
reaction site to prepare the ligand conjugate for the immobilization
of disaccharide structure on the sensor chip of SPR biosensor,
afforded trisaccharide 20. Trisaccharide intermediate 2128 was
synthesized by the reduction of the NO2 group on PNB and Troc
group on GalNTroc moiety, followed by N-acetylation.

Next, the orthogonal deprotection, selective sulfation, and con-
jugation of linker 28were investigated (Scheme 3). Selective cleav-
age of the benzylidene group at the 4,6-position on GalNAc was
achieved with a combination of TfOH/Et3SiH, PhBCl2/Et3SiH, and
TFA/H2O, affording 40-OH compound 22, 60-OH compound 23,
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and 40,60-OH compound 24, respectively. For the deprotection of
AAB group, DDQ was effective, affording 300-OH compound 25 in
a moderate yield. The TBDMS group was removed by treating with
HF�pyridine, which was suitable for both nonsulfated and sulfated
compounds. Moreover, DS-B disaccharide ligand conjugate 29 was
synthesized. Hydrolysis of the Bz group and methyl ester of com-
pound 22, followed by the sulfation of the free OH group with an
excess amount of SO3�pyridine afforded the corresponding disul-
fated compound. After the desilylation, the final deprotection of
the benzyl group was achieved by hydrogenolysis with Pd/C under
7 kg/cm2 H2 pressure. Sulfate 28 was then converted to ligand con-
jugate 2929 in a good yield following the method reported previ-
ously.20 Other sulfated dermatan disaccharides can be prepared
by appropriate deprotection and sulfation.24

In conclusion, a novel disaccharide building block 1 was
designed for constructing a DS oligosaccharide library, possessing
orthogonally removable protecting groups and capable of generat-
ing diverse sulfation patterns. DS disaccharide building blocks 1
were efficiently synthesized using appropriate IdoA and GalNAc
moieties. IdoA, which is a key monosaccharide for the disaccharide
building block, was efficiently synthesized from glucose in 20
steps. DS disaccharides were systematically and divergently
synthesized from trisaccharide intermediate 21. Although further
studies are needed to construct a DS disaccharide library, the
designed DS disaccharides may be useful for the synthesis of versa-
tile DS and DS/CS hybrid oligosaccharides with minimal
derivatization.
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