ISSN 1070-3632, Russian Journal of General Chemistry, 2017, Vol. 87, No. 3, pp. 579–582. © Pleiades Publishing, Ltd., 2017. Original Russian Text © I.Yu. Strobykina, O.V. Andreeva, B.F. Garifullin, R.R. Sharipova, V.E. Kataev, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 3, pp. 523–526.

## LETTERS TO THE EDITOR

## First Conjugate of Glucuronic Acid with Triterpenoid Dihydrobetulin

I. Yu. Strobykina, O. V. Andreeva, B. F. Garifullin, R. R. Sharipova, and V. E. Kataev\*

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, ul. Arbuzova 8, Kazan, Tatarstan, 420088 Russia \*e-mail: kataev@iopc.ru

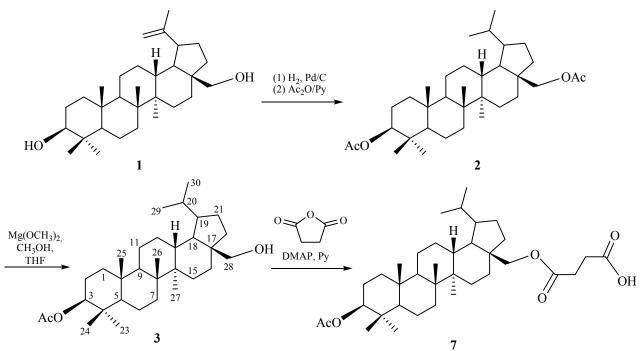
Received January 16, 2017

 $\label{eq:abstract-3} Abstract-3\beta-O-Acetyl-28-O-succinyl-(2,3,4-tri-O-acetyl-5-methoxycarbonyl-\beta-D-glucopyranosyl) dihydrobetulin was synthesized.$ 

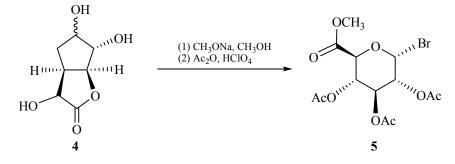
Keywords: triterpenoids, betulin, dihydrobetulin, glucuronic acid

DOI: 10.1134/S1070363217030331

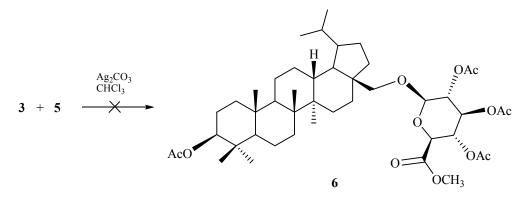
Glucuronic acid is widely used for glycosylation (glucuronidation) of a variety of biologically active compounds [1]. Continuing studies on the synthesis of conjugates of glucuronic acid with natural terpenoids [2–7] we synthesized for the first time a conjugate of glucuronic acid with triterpenoid dihydrobetulin. Using the known procedures [8], the double bond of betulin 1 was subjected to hydrogenation, and the hydroxyl groups to acylation (Scheme 1). Similarly to [9], dihydrobetulin diacetate obtained was converted 3β-*O*-acetyldihydrobetulin into 3 by selective hydrolysis with magnesium methylate in THF. Further glucuronidation of  $3\beta$ -O-acetyldihydrobetulin **3** was performed with the use of methyl 2,3,4-tri-O-acetyl-1bromo- $\alpha$ -D-glucopyranuronate 5 prepared from D-(+)glucurono-3,4-lactone 4 [10] (Scheme 2). The Koenigs-Knorr glycosylation [11] of 3β-O-acetyldihydrobetulin 3 with bromide 5 produced no glucuronide 6 (Scheme 3) probably due to the unfavorable steric interactions between the hydrocarbon skeleton of terpenoid 3 and the acetate groups of monosaccharide 5. In order to remove the reaction site in the molecule 3 from the bulk triterpenoid skeleton, 3β-acetoxydihydrobetulin 3 was involved into a reaction with an excess of succinic anhydride in pyridine to give 3β-O-acetyl-28-O-succinyldihydrobetulin 7 in 43% yield (Scheme 1). Then, similarly to [12], a conjugate of glucuronic acid with dihydrobetulin 8 was obtained in 43% yield by reacting triterpenoid 7 with bromide 5 in the presence of potassium and tetrabutylammonium bromide (TBAB)


(Scheme 4). The anomeric proton of the glucuronosyl residue in conjugate **8** was registered in the <sup>1</sup>H NMR spectrum as a doublet at 5.79 ppm with a vicinal spin-spin coupling constant of 7.6 Hz, which unambiguously indicated the realization of  $\beta$ -glycoside bond.

Betulin 1 was kindly provided by N.I. Medvedeva (Ufa Institute of Chemistry of the Russian Academy of Sciences).  $3\beta$ ,28-Di-*O*-acetyldihydrobetulin 2 and  $3\beta$ -*O*-acetyldihydrobeltulin 3 were prepared by the procedures reported in [8] and [9], respectively; the constants and spectral characteristics corresponded to those described in [8]. D-(+)-Glucurono-3,4-lactone and succinic anhydride were purchased from Acros (Belgium).


**3β-O-Acetyl-28-O-succinyldihydrobetulin** (7). A solution of 0.64 g (1.3 mmol) of dihydrobetulin 3β-*O*-acetate **3**, 0.39 g (3.9 mmol) of succinic anhydride, 10 mL of anhydrous pyridine, and 0.48 g (3.9 mmol) of dimethylaminopyridine (DMAP) was refluxed for 16 h. After cooling, the reaction mixture was acidified with 10% HCl solution, poured into ice water, and extracted with CHCl<sub>3</sub>. The organic layer was washed successively with water, 5% HCl solution, a saturated NaCl solution, and water, then dried with MgSO<sub>4</sub>, concentrated under reduced pressure, and recrystallized from MeOH. Yield 0.33 g (43%), white amorphous powder, mp 117–119°C,  $[\alpha]_D^{20}$ –10.5° (*c* 1.33, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ, ppm: 0.80–1.90 m (27H, triterpenoid skeleton), 0.77 d [3H,

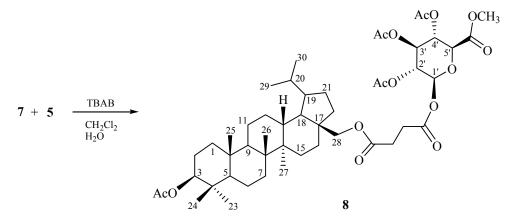







Scheme 2.




Scheme 3.



 $H^{29(30)}$ ,  ${}^{3}J = 6.7$  Hz], 0.83 d [3H,  $H^{30(29)}$ ,  ${}^{3}J = 6.7$  Hz]; 0.84 s, 0.85 s, 0.86 s, 0.95 s, 1.04 s (5×3H,  $H^{23-27}$ ), 2.04 s [3H, CH<sub>3</sub>C(O)], 2.60–2.72 m [4H, (O)CCH<sub>2</sub>CH<sub>2</sub>C(O)], 3.86 d (1H, H<sub>A</sub><sup>28</sup>,  ${}^{3}J = 10.9$  Hz), 4.30 d (1H, H<sub>B</sub><sup>28</sup>,  ${}^{3}J =$ 

10.9 Hz), 4.48 d.d (1H, H<sup>3</sup>,  ${}^{3}J = 10.4$ , 6.1 Hz).  ${}^{13}C$  NMR spectrum (600 MHz, CDCl<sub>3</sub>),  $\delta_{C}$ , ppm: 14.6, 14.9, 16.0, 16.1, 16.5, 18.2, 20.8, 21.3, 21.6, 22.9, 23.7, 26.8, 26.9, 27.9, 28.9, 29.1, 29.4, 29.8, 31.6, 34.2, 37.0, 37.2, 37.8,





38.4, 40.9, 42.9, 44.5, 46.6, 48.2, 50.0, 55.3, 63.3, 81.0, 171.1, 172.4, 177.4. Mass spectrum (ESI), m/z: 609.6  $[M + \text{Na}]^+$ . Found, %: C 73.75; H 9.90. C<sub>36</sub>H<sub>58</sub>O<sub>6</sub>. Calculated, %: C 73.68; H 9.96.

3B-O-Acetyl-28-O-succinvl-(2.3,4-tri-O-acetyl-5methoxycarbonyl-\beta-D-glucopyranosyl)dihydrobetulin (8). To a solution of 0.185 g (0.32 mmol) of terpenoid 7 and 0.15 g (0.38 mmol) of bromide 5 in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of 0.11 g (0.80 mmol) of K<sub>2</sub>CO<sub>3</sub> and 0.02 g (0.06 mmol) of *t*-butylammonium bromide (TBAB) in 1 mL of H<sub>2</sub>O while stirring under argon. The reaction mixture was refluxed for 10 h, then diluted with CHCl<sub>3</sub>, washed with water, and dried with MgSO<sub>4</sub>. The solvent was removed at a reduced pressure, and the residue was recrystallized from MeOH. Yield 0.12 g (42.9%), white amorphous powder, mp 173–175°C,  $[\alpha]_D^{20}$  –4.8° (*c* 1.53, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>),  $\delta$ , ppm: 0.80–1.90 m (26H, triterpenoid skeleton), 0.77 d [3H, H<sup>29(30)</sup>,  ${}^{3}J =$ 6.8 Hz], 0.83 d [3H, H<sup>30(29)</sup>,  ${}^{3}J = 6.8$  Hz]; 0.84 s, 0.85 s, 0.86 s, 0.94 s, 1.03 s (5×3H, H<sup>23-27</sup>); 2.031 s, 2.035 s, 2.04 s, 2.06 s [4×3H, CH<sub>3</sub>C(O)], 2.60–2.74 m [4H, (O)CCH<sub>2</sub>CH<sub>2</sub>C(O)], 3.74 s [3H, CH<sub>3</sub>OC(O)], 3.84 d  $(1H, H_A^{28}, {}^{3}J = 11.3 \text{ Hz}), 4.17 \text{ d} (1H, H^{5'}, {}^{3}J = 9.5 \text{ Hz}),$ 4.28 d (1H,  $H_B^{28}$ ,  ${}^{3}J = 11.3$  Hz), 4.48 d.d (1H,  $H^{3'}$ ,  ${}^{3}J =$ 10.3, 5.7 Hz), 5.15 t (1H,  $H^{2'}$ ,  ${}^{3}J = 9.9$  Hz), 5.24 t (1H,  $H^{4'}$ ,  ${}^{3}J = 9.4$  Hz), 5.31 t (1H,  $H^{3'}$ ,  ${}^{3}J = 9.2$  Hz), 5.79 d  $(1H, H^{1'}, {}^{3}J = 7.6 \text{ Hz})$ .  ${}^{13}C$  NMR spectrum (400 MHz, CDCl<sub>3</sub>),  $\delta_{\rm C}$ , ppm: 13.7, 14.6, 14.9, 16.0, 16.1, 16.5, 18.2, 20.4, 20.5, 20.8, 21.3, 21.6, 22.9, 23.7, 26.8, 26.9, 27.9, 28.7, 29.0, 29.4, 29.8, 34.2, 34.6, 37.0, 37.2, 37.8, 38.4, 40.9, 42.9, 44.5, 46.6, 48.1, 49.9, 53.0, 55.3, 63.2, 69.0, 70.0, 71.8, 73.1, 80.9, 91.5, 166.7, 169.2, 169.3, 169.8, 170.4, 171.0, 172.1. Mass spectrum (MALDI), m/z: 925.9  $[M + Na]^+$ , 941.9  $[M + K]^+$ . Found, %: C

65.25; H 8.17. C<sub>36</sub>H<sub>58</sub>O<sub>6</sub>. Calculated, %: C 65.17; H 8.26.

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on an Avance-400 and Avance-600 spectrometers (Bruker, Germany). Mass spectra (MALDI) were obtained on a time-of-flight mass spectrometer UltraFlex III TOF/ TOF (Bruker Daltonik GmbH, Germany) in a linear mode (Nd:YAG laser,  $\lambda$  355 nm). Data was processed using the FlexAnalysis 3.0 program (Bruker Daltonik GmbH, Germany). The measurements were carried out in the range of m/z 200–6000. Positively charged ions were registered. 2,5-Dihydroxybenzoic acid and *p*-nitroaniline were used as a matrix. Electrospray ionization mass spectra (ESI) were obtained on an AmazonX mass spectrometer (Bruker Daltonik GmbH, Germany). The measurements were carried out in the m/z range from 100 to 2800 recording the positively charged ions (the capillary voltage 4500 V). Nitrogen at a temperature of 250°C and a flow rate of 8 L/min was used as the gas drier. A methanol-water solution (70:30) was used as the eluent, and the eluent flow rate was 0.2 mL/min. The completeness of the reactions and the purity of the substances were monitored by thin layer chromatography on Sorbfil plates (Imid, Russia), the substances were detected by plate treatment with a 5% solution of sulfuric acid followed by heating to 120°C. Specific rotation was measured on a Model 341 polarimeter (Perkin Elmer Inc., USA) in a temperature-controlled cell at 20°C and at 589 nm. Melting points were measured on a Boetius instrument.

## ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 14-50-00014).

## REFERENCES

- Stachulski, A.V. and Meng, X., *Nat. Prod. Rep.*, 2013, vol. 30, no. 6, p. 806. doi 10.1039/C3NP70003H
- Andreeva, O.V., Sharipova, R.R., Strobykina, I.Yu., and Kataev, V.E., *Chem. Nat. Compd.*, 2014, vol. 50, no. 3, p. 465. doi 10.1007/s10600-014-0988-7
- Andreeva, O.V., Sharipova, R.R., Garifullin, B.F., Strobykina, I.Yu., and Kataev, V.E., *Chem. Nat. Compd.*, 2015, vol. 51, no. 4, 689. doi 10.1007/s10600-015-1385-6.
- Andreeva, O.V., Sharipova, R.R., Strobykina, I.Yu., Kravchenko, M.A., Strobykina, A.S., Voloshina, A.D., Musin, R.Z., and Kataev, V.E., *Russ. J. Org. Chem.*, 2015, vol. 51, no. 9, p. 1324. doi 10.1134/ S1070428015090201.
- Gauthier, C., Legault, J., Rondeau, S., and Pichette, A., *Tetrahedron Lett.*, 2009, vol. 50, p. 988. doi 10.1016/ j.tetlet.2008.12.043.
- Li, J.-F., Chen, S.-J., Zhao, Yu, and Li, J.-X., Carbohydrate Res., 2009, vol. 344, p. 599. doi 10.1016/ j.carres.2009.01.019

- Huang, Z., Zhang, Y., Zhao, Li, Jing, Y., Lai, Y., Zhang, L., Guo, Q., Yuan, S., Zhang, J., Chen, Li, Peng, S., and Tian, J., *Org. Biomol. Chem.*, 2010, vol. 8, no. 3, p. 632. doi 10.1039/b918846k
- Wahhab, A., Ottosen, M., and Bachelor, F.W., *Can. J. Chem.*, 1991, vol. 69, p. 570. doi 10.1139/v91-086
- Gauthier, C., Legault, J., Lebrun, M., Dufour, P., and Pichette, A., *Bioorg. Med. Chem.*, 2006, vol. 14, no. 19, p. 6713. doi 10.1016/j.bmc.2006.05.075
- Cheng, T.-C., Roffler, S.R., Tzou, S.-C., Chuang, K.-H., Su, Y.-C., Chuang, C.-H., Kao, C.-H., Chen, C.-S., Harn, I.-H., Liu, K.-Y., Cheng, T.-L., and Leu, Y.-L., *J. Am. Chem. Soc.*, 2012, vol. 134, no. 6, p. 3103. doi 10.1021/ja209335z
- Higashi, T., Horike, M., Kikuchi, R., and Shimada, K., Steroids, 1999, vol. 64, no. 10, p. 715. doi 10.1016/ S0039-128X(99)00057-4
- Garifullin, B.F., Sharipova, R.R., Strobykina, I.Yu., Babaev, V.M., and Kataev, V.E., *Russ. J. Org. Chem.*, 2014, vol. 50, no. 4, p. 484. doi 10.1134/ S107042801404006X