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ABSTRACT: The enantioselective hydrocyanation of 
olefins represents a conceptually straightforward 
approach to prepare enantiomerically enriched nitriles.  
These, in turn, comprise or are intermediates in the 
synthesis of many pharmaceuticals and their synthetic 
derivatives. Herein, we report a cyanide-free dual 
Pd/CuH-catalyzed protocol for the asymmetric 
Markovnikov hydrocyanation of vinyl arenes and the 
anti-Markovnikov hydrocyanation of terminal olefins in 
which oxazoles function as nitrile equivalents. After an 
initial hydroarylation process, the oxazole substructure 
was deconstructed using a [4+2]/retro-[4+2] sequence to 
afford the enantioenriched nitrile product under mild 
reaction conditions. 

Nitriles are a ubiquitous class of compounds present in many 
pharmaceuticals,1 secondary metabolites,2 and polymers.3 Owing 
to their unique chemical reactivity, nitriles often serve as precursors 
to numerous additional important functional groups in organic 
synthesis, including N-heterocycles, carbonyl compounds, and 
amines.4 Although nitriles can be accessed by many methods, the 
conversion of olefins to alkyl nitriles via transition metal-catalyzed 
olefin hydrocyanation represents one of the most conceptually 
straightforward processes. While hydrocyanation of feedstock 
olefins is conducted on a million-metric ton scale annually to 
produce nitrile precursors to polymers,3 these protocols employ 
hydrogen cyanide and form almost exclusively achiral products. 
Despite the numerous improvements in the racemic hydrocyanation 
of olefin feedstocks5 and fine chemicals,6 the reaction conditions 
and substrates employed in the analogous asymmetric variant of 
this transformation have advanced minimally since the seminal 
work by Jackson7a and RajanBabu.7b–7d,7g   

Asymmetric olefin hydrocyanation is typically achieved through 
the formal addition of hydrogen cyanide, either generated in situ or 
employed directly in gaseous form, across an olefin facilitated by a 
chiral phosphine-ligated metal catalyst (Scheme 1A).7–8 Aside from 
the potential safety concerns of working with hydrogen cyanide,9  
many of these asymmetric methods are limited to vinyl arenes and 
employ non-commercially available ligands.7,10 Recently, Zhang 
and Lv have described a formal asymmetric olefin hydrocyanation 
reaction by means of a tandem rhodium-catalyzed 
hydroformylation/condensation/aza-Cope elimination sequence.11 
Alternative methods to access enantioenriched nitriles, including 

C–H cyanation,12 α-arylation of prefunctionalized nitriles13 and 
enantioselective protonation of silyl ketene imines,14 have also 
been developed employing various precursors.15 

Our continued interest in enantioselective alkene 
hydrofunctionalization reactions led us to envision the 
development of a catalytic protocol to access enantioenriched α-
alkyl-α-arylnitriles, represented by 3 (Figure 1B).16–18 We proposed 

Figure 1. A. Traditional approaches to asymmetric olefin 
hydrocyanation. B. Our dual Pd/CuH-catalyzed asymmetric olefin 
hydrocyanation using oxazoles as masked nitriles, followed by a 
thermal deconstruction of 4 to the enantioenriched nitrile. C. 
Proposed dual Pd/CuH catalytic cycles for the 
hydrofunctionalization process involving a 2-halo-oxazole (2).   
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that the critical C–CN bond of the nitrile could be forged through 
an initial dual Pd/CuH-catalyzed asymmetric olefin 
hydroarylation17 reaction using a N-heterocyclic compound as a 
nitrile surrogate, thus obviating the need to employ cyanide  either 
directly or transiently formed. A subsequent thermal-[4+2]/retro-
[4+2] sequence with the appropriate dienophile could furnish the 
enantioenriched nitrile. However, at the outset, it was unclear to us 
which N-heterocycle would best serve as a masked nitrile, since 
pyrimidines, pyrazines, oxazoles and several other heterocycles 
have all been shown to expel nitriles as byproducts in cycloaddition 
reactions with alkynes.19–21 We reasoned that an oxazole, despite 
its limited precedent in forming nitriles,19 would be an ideal nitrile 
precursor for this transformation as it does not introduce any 
regiochemical complications and is an electron-rich aza-diene.21 

Figure 1C details our proposed dual Pd/CuH catalytic cycle for 
the aforementioned approach. Enantioselective hydrocupration of 
an olefinic substrate (1) by a CuH catalyst (I), generated in situ 
through the use of a Cu(I) salt, chiral phosphine ligand, and silane, 
would form an enantioenriched Cu(I) alkyl intermediate (II). 
Meanwhile, the Pd catalytic cycle would begin with oxidative 
addition of a ligated Pd(0) species (III) into a 2-halo-oxazole (2) 
forming complex IV. Stereospecific transmetallation of II with Pd 
species IV would result in an alkyl Pd(II) complex (V), which 
following reductive elimination furnishes an intermediate 
enantioenriched oxazole (4). The formed copper(I) halide (VI) 
could regenerate the active CuH catalyst after a -bond metathesis 
reaction in the presence of an appropriate base and silane.17–18 For 
this approach to be successful, the rates of both catalytic cycles 
would need to be well aligned to prevent any deleterious side 
pathways or the racemization of the alkyl copper species II.17 After 
this hydroarylation process, as depicted in Figure 1B, a subsequent 
thermal-[4+2] cycloaddition between oxazole 4 and an alkyne 
would form a highly strained 7-oxa-2-azabicyclo[2.2.1]heptadiene 
derivative (5), and upon a retro-[4+2] cycloaddition the nitrile 
product is liberated along with an electron deficient furan (6). Thus, 
we reasoned that the judicious choice of a 2,5-disubstituted-4-halo-
oxazole (2) coupling partner would be paramount to achieving both 
a highly enantioselective hydroarylation step and an efficient 
[4+2]/retro-[4+2] sequence. 

Accordingly, we focused on finding a suitable halo-oxazole 
coupling partner (2) and a set of experimental reaction conditions 
for the asymmetric olefin hydrocyanation using styrene (1a) as a 
model substrate (Table 1). Our investigation of the optimal reaction 
conditions identified oxazole 2a as an excellent nitrile surrogate 
and the commercially available alkyne 7a as a suitable dienophile. 
When 2a and 7a were utilized in conjunction with 
[Pd(cinnamyl)Cl]2, BrettPhos (L3), P1, NaOTMS, and 
Me2(Ph)SiH, the desired nitrile 3a was formed in high yield and 
enantioselectivity (entry 1, 96% 1H NMR yield and 97:3 er), 
without isolation of the alkyl oxazole intermediate (4). Evaluation 
of a series of Cu salts and chiral bisphosphines (entries 1–5) led us 
to discover the air-stable Cu(I) precatalyst P1, which enabled the 
reaction to be set up without the use of an inert-atmosphere 
glovebox.22 Use of the previously described (S)-DTBM-
SEGPHOS-ligated CuCl precatalyst P218b formed the desired 
product in similar yield but with considerably lower 
enantioselectivity (entry 2). Variation of the biarylphosphine 
backbone (entries 6–7) or the absence of a Pd-catalyst (entry 8) 
resulted in diminished yield or no product formation respectively. 
Examination of an alternative to 2a as the nitrile surrogate 
highlighted the crucial role of the oxazole substituents in this 
transformation. Modification of the substituent at the 5-position 
from methyl to phenyl (2b) delivered nitrile 3a in considerably 
lower yield and enantioselectivity, presumably due to the electron-
poor nature of the corresponding alkyl oxazole intermediate (entry 
9). While our previous reports on enantioselective olefin 
hydroarylation18b suggested that a 2-chloro-N-heterocycle was 

more efficient in the hydrofunctionalization reaction than the 
corresponding hetereoaryl bromide, use of 2c in the current process 
resulted in minimal olefin hydrocyanation (entry 10). A variety of 
acetylene diester derivatives, such as the di-n-octyl substituted ester 
(7b), performed well as dienophiles. Notably, the judicious choice 
of dienophile coupling partner aided in the purification of the nitrile 
products (see below and the Supporting Information for details).

Having established appropriate reaction conditions for the 
asymmetric olefin hydrocyanation reaction, we investigated the 
scope of vinyl arene substrates (Scheme 1). Vinyl arenes bearing a 
substituent at the para-position, such as phenyl (3b), isobutyl (3d), 
or thiomethyl (3e), were well tolerated under the reaction 
conditions, resulting in good yields and enantioselectivity of the 
nitrile product. Facile enantiospecific hydrolysis could convert 
nitrile 3d and 3g to ibuprofen10 and cicloprofen,14 respectively, 
both of which are nonsteroidal anti-inflammatory drugs 
(NSAIDs).23 A vinyl arene containing ortho-substitution was 
effectively converted to the nitrile (3c) in high yield and 
enantiopurity. Moreover, substrates containing heterocycles, 
including benzofuran (3f), indoline (3h), N-tosyl-indole (3i), 
carbazole (3j), pyrazole (3k), morpholine (3m), and N-Boc-
piperzine (3o), were smoothly transformed to the nitrile product 
with excellent selectivity. Additionally, 1,2-disubstituted alkenes 
(Scheme 1B), a problematic substrate class for complementary Ni-
catalyzed asymmetric olefin hydrocyanation methods,7h performed 
well under our reaction conditions (3l and 3m). However, cyclic 
olefins were difficult substrates for this transformation. Nitrile 3n 
was isolated in moderate yield and enantioselectivity when 1n was 
subjected to the standard catalytic system. We hypothesized that 
this diminished yield may reflect a slower rate of transmetallation 
between the proposed organometallic species II and IV, potentially 
due to a more sterically congested transition state, or a slower rate 
of hydrocupration of 1n. To further highlight the applicability of 
this formal olefin hydrocyanation method to access medicinally 
relevant molecules, we synthesized an intermediate (3o) en route to 
8, a USP28 inhibitor (Scheme 1C). Conversion of 3o to 8 could be 
achieved via reduction of the nitrile (3o) and acylation of the 
resulting primary amine.24

Table 1. Optimization of the enantioselective hydrocyanation of 
styrene (1a).a 

aReaction conditions: 0.2 mmol styrene (1.0 equiv), yields were 
determined by 1H NMR spectroscopy of the crude reaction 
mixture, using 1,1,2,2-tetrachloroethane as internal standard. 
Enantiomeric ratio (er) was determined by chiral SFC. nd: not 
determined 
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Scheme 1. Substrate scope of the asymmetric Markovnikov 
hydrocyanation of vinyl arenes. a

aAll yields represent the average of isolated yields from two runs 
purified by silica flash chromatography with 0.5 mmol alkene; 
alkyne (7b) was used unless otherwise noted, enantioselectivity 
determined by chiral SFC or HPLC. bAlternative purification was 
used, see supporting information for details. cYield was 
determined by 1H NMR spectroscopy using 1,1,2,2-
tetrachloroethane as an internal standard due to the volatility of the 
product. dAlkyne (7a) was used. e Intermediate oxazole 4l was 
purified, isolated yield reported over two steps. f1.5 equiv of 2a 
and 24 h at 45 ºC 

Me

CNMe

Me

CN

Ph

Me

CN

MeS

Me

Me

Me

CN

Me
N

CN

N
Ph

Me
CN

N
NF

Me
CN

n-Pr

CN

N

O

O

F3C
CN

Me

CN

3h
72% yield

97:3 er

3d
71% yield

99:1 er

3md,f

62% yield
99:1 er

3k
74% yield
97:3 er

3j
53% yield
99:1 er

3id
46% yield
98:2 er

3cc

96% yield
96:4 er

3ed

74% yield
85:15 er (96:4 er)b

3g
72% yield

94:6 er

3b
80% yield

89:11 er (91:9 er)b

Ar N

O

Br

Me

Ph
Ar

R

CN

R

1
(1.0 equiv)

2a
(1.3 equiv)

i. P1 (6.0 mol%), Me2PhSiH (2.0 equiv)
NaOTMS (2.0 equiv), BrettPhos (6.0 mol%)

[Pd(cinnamyl)Cl]2 (6.0 mol% [Pd]),
THF [0.6], 45 ºC, 16 h

ii. CO2RRO2C
R: Et (7a), n-oct (7b)

HN

N

Me

O

NH

Me
H2N

S
N

USP28 inhibitor (8)

Me

N

N
tBuO2C

CN

Me

CN

ref. 24

(3.5 equiv)

3n
34% yield
89:11 er

3f
70% yield
85:15 er

3o
64% yield

96:4 er

O

OBn

CN

3le
73% yield

99:1 er

3
PhMe [4.0], 110 ºC, 8 h

N
Ts

Me

CN

A. Vinyl (hetero)arenes

B. 1,2-disubstituted alkenes
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   We were interested in extending this chemistry toward the anti-
Markovnikov hydrocyanation of unactivated olefins, which can 
often be a synthetic challenge due to competitive olefin 
isomerization.5,27 Several approaches to alkyl nitriles have been 
developed to circumvent these undesired pathways, such as 
dehydration of amides, oxidation of primary amines,  or 
nucleophilic substitution of alkyl halides.4b In line with our 
previous work,18b we anticipated the anti-Markovnikov 
hydrocyanation to be more challenging due to the higher 
hydrocupration barrier.25 However, we were able to perform the 

regioselective hydrocyanation of terminal olefins without 
significantly modifying the standard reaction conditions (Scheme 
2). Overall, this process tolerates the presence of a variety of 
important structural elements (10a–10g), including an ester (10b), 
dioxolane (10c), benzothiazole (10e), indole (10f) and an amide 
(10g). Furthermore, the corresponding alkyl nitriles were isolated 
in high yield and regioselectivity. Hydrocyanation of terminal 
alkene (9d) accentuated the degree of chemoselectivity for this 
process, which generated 10d in good yield without any detectable 
hydrocyanation of the trisubstituted alkene. We further 
demonstrated the utility of this method by synthesizing the nitrile 
derivative (10g) of the cardiovascular drug Cilostazol (11), which 
could conceivably be converted to 11 following deprotection and 
tetrazole formation.26 As previously mentioned, reduction of the 
halo-oxazole (2) and the olefinic coupling partner represents 
potential side reactions for this transformation. Formation of a 
significant amount of reduced 9g was observed when the olefin was 
subjected to the standard reaction conditions. A decrease in the 
amount of P1 utilized, from 6.0 to 4.0 mol%, was necessary to 
improve the efficiency of the dual CuH/Pd catalytic system and 
deliver amide 10g as the major product. 

Enantioenriched alkyl nitriles (3) often undergo epimerization or 
decomposition under a variety of acidic, basic and oxidative 
conditions, thus making further manipulation of the resulting nitrile 
product potentially challenging.7f,28 To obviate these degradation 
pathways, we envisioned that the chiral alkyl oxazole (4) may serve 
as a stable masked nitrile in multistep organic synthesis, which 
could be revealed at a later stage under neutral reaction conditions 
(Scheme 3). To illustrate this concept, we employed 1,2-
disubstituted olefin 1p as a simple representative example. An 
initial asymmetric olefin hydroarylation reaction installed the 

Scheme 2. Substrate scope for the anti-Markovnikov 
hydrocyanation of unactivated olefins.a

aAll yields represent the average of isolated yields from two runs 
purified by silica flash chromatography with 0.5 mmol alkene. 
bYield was determined by 1H NMR spectroscopy using 1,1,2,2-
tetrachloroethane as an internal standard c4.0 mol% P1
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oxazole substructure (4p), which was followed by silyl group 

removal, either under acid or fluoride-mediated conditions, and 
basic functionalization of the resulting phenol to yield oxazole 4p’ 
without any erosion of the enantioselectivity. A subsequent thermal 
cycloaddition sequence with alkyne 7b revealed the nitrile (3p) 
with complete enantiospecificity. We believe that this strategy will 
be further applicable in more sophisticated contexts and numerous 
reaction manifolds that would otherwise result in decomposition of 
the nitrile substructure. 

 In summary, we have developed an asymmetric olefin 
hydrocyanation sequence that relies on an oxazole as surrogate for 
a nitrile, thus avoiding the use of any sources of cyanide in the 
reaction mixture. These reaction conditions developed were 
broadened to the anti-Markovnikov hydrocyanation of unactivated 
olefins. We anticipate that this strategy of employing an 
enantioenriched alkyl oxazole as a masked nitrile in multistep 
synthesis will find further utility in a variety of scenarios. 
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