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ABSTRACT: We have developed a Ni-catalyzed enantiose-
lective hydroarylations of styrenes with arylboronic acids 
using MeOH as the hydrogen source, providing an efficient 
method to access 1,1-diarylalkanes, which are essential struc-
tural units in many biologically active compounds. In addi-
tion, Ni-catalyzed enantioselective hydrovinylation of sty-
renes with vinylboronic acids is also realized with good yields 
and enantioselectivities. The synthetic utility was demon-
strated by the efficient synthesis of (R)-(-)-Ibuprofen. 

Construction of a tertiary stereogenic center bearing two 
different aryl groups, an essential structure units found in 
both natural products and pharmaceuticals, is of great im-
portance in organic synthesis.

1
 In this context, various meth-

ods employing asymmetric catalysis have been developed for 
the synthesis of enantioenriched 1,1-diarylalkanes,

2
 including 

the hydrogenation of 1,1-diarylalkenes,
3
 the conjugate addi-

tion of aryl nucleophiles to 1-arylalkenes,
4
 the cross-coupling 

benzylic reagents with nucleophiles or electrophiles,
5,6

 and 
arylation via C–H functionalization.

7
 Alternatively, transi-

tion-metal-catalyzed enantioselective hydroarylation of sty-
renes offers a straightforward method to the synthesis of 1,1-

diaryl alkanes, in which active catalyst species metalhydride 

(MH) is involved.
8,9

 Due to the requirement for ligand to 
obtain high branch selectivity, the development of an enan-
tioselctive hydroarylation of styrenes was still challenging. 
To date, only two examples have been developed for the en-
antioselective hydroarylation of styrenes. In 2011, Sigman and 
co-workers elegantly developed palladium-catalyzed enanti-
oselective hydroarylation of styrenes with aryl boron esters 
using i-PrOH as the hydride source with moderate yields and 
enantioselectivities (Scheme 1a).

10
 This work was a milestone 

in the field of enantioselective hydroarylation, as it inspired 
further studies to address the issues. In 2016, Buchwald and 
co-workers reported the cooperative Cu/Pd-catalyzed hy-
droarylation of styrenes with arylbromides using MePh2SiH 
as the hydride source, affording 1,1-diarylethanes in good 
yields with good to excellent enantioselectivities (Scheme 
1b).

11
 Recently, Zhou and co-workers elegantly developed a 

Ni-catalyzed hydroarylation of styrenes and 1,3-dienes with 
organoboron compounds (Scheme 1c).

9a
 Nevertheless, nickel-

catalyzed enantioselective hydroarylation of styrenes remains 
undeveloped. Herein, we report a Ni-catalyzed enantioselec-
tive hydroarylation of styrenes with arylboronic acids using 
MeOH as the hydride source and chiral bis(oxazoline) ligand 
L4 (Scheme 1d). In addition, we have successfully developed 
a catalytic hydrovinylation of styrenes with vinylboronic ac-
ids with good to excellent enantioselectivities. 

Scheme 1. Catalytic Enantioselective Hydroarylation 

 

Initially, we chose styrene (1a) and 4-methoxyphenylboronic 
acids (2a) as model substrates and MeOH as a hydride source, 
and probed various reaction conditions for the envisioned 
hydroarylation. After extensive optimization, we found that 
92% isolated yield of 1,1,-diarylethane (3a) could be obtained 
with 92% ee value in the presence of 5 mol% of Ni(cod)2, 10 
mol% of bis(oxazoline) ligand L4, and one equivalent of 
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EtOLi in MeOH at 50 °C after 3 h  (Table 1, entry 1). NiCl2 is 
not effective for this reaction (entry 2). The reactivity dimin-
ished significantly if Ni(PPh3)4 was used (entry 3). The addi-
tion of base is helpful for the achievement of high enantiose-
lectivity and LiOEt is optimal among the bases we tried (en-
try 4–7). Evaluating different substituents on the Box ligands 
bearing a gem-dimethyl linkage revealed that phenyl substit-
uent is optimal and 49% 

1
H NMR yield with 85% ee value was 

achieved using chiral bis(oxazoline) ligand L8 (entries 8–11). 
Subsequent investigations focused on ligands L9−L12 since 
the bite-angle (θ) of Box ligands could affect the enantiose-
lectivity. Generally, when ring size of Box ligands become 
larger (from n = 3 to 6), the bite angle (θ) decreased.

12
 Evalu-

ating different ring size of Box ligands (from n = 3 to 7) re-
vealed that L4 is optimal and 92% isolated yield with 92% ee 
value was achieved (entries 12–15). 

Table 1. Reaction Optimization with Substrate 1a 

 
a
Reaction conditions: 1a (0.25 mmol), 2a (o.5 mmol), 

Ni(cod)2 (5 mol%), ligand (10 mol%), additives (0.25 mmol), 
in MeOH (1 mL) at 50 

o
C for 3 h. EtOLi is 1.0 M solution in 

ethanol. 
b
Yields were determined by 

1
H NMR using CH2Br2 

internal. 
c
Enantioselectivities were determined by chiral 

HPLC analysis. 
d 

Yield of isolated product 3a. 

With the optimized reaction conditions in hand, the sub-
strate scope was evaluated to test the generality and limita-
tion of this Ni-catalyzed hydroarylation. As shown in Scheme 
2, styrene derivatives substituted with a variety of functional 
groups such as alkyl, ether, OTBS, phenyl, fluoro, and trifluo-
romethyl groups were well tolerated under standard condi-
tions (3a–3m). In general, hydroarylation of styrenes with 
electron-rich or electron-neutral substituents resulted in 91–
94% ee values with good to excellent yields (3a–3j). A strong-
ly electron withdrawing group, such as CF3, afforded a 87% 
ee value with slightly lower yield (3l). An ortho-substituted 
styrene is also tolerated, affording slightly lower yield and 
enantioselectivity (3m). To our satisfaction, indole substitut-

ed styrene also gave an excellent yield and enantioselectivity 
(3n). It is worth noting that 1,3-diene substrate reacted par-
ticularly well (96% yield), although low enantioselectivity 
was obtained (3o). In addition, the structures of 3i and 3j 
were unambiguously confirmed by X-ray analysis. Although 
this reaction is useful for the enantioselective hydroarylation 
of numerous styrenes, it is not without its limitations. For 
examples, although fluoro and trifluoromethyl substituted 
styrenes are reactive (3k and 3l), styrenes bearing ester, ni-
trile, ketone, and chloro group, are not reactive at current 
reaction conditions (1p–1s). 4-Vinylpyridine and styrene con-
taining a free alcohol, are not tolerated (1t and 1u). In addi-

tion, - and -substituted styrenes are not reactive at current 
reaction conditions (1v and 1w). 

Scheme 2. Evaluation of Styrene Scope
a,b

 

 

 

a
Isolated yields are reported unless otherwise noted.Yields of 

isolated products on 0.25 mmol scale. 
b
Enantioselectivities 

were determined by chiral HPLC analysis.  

Encouraged by the feasibility of Ni-catalyzed hydroaryla-
tion using substituted styrenes, we moved on to examine the 
reactivity of a series of arylboronic acids, which are readily 
available. As shown in Scheme 3, substrates containing vari-
ous functional groups, including alkyl, ether, and ester group 
were tolerated, affording good to excellent yields (4a–4m). In 
general, arylboronic acids with electron-rich or electron-
neutral substituents resulted in 86–91% ee values with excel-
lent yields (4a–4h). A strongly electron withdrawing group, 
such as ester, afforded excellent yields with moderate enan-

Page 2 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

tioselectivity (4j and 4k). To our delight, heteroaromatic 
rings such as benzofuran and furan are tolerated under 
standard conditions, which results in good enantioselectivi-
ties and yields (4l and 4m). Furthermore, this protocol could 
also be applied to enantioselective hydrovinylation of sty-
renes with various vinylboronic acids. To the best our 
knowledge, enantioselective Ni-catalyzed enantioselective 
hydroalkenylation of styrene with vinylboronic acids is un-
known.

13
 As shown in Scheme 3, cyclic and acyclic vinyl-

boronic acids were well tolerated under the standard condi-
tions, affording good yields with 89–96% ee values (6a–6f). 

Scheme 3. Evaluation of Arylboronic Acid Scope
a,b

 

 
a
Isolated yields are reported unless otherwise noted. Yields of 

isolated products on 0.25 mmol scale. 
b
Enantioselectivities 

were determined by chiral HPLC analysis. 

Scheme 4. Gram-Scale Experiment and Synthetic Appli-

cations 

 

Reaction conditions for Scheme 5c: a) N-bromosuccinimide 
(1 equiv), CH3CN, rt, 3 h; b) Pd(PPh3)4 (5 mol%), K2CO3 (3 
equiv), 4-t-Bu-ArB(OH)2 (3 equiv), PhMe/EtOH/H2O = 1:1:1, 
100 °C, 3 h; c)  Pd(OAc)2 (5 mol%), rac-BINAP (7.5 mol%), 
morpholine (2 equiv), Cs2CO3 (1.3 equiv), PhMe, 100 °C, 5 h.  

The scalability of this hydroarylation was evaluated using a 
reaction containing 6.0 mmol of substrate 1a, giving 1.24 
gram of desired product 3a in 96% yield with 93% ee value 
which showcases the preparative utility of this hydroaryla-
tion (Scheme 4a). The synthetic utility of this catalytic hy-
drovinylation was demonstrated by efficient synthesis of the 
drug molecular, (R)-ibuprofen with good yield and excellent 
enantioselectivity (Scheme 4b). In addition, bromination of 
the hydroarylation product 3j results in 8, which could be 
converted into 9 and 10 with coupling reactions (Scheme 4c). 

To gain insight into the reaction mechanism, deuterium-
labelling experiments were carried out. As shown in Scheme 
5, subjection of 11 and 12 to the reaction conditions using 
CD3OH as solvent in lieu of CH3OH resulted in 3a-D with no 
deuterium incorporation (Scheme 5a). However, 77% deuter-
ium incorporation was observed using CH3OD as solvent in 
lieu of CH3OH, which indicates that the hydride is deriving 
from methanol O–H group instead of the C–H bond of the 
alcohol (Scheme 5b). To gain further insight into this hy-
droarylation system, deuterium-labelled 11-D was prepared 
and subjected to the reaction and the H/D scrambling be-
tween methyl and benzyl groups was not observed, which is 
distinct from previous report.

9a
 

Scheme 5. Deuterium-Labeling Experiment 

 

In conclusion, we have demonstrated the first example of 
Ni-catalyzed enantioselective hydroarylation of styrenes with 
aryboronic acids using methanol as the hydride source. In 
addition, catalytic enantioselective hydroalkenylation was 
demonstrated, which could be applied to efficient synthesis 
of drug molecular (R)-ibuprofen. More work to better under-
stand the mechanistic intricacies of this process are currently 
underway in our laboratory. 
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