SINGLET OXYGEN REACTIONS IN AQUEOUS SOLUTION. PHYSICAL AND CHEMICAL QUENCHING RATE CONSTANTS OF CROCIN AND RELATED CAROTENOIDS

Paolo Manitto^{*}, Giovanna Speranza^{*}, Diego Monti and Paola Gramatica Dipartimento di Chimica Organica e Industriale, Università di Milano and Centro di Studio per le Sostanze Organiche Naturali del CNR, via Venezian 21, 20133 -Milano, Italy

ABSTRACT : Thermal decomposition of 3-(1,4-epidioxy-4-methyl-1,4-dihydro-1-naphthyl)propionic acid (2) has been used to measure both the physical and chemical quenching rate constants of ${}^{1}O_{2}$ (k_{Q} and k_{R} , respectively) by water-soluble 8,8'-diapocarotenoids such as crocin (1a) and its derivatives (1b,c). The value of k_{Q} was found to be slightly lower than the diffusion controlled rate constant in all the solvents examined, whereas k_{R} showed strong dependence on the medium, going from ca. 10⁸ in H₂O to 10⁶ M⁻¹s⁻¹ in DMF and DMSO. These findings suggest that both energy- and electron-transfer mechanisms are involved in the quenching of O_{2} (${}^{1}\Delta_{g}$) by crocinoids.

The protective role played by carotenoids¹ in photodynamic oxidation² continues to be a matter of considerable chemical, biological and industrial interest Although crocin (la), the water-soluble pigment of saffron³, is a well recognized quencher of singlet oxygen⁴, no determination of quenching rate constants has been reported so far. On the other hand, estimation of such constants is crucial to a better use of crocin as an ${}^{1}O_{2}$ -monitor as well as to understanding the physical and chemical mechanisms by which carotenoids interact with singlet oxygen in vitro⁵ and in vivo^{2,4}.

We report here a measurement of rate constants for both reaction and physical quenching of O_2 $({}^{1}\!\Delta_{g})$ by crocin $(\underline{l}a)$ and its derivatives $(\underline{l}b,\underline{c})$ in water and other solvents.

To avoid undesired side reactions accompanying a sensitized photooxygenation, e.g. <u>cis-trans</u> isomerization of the polyene chain^{1b,3} and $0\frac{1}{2}$ production⁶, the water-soluble 1,4-endoperoxide of 3-(4-methyl-l-naphthyl)propionic acid (2) was chosen as a thermal source of singlet oxygen⁷. In a typical experiment two separated solutions (10 ml) of crocin (1a, 4.1×10^{-5} M) and 2 (94% by KI-starch test; 5.3×10^{-3} M) in 0.1 M phosphate buffer (pH 7.4) were mixed at 0°C. After deoxygenation by nitrogen bubbling, the resulting solution was rapidly heated to $35\pm1^{\circ}$ C and allowed to stand at $35\pm0.1^{\circ}$ C (under N₂). Electronic absorption spectra of samples taken at 3-min. intervals were recorded in the range 350-520 nm after rapid cooling to 0°C and appropriate dilution with the buffer. The disappearance of crocin was monitored by the decrease in 443 nm absorption.

For all the experiments performed, linear relationships of the type : $\ln \begin{bmatrix} C \end{bmatrix}_t = -k_C t + \text{cost.}$ (where $\begin{bmatrix} C \end{bmatrix}_t$ is the concentration of the carotenoid in the reaction mixture at time t) were obtained with satisfactory correlation coefficients in the interval 1-25 min. This appeared coherent with a steady-state approximation and allowed the rate of bleaching, V_t , to be calculated at a given $\begin{bmatrix} C \end{bmatrix}_t$.

According to the following sequence of reactions for the 10_2 -mediated interactions between 2 (AO₂) and the carotenoid (C) :

1)
$$AO_2 \xrightarrow{k_D} A + {}^{1}O_2$$

2) ${}^{1}O_2 \xrightarrow{k_S} {}^{3}O_2$
4) ${}^{1}O_2 + C \xrightarrow{k_R} Products$
(bleaching)⁸

quantitative kinetic analysis gives :

$$V = - \frac{d[c]}{dt} = k_{D} \left[AO_{2} \right] \cdot \frac{k_{R} [c]}{k_{S} + (k_{Q} + k_{R}) [c]}$$

where k_D is the decomposition rate constant of the endoperoxide⁹ corrected for the yield in ${}^{1}O_2$ (82%)⁷, k_S the rate constant for the natural decay of ${}^{1}O_2^{-10}$, k_Q and k_R the bimolecular rate constants for physical and chemical quenching of ${}^{1}O_2$, respectively. At a given time t (typically 3 min. after reaching the reaction temperature) :

$$\frac{Z(t)}{v_t} = a \cdot \left(\frac{1}{[c]_t}\right) + b \qquad \text{where} \quad a = \frac{k_s}{k_R} ; \quad b = \frac{k_R + k_Q}{k_R}$$

and $Z(t) = k_D \left[AO_2 \right]_t = k_D \left[AO_2 \right]_0 \exp(-k_D t) \left(\left[AO_2 \right]_0 \text{ being the initial concentration} of the endoperoxide). Thus the plot of <math>(Z(t) / V_t)$ vs. $(l / \begin{bmatrix} C \\ t \end{bmatrix})$ (for the same instant t) gives a straight line, if one carries out a set of experiments using the same parametric variable, $\left[AO_2 \right]_0$, but varying the initial concentration of the carotenoid. The quenching rate constants, k_R and k_Q , can then be calculated from the slope a and the intercept b.

The data of Table 1 indicate that in water 8,8'-diapocarotenoids (seven non-carboxy double bonds) have a quenching capacity for O_2 ($\frac{1}{\Delta}_g$) comparable to that shown in organic solvents by other polyene compounds having a more extended conjugation^{5b-f}. Unlike those, however, crocinoids exhibit an appreciable rate of chemical reaction (bleaching).

Table 1 - ${}^{1}O_{2}$ -quenching rate constants ($M^{-1}s^{-1}$) and oxidation potentials of crocin and its derivatives at 35+0.1°C

	SOLVENT (pH)	$10^{-8} \kappa_{R}^{(a)}$	$10^{-9} k_Q^{(a)}$	Eox (V vs. SCE) ^(b)
CROCIN (la) ^(c)	H ₂ O (7.4)	0.56	1.8	0.58
EMI-CROCIN (1b) (c)	H ₂ O (7.4)	1.3	5.1	0.57
CROCETIN $(lc)^{(d)}$	H ₂ O (7.8)	2.5 ^(e)	5.5 ^(f)	0.55
CROCETIN (lc)	DMF	< 0.05	$\simeq 7$	0.82
CROCETIN (lc)	DMSO	< 0.05	≃ 2	0.87

(a) mean values of 4 independent measurements each based on 5 bleaching expts. (r > 0.996); (b) peak potentials measured by cyclic voltametry (glassy carbon electrode and SCE reference electrode; 0.1 M KCl and 0.1 M TEAP as supporting electrolytes in H₂O and organic solvents, respectively); (c) isolated from alcoholic extract of saffron according to *Ref.* 3 (R_t 10.2 and 16.1 min. for la and lb, respectively, in analytical HPLC); (d) obtained by acidic hydrolysis of la^{1b}; (e) 4 in D₂O (*Ref.* 5a); (f) 2.5 in D₂O (*Ref.* 5a).

Taking into account the fact that triplet crocetin (1c) results from guenching of singlet molecular oxygen in D₂O, Matheson and Rodgers proposed^{5a} a slightly endothermic¹¹ energy transfer as the major ${}^{1}O_2$ -scavenging mechanism. In agreement with this suggestion we found that 13-<u>cis</u>-crocin (3)¹² undergoes ${}^{1}O_2$ -induced isomerization to the all-<u>trans</u>-polyene (1a) with high efficiency¹³. In fact, using the decrease of the <u>cis</u>-peak³ at 328 nm as a measure of double bond inversion (in short-term experiments characterized by no significant bleaching of absorbance at 443 nm) we obtained the following second order rate constants in water : k_I (isomerization) = $1.2 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$ and $k_O = 6.1 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$.

On the other hand, an electron-transfer mechanism cannot be ruled out¹³. Inspection of the data of Table 1 reveals that a marked decrease of the k_R (about two orders of magnitude) is found on going from water to solvents characterized by lower dielectric constants, more positive E_{ox} for crocetin, and more negative redox potentials for O_2/O_2^{-1} (E° = -0.71 V vs. SCE in DMF^{14a} and -0.58 V vs. SCE in DMSO^{14a}, adjusted for unit conc. of O_2^{-14b}). This strongly suggests that electron transfer is involved at least in the bleaching of 8,8'-diapocarotenoids in aqueous solution¹⁵.

Thus our results show that an electron-transfer process could be a major factor in the decomposition of carotenoids in fruit juices lb and in vivo 4 in the presence of light and oxygen.

Acknowledgements

We thank Dr. V. Malatesta (Farmitalia, Milan) for measuring oxidation potential and Ministero Pubblica Istruzione (M.P.I., Rome, Italy) for financial support.

REFERENCES AND NOTES

1-(a)Proceedings of the 7th International Symposium on Carotenoids, Munich,

F.R.G., August 1984, Pure Appl. Chem., <u>57</u>, 639-821 (1985); (b) O. Isler, Ed., "Carotenoids", Birkhäuser Verlag, Basel, 1971.

- 2-(a) E.L. Schrott, "Carotenoids in plant photoprotection", in *Ref. 1a*, p. 729;
 (b) N.I. Krinsky, *Pure Appl. Chem.*, <u>51</u>, 649 (1979); (c) H.H. Wasserman and R.W. Murray, Eds., "Singlet oxygen", Academic Press, New York, 1979.
- 3-G. Speranza, G. Dadà, P. Manitto, D. Monti and P. Gramatica, *Gazz. Chim. Ital.*, <u>114</u>, 189 (1984) and references cited therein.
- 4-(a) U. Takahama, R.J. Youngman and E.F. Elstner, *Photobiochem. Photobiophys.*, 7, 175 (1984); (b) R.J. Youngman, P. Schieberle, H. Schnabl, W. Grosch and E.F. Elstner, *ibid.*, 6, 109 (1983); (c) R.J. Youngman and E.F. Elstner, *Ber. Deutsch. Bot. Ges. Bd.*, <u>96</u>, 357 (1983).
- 5-(a) I.B.C. Matheson and M.A.J. Rodgers, *Photochem. Photobiol.*, <u>36</u>, 1 (1982);
 (b) M.A.J. Rodgers and A.L. Bates, *ibid.*, <u>31</u>, 533 (1980); (c) D. Bellus, *Adv. Photochem.*, <u>11</u>, 105 (1979); (d) F. Wilkinson and W.T. Ho, *Spectrosc. Lett.*<u>11</u>, 455 (1978); (e) A. Farmilo and F. Wilkinson, *Photochem. Photobiol.*, <u>18</u>, 447 (1973); (f) P.B. Merkel and D.R. Kearns, *J. Am. Chem. Soc.*, <u>94</u>, 7244 (1972).
- 6-Illumination of dye photosensitizer in the presence of oxygen may give 0⁺/₂; see, for example : G.S. Cox, D.G. Whitten and C. Gianotti, Chem. Phys. Lett., 67, 511 (1979).
- 7-I. Saito, T. Matsuura and K. Inoue, J. Am. Chem. Soc., 105, 3200 (1983).
- 8-That a direct interaction of the pigment with O_2 $({}^{1}\Delta_{g})$ is the sole cause of bleaching is further supported by the finding that crocin is unreactive toward O_2 and H_2O_2 (W. Bors, M. Saran and C. Michel, Int. J. Radiat. Biol., <u>41</u>, 493 (1982) and Ref. 4b).
- 9-First-order rate constants for the decay of 2 at 35°C were found to be : 2.8x10⁻⁴ s⁻¹ in phoshate buffer at pH 7.8 (lit.⁷ : 4.9x10⁻⁴); 1.5x10⁻⁴ s⁻¹ in DMF; 1.7x10⁻⁴ s⁻¹ in DMSO.
- ll-The diffusion-controlled rate constant for crocetin and molecular oxygen in water at 35°C can be calculated $\simeq 2 \times 10^{10}$ M⁻¹s⁻¹ by means of Smoluchowski equation

 $k_{diff} = 4 \pi N (D_{c} + D_{o}) R_{co} / 1000$

where the diffusion coefficients of the carotenoid (D_C) and of oxygen (D_O) are assumed to be $0.3-0.5 \times 10^{-5}$ and 3.07×10^{-5} cm² s⁻¹, respectively, and the encounter radius R_{CO} = 7 Å (values estimated according to : R.C. Reid, J.M. Prausnitz and T.W. Sherwood, "The Properties of Gases and Liquids", 3rd ed., McGraw-Hill, New York, 1977, pp. 57-60 and 566-582; Landolt-Börnstein, II Bd., 5 Teil, BdTeil a, Springer Verlag, Berlin, 1969, p. 611.

12-Obtained by photoisomerization of crocin : Ref. 3.

- 13-See, for example : C.S. Foote, Y.C. Chang and R.W. Denny, J. Am. Chem. Soc., <u>92</u>, 5218 (1970).
- 14-(a) D.T. Sawyer and J.S. Valentine, Acc. Chem. Res., <u>14</u>, 393 (1981); (b) Landolt-Börnstein, IV Bd., 4 Teil, BdTeil c, Springer Verlag, Berlin, 1976, pp. 266-269.
- 15-For crocetin in water the Rehm-Weller equation (Ref. 16a) gives : $\Delta G'$ (e.t.) = -1.1 kcal mol⁻¹, assuming E° (${}^{3}O_{2}$) = -0.40 V vs. SCE (unit conc. as standard state reference^{14a};) E_{0,0} = 22.53 kcal mol⁻¹ for ${}^{1}O_{2}{}^{2}C$; distance between ions ca. 7 Å^{16b}. At this $\Delta G'$ value the observed rate constant for a full (reversible) e.t. can be estimated ${}^{10}7-10^9$ M⁻¹s⁻¹ with the assumption of an intrinsec barrier $\Delta G \neq (0) = 2.4-6.0$ kcal mol⁻¹ (Ref. 16b).
- 16-(a)D. Rehm and A. Weller, Isr. J. Chem., <u>8</u>, 259 (1970); (b) L. Eberson, Adv. Phys. Org. Chem., 18, 79 (1982).

(Received in UK 19 June 1987)