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Non-enzymatic Oxidation of a Pentagalloylglucose Analog to 
Ellagitannins 
Seiya Ashibe,[a] Kazutada Ikeuchi,[a] Yuji Kume,[a] Shinnosuke Wakamori,[a] Yuri Ueno,[a] Takashi 
Iwashita,[b] and Hidetoshi Yamada*[a] 

 

Abstract: The occurrence of more than 1,000 structural diversity in 
ellagitannins has been hypothesized to begin with oxidation of penta-
O-galloyl-b-D-glucose (b-PGG) to couple the galloyl groups. However, 
the non-enzymatic behavior of b-PGG in the oxidation is unknown. 
Here, we disclose which galloyl groups on glucose tended to couple 
and which axial chirality was predominant in the derived 
hexahydroxydiphenoyl groups, when an analog of b-PGG was 
subjected to oxidation. The study revealed that the galloyl groups 
coupled, in the following order of production ratio: at the 4,6-, 1,6-, 
1,2-, 2,3-, and 3,6-positions with respective S, S, R, S, and R-axial 
chirality. Among them, the most preferred 4,6-coupling reflected the 
tendency observed in natural ellagitannins. An astonishing fact was 
that the second best was the 1,6-coupling. With the detection of a 3,6-
coupled product, this work demonstrated that even ellagitannin 
skeletons with an axial-rich glucose core may generate non-
enzymatically.  

Ellagitannins are a class of hydrolysable tannins. A broad range 
of activities have been associated with ellagitannins, such as 
therapeutic, antioxidant, and tanning activities.[1–4] Compounds of 
the class have structural diversity as more than 1,000 are known. 
The diversity has been explained to arise in phases. The first phase 
is oxidation of 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranose (b-
PGG, 1) to form the hexahydroxydiphenoyl (HHDP) group (Figure 
1) as proposed by Schmidt and Haslam.[5–7] The basic 
ellagitannins, supplied in the first phase, are then further modified 
to increase the diversity explosively,[8] which is the second phase. 
In the first phase, two of the five galloyl groups of 1 couple on the 
glucose core; therefore, the positional variety of the HHDP groups 
represents the beginning of the huge structural diversity. 
Interestingly, coupling takes place even between galloyl groups 
on discontiguous hydroxy groups to form 'axial-rich' ellagitannins, 
such as davidiin (2).[9–11] Formation of the second HHDP group is 
also allowed as casuarictin (3). The HHDP group has axial 
chirality, which is supposed to be induced by conformational 
constraints within 1.[12]  

 

Figure 1. Stepwise occurrence of structural diversity in ellagitannin biosynthesis. 

Verification of the proposal, the Schmidt-Haslam hypothesis, 
is insufficient. The sole reliable verification was reported by 
Niemetz and Gross.[13,14] They elucidated enzymatic oxidation of 
1 to demonstrate the validity of the hypothesis for the first time by 
isolation of tellimagrandin II (4). However, since this very 
important progress in this field, no further evidence has been 
reported. In particular, production of the axial-rich ellagitannins 
from 1 is still in the suppositional level. For the axial chirality of the 
HHDP group, it seems that synthetic works have verified the 
hypothesis by showing that the couplings at the 1,6-,[15] 2,3-,[16,17] 
3,4-,[18] 3,6-,[19,20] and 4,6-positions[21–24] almost reflect the axial 
chirality in natural products. However, the verification is deficient 
because all reactants used in the synthetic works are partly 
galloylated glucose, which cannot mimic the reaction of fully 
galloylated 1. Although a simple chemical reaction cannot reflect 
the biosynthesis where enzymes may take charge of the 
transformations, it is important to understand behaviors in non-
enzymatic oxidation of 1 in the process of clarifying the 
biosyntheses of ellagitannins because the galloyl group also can 
couple non-enzymatically. However, simple oxidation of 
unprotected galloyl groups produces various types of reaction 
products to make analysis focused on the oxidation products 
difficult. In this study, we investigated non-enzymatic oxidation of 
5 (Figure 1), an analog of 1, and revealed which 4-O-benzylated 
galloyl groups tended to couple and which axial chirality was 
predominant in respective coupling positions. 
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Figure 2. Chromatogram and products obtained from oxidation of 5. 

 
For the coupling of galloyl groups of 5, we adopted a reaction 

induced by CuCl2–nBuNH2 (Figure 2).[20] This coupling reaction was 
suitable for a study aimed at understanding the non-enzymatic 
oxidation of the b-PGG analog because the reaction (1) proceeds 
effectively at room temperature, when thermal conditions are 
similar to those of biosynthesis, (2) has a feature that makes 
coupling of galloyl groups spatially close, and (3) has been 
applied in syntheses of natural ellagitannins for coupling galloyl 
groups on the varied positions of glucose.[15,18,24–28]  

The oxidation of 5 with CuCl2 and nBuNH2 provided a 
complicated mixture of products (Figure 2). We conducted the 
reaction after optimization to completely consume 5 because 
residual reactant would make separation of the products 
increasingly difficult. The products were separable using HPLC 
with a reverse phase column (YMC-Pack Pro C18 RS) eluted with 
MeOH/H2O/TFA (v/v/v 72/28/0.05) and detected at 254 nm. Mass 
spectra indicated that compounds eluted before 48 min lost one 
or more galloyl and HHDP groups. The loss of the groups was 
due to solvolysis, a known side reaction of the coupling 
reaction.[24] The molecular ions corresponding to the peaks 
observed between 48 to 75 min and after 75 min were at m/z 
1385.3 and 1387.3, respectively, whose values were 4- and 2-
mass smaller than that of 5. Therefore, compounds eluted 
between 48 and 75 min had two HHDP groups, and that eluted 
between 75 to 120 min had one HHDP group. 1H NMR spectra of 
separated fractions showed that peaks A–E included each single 

compound, the structures of which were determined as follows. 
The other peaks were composed of multiple compounds.  

The compound of the peak A (compound A) possessed the 
1,2-O- and 4,6-O-HHDP (1,2:4,6-O-HHDP) groups (Figure 2). As 
mentioned, this compound had two HHDP groups; hence, the 
number of the galloyl group was one. The HMBC spectrum of the 
compound (SI-3.4) displayed two definite correlations at H-3/C-21 
and C-21/H-23 (see SI-2 for the numbering) to indicate that the 
galloyl group was on O-3. According to this information, the 
structure of compound A had either the 1,2:4,6-, 1,4:2,6- or the 
1,6:2,4-O-HHDP bridge. Of these, the 1,4:2,6- and 1,6:2,4-
bridged isomer could be excluded because bridging at these 
positions does not allow pyranose ring to remain in the 4C1-
conformation that the coupling constants (3JH–H) between 
hydrogens on the glucopyranose ring suggested. Therefore, 
compound A had the 1,2:4,6-O-HHDP bridges. An ellagitannin, 
roxbin B, has been reported to have the skeleton;[29] however, the 
structure was revised to a 2,3:4,6-HHDP isomer,[30] and thus 
natural roxbin B could not be used as an authentic sample for 
identification of compound A. 

Therefore, we confirmed that the structure of compound A 
was 6 through synthesis. Prior to the synthesis, we estimated that 
the axial chirality of the 4,6-O-HHDP group was S on the basis of 
frequency of appearance in natural products. For the 1,2-O-
HHDP group, we synthesized both R- and S-isomers, of which the 
synthesis of the R-isomer is summarized in Scheme 1. The 
synthesis commenced with the preparation of allyl- and benzyl-
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protected (R)-HHDP diacid (R)-12 and its anhydride 13 from 
known 11 (Scheme 1, a).[25,31] Thus, hydrolysis of 11 released (R)-
12, treatment of which with oxalyl chloride provided 13. On the 
other hand, 3-O of diacetone glucose (14) was acylated with 3,5-
di-O-allyl-4-O-benzylgallic acid[25] to furnish 15 (Scheme 1, b). 
After removal of the acetonide groups from 15, the 4,6-diol of 16 
was protected as p-methoxybenzylidene acetal to give 17. 
Treatment of 17 with acid anhydride 13 constructed b-
glucosylester 18. The subsequent intramolecular lactonization of 
18 produced 1,2-bridged 19. The removal of the p-
methoxybenzylidene group provided 4,6-diol 20. Double 
esterification of the exposed diol with diacid (S)-12 to give 21 
followed by removal of all the allyl groups afforded 6. The 1H NMR 
spectrum was identical to that of the compound A (SI-3.18). 
Therefore, the structure of compound A was 6 with the R- and S-
axial chiralities of the 1,2- and 4,6-O-HHDP groups, respectively. In 
addition, we removed all benzyl groups from 6 to provided 
unprotected artificial ellagitannin 22. 

The compound of the peak B was 7 (Figure 2). The mass 
spectrum indicated the existence of two HHDP groups. The 
HMBC correlations were observed at H-1/C-7 and C-7/H-9 (SI-
3.5) and illustrated that the galloyl group was on O-1, and thus the 
two HHDP groups were on O-2, -3, -4, and -6. Among the 
conceivable bridging patterns of the HHDP groups, the 2,3:4,6-
bridged isomer was plausible because of its 4C1-glucose core 
indicated by the 3JH–H values; therefore, the compound 
corresponded to casuarictin (3).[32] Removal of the benzyl groups 
from 7 provided a product that was identical to natural 3 (SI-3.20) 
and which confirmed the structure, including the two S-axial 
chiralities of the HHDP groups.  

The compounds of the peaks C and D were 8 and 9, 
respectively. These structures were confirmed with their S-axial 
chiralities by their transformation to known natural products as 
well as the plot for structural determination of 7. According to the 
mass spectrum, 8 and 9 had one HHDP group. For 8, the 3JH–H 
values indicated that the glucose was in the 4C1-form. The large 
difference of 1H NMR chemical shifts of two hydrogen atoms on 
C-6 suggested the 4,6-position for the HHDP group.[29,33] 
Therefore, the structure corresponded to tellimagrandin II (4).[34] 
For 9, the HMBC correlations appeared at H-6/C-22 and C-22/H-
20 (SI-3.7) to show that one of the connecting positions of the 
HHDP group was O-6. The 3JH–H values suggested the 
occurrence of an axial-rich pyranose. The 1H NMR spectra of 
debenzylated 4 and 2 were identical to that of tellimagrandin II (4) 
synthesized by the Feldman’s group[35] and to that of natural 
davidiin (2),[9,10,15] respectively (SI-3.21 and 3.22).  

The compound of the peak E was 10. The 3JH–H values of 1H 
NMR between protons on the pyranose were small, suggesting 
that it was an axial-rich ellagitannin. HMBC correlations appeared 
at H-3/C-21, C-21/H-23, H-6/C-34, and C-34/H-32 (SI-3.8) to 
show that the HHDP group bridged between O-3 and O-6. 
ROESY spectra displayed correlations at H-2/H-23 and H-4/H-32. 
These correlations indicated the R-axial chirality of the HHDP 
group, because the correlations were structurally accountable 
when the axial chirality was R. With S-axial chirality, the angle of 
the HHDP group over the pyranose was completely different in a 
computationally generated model, in which the atomic distances 
between H-2 and H-32 and between H-4 and H-23 were shorter 
than those between H-2 and H-23 and between H-4 and H-32. In  

 

Scheme 1. Synthesis of 6 and 22. 

addition, comparison of the NMR data of natural products bearing 
R-[36] or S-axial chirality[37] to that of 10 supported the R-axial 
chirality.  

The production ratio of the compounds corresponding to the 
peaks A–E were A/B/C/D/E = 14/14/38/32/2 after consideration of 
the molar absorbance coefficients of 6–10 at 254 nm (SI-3.3). This 
ratio displayed the facile formation of the 4,6-O-HHDP group 
(peaks A–C), which was 66% among the peaks A–E. An 
astonishing fact was the unexpected formation of the 1,6-bridge 
as the second best, and the detection of the 3,6-bridged 
compound.  

In conclusion, we investigated the oxidation of the b-PGG 
analog, 1,2,3,4,6-penta-O-(4-O-benzylgalloyl)-b-D-glucose (5), 
and determined the structures of five products provided by the 
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oxidation with their production ratio. In terms of synthesis of 
natural ellagitannins, the results indicated casuarictin (3), 
tellimagrandin II (4), and davidiin (2) could be synthesized in two 
steps from 5 despite the requirement of HPLC-separation. More 
importantly, the results demonstrated the following features in the 
non-enzymatic HHDP formation on glucose in the case where 
each galloyl group was protected by a benzyl group at the 4-O 
position. (1) The best position to couple the gallates was between 
the 4- and 6-positions. The axial chirality of the obtained HHDP 
group was S. (2) The second best was the 1,6-position with S-
axial chirality. (3) After the production of the 4,6-O-(S)-HHDP 
group, formation of the second bridge was possible at comparable 
1,2- and 2,3-positions with R- and S-axial chirality, respectively. 
(4) Although minor in the ratio, it is important to note the 
occurrence of the 3,6-O-HHDP compound with R-axial chirality.  

The facile formation of the 4,6-O-(S)-HHDP group is in 
agreement with the structural distribution of natural ellagitannins. 
The R-preference in the 1,2-coupling was newly discovered. 
Although our previous structural revision erased the sole 
ellagitannin of which the axial chirality of the 1,2-O-HHDP group 
had been discussed,[30] natural products with 1,2-O-(R)-HHDP 
group may be discovered in the future. For the occasion, the 
spectral data for 22 (SI-3.19 and 4.13) will be used for 
identification. The production of the 1,6-O-HHDP group at a 
surprisingly high ratio shows the possibility of simultaneous 
conformational inversion of the pyranose ring into an axial-rich 
form and the formation of the HHDP group. With the clarified 3,6-
O-HHDP formation, the results indicate flexibility in the 
conformation of the pyranose ring in 5. The bulk of the five 
consecutive 4-O-Bn-galloyl and methylene-O-(4-O-Bn-galloyl) 
groups may increase the population of the axial rich conformers 
with respect to the all equatorial one, as previously demonstrated 
for pyranosides and inositols bearing bulky silyl ethers.[38] 
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