

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: http://www.tandfonline.com/loi/gpss20

The synthesis of new fluorinated or nonfluorinated sugar phosphonates and phosphoramidates as building blocks in the synthesis of modified hyaluronic acid subunits

Katarzyna Koroniak-Szejn, Joanna Tomaszewska & Henryk Koroniak

To cite this article: Katarzyna Koroniak-Szejn, Joanna Tomaszewska & Henryk Koroniak (2017): The synthesis of new fluorinated or nonfluorinated sugar phosphonates and phosphoramidates as building blocks in the synthesis of modified hyaluronic acid subunits, Phosphorus, Sulfur, and Silicon and the Related Elements, DOI: 10.1080/10426507.2017.1311332

To link to this article: http://dx.doi.org/10.1080/10426507.2017.1311332

	Accepted author version posted online: 27 Mar 2017.
	Submit your article to this journal 🗷
Q	View related articles ☑
CrossMark	View Crossmark data 🗗

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gpss20

The synthesis of new fluorinated or nonfluorinated sugar phosphonates and phosphoramidates as building blocks in the synthesis of modified hyaluronic acid subunits

Katarzyna Koroniak-Szejn*, Joanna Tomaszewska & Henryk Koroniak

Faculty of Chemistry, Adam Mickiewicz University, ul. Umultowska 89b, 60-614 Poznań, Poland

*Corresponding author E-mail address: katarzyna.koroniak@amu.edu.pl

In memoriam of Harry R. Hudson.

Abstract

The synthesis of several new fluorinated or nonfluorinated sugar phosphonates and phosphoramidates as building blocks for the synthesis of modified hyaluronic acid subunits is described. These compounds were prepared from D-glucose and D-glucosamine hydrochloride. The syntheses of phosphonates and phosphoramidates are based on ARBUZOV and STAUDINGER reactions. The products were fully characterized by ¹H, ¹³C, ¹⁹F, ³¹P NMR and ESI MS spectroscopy.

Keywords

fluorinated sugar phosphonates, fluorinated sugar phosphoramidates, Arbuzov reaction, neighbouring group participation

1. Introduction

Organophosphorus compounds, especially natural phosphates play an important role in many biological processes. It is worth mentioning that glycosyl phosphates are of great interests by many researchers^{1,2}. These species are key glycosylating agents in biosynthesis of oligosaccharides by glycosyl transferases. Also they can be used as metabolic intermediates or backbones for phosphorus-based biologically active compounds^{3–5}.

For many years, much attention has been focused on the synthesis of phosphonates and carbohydrate phosphonates as the analogues of phosphates^{6,7}. Furthermore, the phosphorus-oxygen bond (P-O) is sensitive to hydrolysis by typical phosphate enzymes in contrast to the phosphorus-carbon bond (P-C) in phosphonates, which is hydrolytically stable^{6,8}. Moreover, the replacement of an oxygen atom in phosphates by a methylene group changes the polarity and acidity of the compound⁹ (Figure 1). Also in phosphonate analogues we can observe some changes in bond length between C - C - P atoms (1.51 Å-1.80 Å -1.50 Å), which is slightly longer comparing to C - O - P bond (1.43 Å-1.59 Å-1.49 Å)^{6,8}.

Another example of phosphates analogues are phosphoramidates where instead of a phosphorus-oxygen bond (P - O), a phosphorus-nitrogen bond (P - N) is present (Figure 2). This class of organophosphorus compounds plays a dominant role in many processes. Phosphoramidates have been used as catalysts^{10,11}, inhibitors^{12,13} and as a substitute for naturally occurring phosphate group^{14,15}. Additionally, these compounds play an important role in medicine and biological chemistry due to their biological activity. They have been used in the

treatments of cancer and HIV^{16,17}. Additionally, they display potent cytostatic, antiviral and antifungal activities¹⁸, which open up new inspirations for the synthesis of biologically active analogues. Among them, glycosyl phosphoramidates are used as novel phosphoramidate prodrugs¹⁹ or isosteric analogues of glycosyl phosphates²⁰.

Recently, special interest has been focused on the synthesis of drug delivery platforms. One of the natural polymers, which can be successfully used in drug delivery applications is hyaluronic acid (HA). This compound is a natural polysaccharide, which consists of the repeating disaccharide subunits of β -D-N-acetylglucosamine and β -D-glucuronic acid (Figure 3). HA is biodegradable and biocompatible, which makes this molecule a promising drug carrier. There are several reports describing examples of modified HA-drug conjugate acting on cancer cells^{21–23}.

Diverse use of phosphonates and phosphoramidates shows, that they may be used successfully as compounds displaying biological activity. The introduction of these two species in building blocks of a drug delivery platform should be advantageous. It is also important, that phosphonate and phosphoramidate moiety in combination with a fluorinated motif in the molecule would lower polarity of the molecules. Because of that it is possible to increase the lipophilicity of hyaluronic acid and increase the ability to penetrate cell membranes. Additionally for such compounds, ¹⁹F NMR spectroscopy can be successfully used as an efficient tool for studying the interactions between fluorinated compounds and biological systems^{24,25}.

2. Results and Discussion

⁴ ACCEPTED MANUSCRIPT

Two routes of conversion of fluorinated and nonfluorinated monosaccharides into sugar phosphonates and sugar phosphoramidates have been explored. Our goal was to develop a synthetic methodology for some model monosaccharides as building blocks for further HA subunits synthesis. One of the common approaches for the formation of P - C bond is the ARBUZOV reaction²⁶. In this reaction the nucleophilic triethyl phosphite $P(OEt)_3$ reacts in S_N2 reaction with electrophylic alkyl halides (-Cl, -Br, -I). Alternatively, the STAUDINGER reaction allows to obtain phosphoramidates with P - N bonds from azides and trivalent phosphorus e.g. $P(OEt)_3^{14,27}$. In this paper we would like to present our results on the synthesis of new modified monosaccharides based on D-glucose and D-glucosamine hydrochloride derivatives.

Our initial goal was the synthesis of the monosaccharides **2** and **6** with 2-hydroxyethyl moieties, which has started from D-glucose **1** and D-glucosamine hydrochloride **5**. This procedure is known for 2-hydroxyethyl 2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside **2**²⁸ but only partially for compound **6**^{29,30}. The sugar phosphonates **4** and **8** were obtained from corresponding bromides **3**^{31,32} and **7** by heating at reflux with P(OEt)₃ (Scheme 1). In several preparation of phosphonates, like the one described by VALÉRY et al.³² triethyl phosphite was used in large excess (even as a 156-fold excess). Such a huge excess of reagent can cause some problems with isolation and purification of the product. In our case, evaporation of the reactant on rotavap followed by column chromatography was not sufficient. The TLC analysis showed that our products (**4**, **8**) were more polar than P(OEt)₃ itself. In ³¹P NMR spectra, except signals from the main products 1-diethylphosphonoethyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside **4** or 1-diethylphosphonoethyl-2-trifluoroacetamido-3,4,6-tri-*O*-acetyl-β-D-glucopyranoside **8**, we have

observed a lot of signals due to impurities and by-products. However, it was found that reduced pressure distillation of excess of P(OEt)₃ allows the complete removal of emerging by-products. In ³¹P NMR spectrum only two signals were observed: 27.84 pm for phosphonate **4** and 28.53 ppm for phosphonate **8**.

Sugar phosphoramidates **11** and **13** were prepared by Staudinger reaction²⁰ from the corresponding 2-azidoethyl 2,3,4,6-tetra-O-acetyl- β -D-glucose **10** and sugar azide having trifluoroacetamide group **12** (Scheme 2) with high yields (93-94%). It is possible to use several other methods for azide synthesis (i) in anhydrous DMF with heating in 60° C³³, in (ii) acetone with KI at room temperature³⁴or (iii) using phase transfer catalysis (PTC)³⁵. The synthesis of 2-azidoethyl 3,4,6-tri-O-acetyl-2-deoxy-2-trifluoroacetamido- β -D-glucopyranoside **12** was reported in the literature previously. Generally azide **12** is prepared from bromide³⁰ or sugar protected with acetyl group³⁶ in reaction with 2-azidoethanol in the presence of the Lewis acid.

Nucleophilic displacement reaction are often used in carbohydrate chemistry. In the literature we can find reports on substitution reactions on anomeric carbon atoms in monosaccharide with aliphatic alcohols. It is often observed that this kind of reaction proceeds with neighboring group participation effect. In one of the stages of the reaction an oxonium ion is formed, as a relatively stable five-member ring intermediate³⁷. In many cases formation of an oxazoline ring was the main product^{38,39}.

In our reaction with sugar **19** as a nucleophile, we have used partially fluorinated alcohols **14-18** (Figure 4). The presence of the fluorine substituents will also lead to a dramatic change in electronic properties of the molecule. In order to decrease the inductive effect caused by the

⁶ ACCEPTED MANUSCRIPT

fluorine substituents, it is necessary to use a short spacer between fluorinated carbon chain and rest of the molecule (Figure 4). In our test reaction, when we have used a large excess of 2,2,3,3,4,4,5,5-octafluoropentan-1-ol **15** like (16-, 8- or 4-fold excess), ¹H NMR analysis of the crude product showed the desired product and some by-products derived from the fluorinated alcohol 15. Therefore, we have decided to limit the amount of fluorinated alcohol to only 1-2 equiv. of alcohol. It turned out that 1 equiv. can be used only for alcohol with two nonfluorinated CH₂ groups in 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorooctanol 17. In all other cases we have used 2 equiv. of fluorinated alcohols. In case of 14-16 and 18 the main product was 1-hydroxy-3,4,6-tri-O-acetyl-2-chloroacetamido-2-deoxy-α-D-glucopyranose. In ¹HNMR spectrum we have observed a triplet at 5.31 ppm with coupling constant ${}^{3}J_{H-H} = 3.6$ Hz. In reaction with 1 equiv. of fluorinated alcohol 14-16 and 18, we have obtained only a traces of products, which was confirmed only by a highly sensitive analysis ESI MS. For the reaction with 2,2,3,3,4,4,5,5octafluoropentan-1-ol **15** e.g. m/z [M+H]⁺ calcd for C₁₉H₂₃ClF₈NO₉: 596.0934; found: 596.0927; m/z [M+Na]⁺ calcd for C₁₉H₂₂ClF₈NNaO₉: 618.0753; found: 618.0745. We did not observed in ¹H NMR spectrum a signal from the CF₂H group around 6.2 ppm. Unfortunately, for the reaction with the short chain alcohol 1,1,1,3,3,3-hexafluoropropan-2-ol 14 we did not observe the desired product neither in NMR nor MS spectra.

According to the literature, the synthesis of 1,3,4,6-tetra-*O*-acetyl-2-chloroacetamido-2-deoxy-β-D-glucopyranose **19** required introduction of the 2-chloroacetamide group, what was described by FONDY et al.⁴⁰, WONG et al.⁴¹ or WITTE et al.⁴². Compound **19** was prepared with very good yield. Surprisingly, to the best of our knowledge we did not find ¹³C NMR and HRMS spectra for this compound. The next set of compounds was prepared from 1,3,4,6-tetra-*O*-acetyl-

2-chloroacetamido-2-deoxy-β-D-glucopyranose 19 as a starting material. Sugar 19 reacts with fluorinated alcohols 16-18 in the presence of BF₃·OEt₂ as a Lewis acid. Reactant 19 itself can be obtained from D-glucosamine hydrochloride 5 in a multi-steps sequence. The results of this reaction are monosaccharides 20-22 with fluorinated aliphatic chains having 13, 15, 20 fluorine atoms on substituent in anomeric position (Scheme 3). In the next step we wanted to eliminate problems with excess of P(OEt)₃, that has been mentioned previously. In syntheses of compounds 23-25 we applied the reaction conditions described by LAKOUD et al.⁴³. These authors reported the synthesis of phosphonates only with 5 equiv. of P(OEt)₃. However, we run our experiment in mild conditions, which were described by WONG et al.⁴¹. In some cases we have used only 2 equiv. of P(OEt)₃, which was sufficient. The reaction was conducted with heating in 65°C and in the presence of NaI or KI. These reaction conditions allowed us to achieve high yields even for the fluorinated monosaccharides 23-25 with 68–86%. It turned out that it is possible to use only 2 equiv. excess of triethyl phosphate in this kind of reaction that facilitates further purification.

Next, we have turned our attention to the syntheses of phosphoramidates **29-31** starting from the corresponding azides **26-28** (Scheme 3). The reactions were carried out according to the procedure described before ²⁰ with excellent yields 76–92%.

Consequently we have studied the preparation of the nonfluorinated phosphonate **32**, **34** and nonfluorinated phosphoramidate **36**, **38** as the analogues of 2-chloroacetamido-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **19** and 2-bromopropionamido-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **33** (Scheme 4). These compounds were prepared as a model nonfluorinated monosaccharides. The chloride **19** was converted under ARBUZOV conditions to 2-

diethylphosphonoacetamid-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **32** according to the procedure described by Wong et al. with 69% yield. Similarly, from the bromide **33** we have obtained 2-diethylphosphonopropionamid-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **34**. The syntheses of **36** and **38** were accomplished in two-step reactions with 91% and 69% yields for 2-diethylphosphoramidoacetamid-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **36** and with 92 % and 60 % yields for 2-diethylphosphoramidopropionamid-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **38** (Scheme 5). To the best of our knowledge compounds **34**, **36** and **38** are new compounds, first reported examples of this class.

3. Conclusions

In summary, we have developed an efficient synthetic route to a library of modified monosaccharides, which may be useful way in the synthesis of hyaluronic acid subunits. The starting materials 1,3,4,6-tetra-*O*-acetyl-2-chloroacetamido-2-deoxy-β-D-glucopyranose **19** and 2-bromopropionamido-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **33** were prepared with good yields (87% and 75%) in easy multistage reaction. The synthesis of fluorinated phosphonates and phosphoramidates containing in their structure aliphatic chains with 13, 15 and 21 fluorine atoms was optimized.

4. Experimental

All chemicals were reagent grade and were used as purchased without further purification.

Anhydrous dichloromethane (DCM) was prepared by pre-drying with anhydrous CaCl₂ followed

by distillation over CaH2 under argon atmosphere. All moisture sensitive reactions were carried out under argon atmosphere. Thin-layer chromatography (TLC) was carried out on silica gel plates (Silica gel 60, F254, Merck) with detection by UV light or with stain solution (Cerium Molybdate Stain and Potassium Permanganate). Purification was performed with column chromatography using normal-phase silica gel (Silica gel 60, 70-230 mesh, Fluka). ¹H, ¹³C, ¹⁹F, ³¹P NMR were recorded with a Varian VNMR-S 400 MHz, VARIAN Mercury 300 MHz, Varian GEMINI 300 (300 MHz) or Bruker Avance 400 (400 MHz), Bruker ASCEND 600 (600 MHz) spectrometers. Chemical shifts are reported as δ values (ppm). NMR spectra were recorded in deuterated solvents and calibrated using an internal reference: TMS (¹H), CDCl₃ (¹³C), CFCl₃ (¹⁹F) and 85% H₃PO₄ (³¹P) as an external standard ($\delta = 0$ ppm). Multiplicities of signals are described as follows: s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublet of doublets, t = triplet, td = triplet of doublets, tt = triplet of triplets, m = multiplet. Coupling constants (J) are given in Hz. Mass spectra (ESI) were carried out with Q-TOF (Impact HD, Bruker) and Agilent 1200 LC system with Agilent Q-TOF 6540 spectrometer with DUAL AJS ESI source. The Supplemental Materials contains some selected ¹H, ¹³C, ¹⁹F and ³¹P NMR spectra of products. (Figures S 1 - S 23)

4.1. 1-Diethylphosphonoethyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside **4**

A mixture of bromide **3** (0.104 g, 0.229 mmol) and P(OEt)₃ (5.90 mL, 35.720 mmol) was heated under reflux for 15 h. The excess of P(OEt)₃ was distilled off under reduced pressure and the crude product was purified by column chromatography (DCM/MeOH 20:1, v/v) afforded **4** as an oil. Yield: (0.097 g) 83%; ¹H NMR (400 MHz, CDCl₃): δ 5.19 (appt, J = 9.5 Hz, 1H, H-3), 5.06 (t, J = 9.7 Hz, 1H, H-4), 4.96 (dd, J = 8.0 Hz, J = 9.5 Hz, 1H, H-2), 4.52 (d, J = 8.0 Hz, 1H, H-4).

1), 4.26 (dd, J = 4.8 Hz, J = 12.3 Hz, 1H, H-6a), 4.14-4.00 (m, 6H, H-6b, $2xOCH_2CH_3$, OCH_bCH_2), 3.85-3.74 (m, 1H, OCH_aCH_2), 3.69 (ddd, J = 2.4 Hz, J = 4.8 Hz, J = 9.9 Hz, 1H, H-5), 2.17-2.09 (m, 2H, CH₂P(O)), 2.08 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.99 (s, 3H, OAc), 1.35-1.29 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 170.6 C(O)CH₃, 170.2 C(O)CH₃, 169.4 C(O)CH₃, 169.3 C(O)CH₃, 100.7 C-1, 72.8 C-5, 71.9 C-2, 71.2 C-3, 68.3 C-4, 64.2 C-6, $63.6 \text{ (d, } J = 5.8 \text{ Hz, OCH}_2\text{CH}_2\text{P(O)(OEt)}_2)$, $61.84 \text{ (d, } J = 5.4 \text{ Hz, OCH}_2\text{CH}_3)$, $61.72 \text{ (d, } J = 5.4 \text{ Hz, OCH}_2\text{CH}_3)$ $J = 6.3 \text{ Hz}, \text{ OCH}_2\text{CH}_3), 27.0 \text{ (d, } J = 139.3 \text{ Hz}, \text{ OCH}_2\text{CH}_2\text{P(O)(OEt)}_2), 20.69 \text{ C(O)}_2\text{CH}_3, 20.66$ $C(O)CH_3$, 20.57 2xC(O)CH₃, 16.4 (d, J = 6.0 Hz, OCH₂CH₃), 16.1 (d, J = 6.7 Hz, OCH₂CH₃); ³¹P NMR (121 MHz, CDCl₃): δ 27.84 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₀H₃₄O₁₃P: 513.1737; found: 513.1737 m/z [M+Na]⁺ calcd for C₂₀H₃₃NaO₁₃P: 535.1556; found: 535.1557. 2-Hydroxyethyl 3,4,6-tri-O-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranoside 6 4.2. To a solution of 3,4,6-tri-O-acetyl-2-deoxy-2-trifluoroacetamido-α-D-glucopyranosyl bromide (0.514g, 1.110 mmol) in anhydrous DCM (28.40 mL) was added anhydrous Na₂SO₄ and 1,2ethanediol (0.62 mL, 11.100 mmol). After stirring at room temperature for 15 min, under an argon atmosphere, Ag₂CO₃ (4.60 g, 16.700 mmol) was added to the reaction mixture and stirred overnight protected from the light. The reaction mixture was filtered, washed with water (3x30 mL), dried over Na₂SO₄ and the solvent was evaporated. The crude product was purified by column chromatography using a 5:1 mixture of EtOAc/cyclohexane (CH) as eluent. Compound 6 was obtained as a white solid. Yield: (0.299 g) 60%; ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J =8.8 Hz, 1H, NH), 5.30 (dd, J = 9.4 Hz, J = 10.6 Hz, 1H, H-3), 5.10 (t, J = 9.7 Hz, 1H, H-4), 4.75 (d, J = 9.7 Hz, 1H, H-1), 4.26 (dd, J = 5.2 Hz, J = 12.3 Hz, 1H, H-6a), 4.20 (dd, J = 2.6 Hz, J = 12.3 Hz, 1H, H-6a)12.3 Hz, 1H, H-6b), 4.07 (dd, J = 8.7 Hz, J = 19.2 Hz, 1H, H-2), 3.90 (ddd, J = 2.4 Hz, J = 4.7

Hz, J = 9.9 Hz, 1H, H-5), 3.84-3.72 (m, 4H, OCH₂CH₂OH), 2.83 (t, J = 5.2 Hz, 1H, OH), 2.11 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc); ¹³C NMR (101 MHz, CDCl₃): δ 171.1 $\underline{\text{C}}(\text{O})\text{CH}_3$, 170.8 $\underline{\text{C}}(\text{O})\text{CH}_3$, 169.4 $\underline{\text{C}}(\text{O})\text{CH}_3$, 157.7 (q, J = 37.8 Hz, $\underline{\text{C}}(\text{O})\text{CF}_3$), 115.6 (q, J = 289.1 Hz, $\underline{\text{C}}\text{F}_3$), 101.0 C-1, 72.4 C-5, 72.0 C-3, 71.9 C-4, 68.4 O $\underline{\text{C}}\text{H}_2\text{CH}_2\text{OH}$, 62.0 C-6, 61.7 OCH₂CH₂OH, 54.8 C-2, 20.7 C(O) $\underline{\text{C}}\text{H}_3$, 20.6 C(O) $\underline{\text{C}}\text{H}_3$, 20.4 C(O) $\underline{\text{C}}\text{H}_3$; ¹⁹F NMR (376 MHz, CDCl₃): δ -76.03 (s, 3F, CF₃); MS (ESI) m/z [M+H]⁺ calcd for C₁₆H₂₃F₃NO₁₀: 446.1275; found: 446.1271 m/z [M+Na]⁺ calcd for C₁₆H₂₂F₃NNaO₁₀: 468.1094; found: 468.1101.

4.3. 2-Bromoethyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranoside **7** To a solution of alcohol **6** (0.124 g, 0.279 mmol) in anhydrous DCM (3.50 mL) were added PPh₃ (0.146 g, 0.558 mmol) and CBr₄ (0.204 g, 0.614 mmol) under an argon atmosphere. After stirring for 2 h at room temperature, the reaction mixture was diluted with DCM (11 mL) and washed with water (2x12 mL). The organic layer was then dried over Na₂SO₄ and concentrated. Purification by column chromatography (CH/EtOAc 2:1,v/v) afforded **7** as a white solid. Yield: (0.105 g) 75%; ¹H NMR (300 MHz, CDCl₃): δ 6.66 (d, J = 8.6 Hz, 1H, NH), 5.31 (dd, J = 9.3 Hz, J = 10.7 Hz, 1H, H-3), 5.11 (t, J = 9.6 Hz, 1H, H-4), 4.77 (d, J = 8.3 Hz, 1H, H-1), 4.28 (dd, J = 4.8 Hz, J = 12.4 Hz, 1H, H-6a), 4.24-4.13 (m, 2H, H-6b, OCH_aCH₂Br), 4.02 (dd, J = 8.7 Hz, J = 19.3 Hz, 1H, H-2), 3.87-3.72 (m, 2H, H-5, OCH_bCH₂Br), 3.40-3.44 (m, 2H, CH₂Br), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc); ¹³C NMR (75 MHz, CDCl₃): δ 171.0 C(O)CH₃, 170.6 C(O)CH₃, 169.3 C(O)CH₃, 157.4 (q, J = 37.5 Hz, C(O)CF₃), 115.5 (q, J = 286.3 Hz, CF₃), 100.4 C-1, 72.1 C-5, 71.5 C-3, 69.7 C-4, 68.2 OCH₂CH₂Br, 61.8 C-6, 54.9 C-2, 30.0 OCH₂CH₂Br, 20.7 C(O)CH₃, 20.6 C(O)CH₃, 20.4 C(O)CH₃; ¹⁹F NMR (282 MHz, CDCl₃): δ

76.50 (s, 3F, CF₃); MS (ESI) m/z [M+H]⁺ calcd for C₁₆H₂₂BrF₃NO₉: 508.0431; found: 508.0501 m/z [M+Na]⁺ calcd for C₁₆H₂₁BrF₃NNaO₉: 530.0249; found: 530.0250.

- 4.4. 1-Diethylphosphonoethyl-2-trifluoroacetamido-3,4,6-tri-O-acetyl-β-D-glucopyranoside 8 A mixture of bromide 7 (0.099 g, 0.194 mmol) and P(OEt)₃ (5.20 mL, 30.260 mmol) was heated under reflux for 15 h. The excess of P(OEt)₃ was distilled off under reduced pressure and crude product was purified by column chromatography (DCM/MeOH 20:1, v/v) afforded 8. Yield: (0.094 g) 85%; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ 8.56 (d, J = 8.4 Hz, 1H, NH), 5.23 (appt, J = 9.9)Hz, 1H, H-3), 5.11 (t, J = 9.6 Hz, 1H, H-4), 4.82 (d, J = 8.5 Hz, 1H, H-1), 4.29 (dd, J = 4.5 Hz, J = 4.5= 12.3 Hz, 1H, H-6a), 4.18-4.03 (m, 7H, H-6b, OCH_bCH_2 , $2xOCH_2CH_3$, H-2), 3.91-3.78 (m, 1H, OCH_aCH_2), 3.71 (ddd, J = 2.4 Hz, J = 4.3 Hz, J = 9.9 Hz, 1H, H-5), 2.10 (s, 3H, OAc), 2.10-2.02 (m, 2H, CH₂P(O)), 2.02 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.37-1.31 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 170.7 C(O)CH₃, 170.6 C(O)CH₃, 169.3 C(O)CH₃, 157.8 (q, J = 37.4 Hz, $\underline{C}(O)CF_3$), 115.9 (q, J = 288.0 Hz, $\underline{C}F_3$), 99.9 C-1, 72.9 C-5, 72.1 C-3, 68.4 C-4, 63.7 (d, J = 5.7Hz, $OCH_2CH_2P(O)(OEt)_2$, 62.3 (d, J = 6.5 Hz, OCH_2CH_3), 61.9 C-6, 61.8 (d, J = 6.8 Hz, OCH_2CH_3), 54.1 C-2, 26.4 (d, J = 141 Hz, $OCH_2CH_2P(O)(OEt)_2$), 20.7 $C(O)CH_3$, 20.6 $C(O)CH_3$, 20.4 $C(O)CH_3$, 16.38 (d, J = 6.1 Hz, OCH_2CH_3), 16.25 (d, J = 6.0 Hz, OCH_2CH_3); ¹⁹F NMR (282 MHz, CDCl₃): δ -76.21 (s, 3F, CF₃); ³¹P NMR (121 MHz, CDCl₃): δ 28.53 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for $C_{20}H_{32}F_3NO_{12}P$: 566.1614; found: 566.1615 m/z [M+Na]⁺ calcd for C₂₀H₃₁F₃NNaO₁₂P: 588.1434; found: 588.1434.
- 4.5. 1-Diethylphosphoramidoethoxy-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside **11**The mixture of azide **10** (0.080 g, 0.192 mmol) in anhydrous DCM (8.20 mL) with powdered molecular sieves 4Å (0.017 g) was stirred for 1h under an argon atomosphere at room

temperature. Then P(OEt)₃ was added (0.16 mL, 0.960 mmol) and stirred overnight. The reaction mixture was filtered through a pad of Celite and concentrated under reduced pressure. Purification by column chromatography (DCM/MeOH 20:1,v/v) afforded 11 as a white foam. Yield: (0.095 g) 94%; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ 5.22 (t, J = 9.3 Hz, 1H, H-3), 5.08 (appt, J= 9.7 Hz, 1H, H-4, 4.99 (dd, J = 8.0 Hz, J = 9.6 Hz, 1H, H-2), 4.53 (d, J = 8.0 Hz, 1H, H-1), 4.26 (dd, J = 4.8 Hz, J = 12.4 Hz, 1H, H-6a), 4.14 (dd, J = 2.4 Hz, J = 12.4 Hz, 1H, H-6b), 4.09 $4.02 \text{ (m, 5H, 2xOCH}_2\text{CH}_3, \text{NHP(O))}, 3.92-3.83 \text{ (m, 1H, OCH}_3\text{CH}_2), 3.71 \text{ (ddd, } J = 2.4 \text{ Hz, } J =$ 4.7 Hz, J = 9.9 Hz, 1H, H-5), 3.64 (m, 1H, OCH_bCH₂), 3.18-3.06 (m, 2H, OCH₂CH₂), 2.10 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.35-1.29 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 170.6 C(O)CH₃, 170.2 C(O)CH₃, 169.41 C(O)CH₃, 169.35 $C(O)CH_3$, 101.0 C-1, 72.7 C-5, 71.9 C-2, 71.3 C-3, 70.7 (d, J = 5.4 Hz, $OCH_2CH_2NHP(O)(OEt)_2$, 68.3 C-4, 62.3 (d, J = 5.5 Hz, OCH_2CH_3), 61.8 C-6, 41.1 $OCH_2CH_2NHP(O)(OEt)_2$, 20.7 $C(O)CH_3$, 20.63 $C(O)CH_3$, 20.55 $2xC(O)CH_3$, 16.2 (d, J = 7.0Hz, $2xOCH_2CH_3$); ³¹P NMR (121 MHz, CDCl₃): δ 9.50 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for $C_{20}H_{36}NO_{13}P$: 529.1925; found: 529.1873 m/z [M+Na]⁺ calcd for $C_{20}H_{35}NNaO_{13}P$: 551.1744; found: 551.1691.

4.6. 2-Azidoethyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranoside **12**To a solution of 2-bromoethyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranoside **7** (0.082 g, 0.162 mmol) in DCM (0.82 mL) and aq. sat. NaHCO₃ (0.82 mL), TBASH (0.051 g, 0.149 mmol) and NaN₃ (0.031 g, 0.483 mmol) were added. The reaction mixture was stirred at room temperature for 48 h. It was subsequently diluted with EtOAc (5 mL) and washed with H₂O (8 mL) and aq. sat. NaHCO₃ (8 mL), dried over Na₂SO₄ and

concentrated in vacuo. The crude product was purified by column chromatography (CH/EtOAc 1:1, v/v) and afforded **12** as a white solid. Yield: (0.066 g) 87%; ¹⁹F NMR (282 MHz, CDCl₃): δ -76.63 (s, 3F, CF₃).

4.7. 1-Diethylphosphoramidoethoxy-3,4,6-tri-*O*-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranoside **13**

The mixture of azide 12 (0.055 g, 0.117 mmol) in anhydrous DCM (5.10 mL) with powdered molecular sieves 4Å (0.025 g) was stirred for 1 h under an argon atmosphere at room temperature. Then P(OEt)₃ was added (0.1 mL, 0.585 mmol) and stirred overnight. The reaction mixture was filtered through a pad of Celite and concentrated under reduced pressure. Purification by column chromatography (DCM/MeOH 20:1,v/v) afforded 13 as a white solid. Yield: (0.063 g) 93%; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta 8.55 \text{ (d, } J = 8.6 \text{ Hz, 1H, NH)}, 5.32 \text{ (dd, } J = 8.6 \text{ Hz, 1H, NH)}$ 9.4 Hz, J = 10.5 Hz, 1H, H3), 5.10 (t, J = 9.7 Hz, 1H, H-4), 4.85 (d, J = 8.4 Hz, 1H, H-1), 4.28 (dd, J = 4.6 Hz, J = 12.3 Hz, 1H, H-6a), 4.19-3.97 (m, 6H, H-6b, H-2, 2xOCH₂CH₃), 3.95-3.86(m, 1H, OCH_bCH₂), 3.73 (ddd, J = 2.4 Hz, J = 4.5 Hz, J = 10.0 Hz, 1H, H-5), 3.67-3.53 (m, 2H, OCH_aCH₂, NHP(O)), 3.13-3.04 (m, 2H, OCH₂CH₂), 2.11 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.37-1.29 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 170.7 C(O)CH₃, 170.6 $C(O)CH_3$, 169.4 $C(O)CH_3$, 157.8 (q, J = 37.5 Hz, $C(O)CF_3$), 115.8 (q, J = 289.3 Hz, CF_3), 100.0 C-1, 72.1 C-5, 72.0 C-3, 70.0 (d, J = 5.3 Hz, OCH₂CH₂NHP(O)(OEt)₂), 68.5 C-4, 62.61 (d, J =4.5 Hz, OCH_2CH_3), 62.54 (d, J = 4.4 Hz, OCH_2CH_3), 62.0 C-6, 54.7 C-2, 41.0 $OCH_2CH_2NHP(O)(OEt)_2$, 20.7 $C(O)CH_3$, 20.6 $C(O)CH_3$, 20.4 $C(O)CH_3$, 16.2 (d, J = 6.9 Hz, OCH₂CH₃), 16.0 (d, J = 7.4 Hz, OCH₂CH₃); ¹⁹F NMR (282 MHz, CDCl₃): δ -76.22 (s, 3F, CF₃);

³¹P NMR (121 MHz, CDCl₃): δ 9.33 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₀H₃₃F₃N₂O₁₂P: 581.1724; found: 581.1737 m/z [M+Na]⁺ calcd for C₂₀H₃₂F₃N₂O₁₂P: 603.1543; found: 603.1555.

4.8. 1,3,4,6-tetra-*O*-acetyl-2-chloroacetamido-2-deoxy- β-D-glucopyranoside **19**

Et₃N (0.61 mL) was added to a solution of 2-deoxy-2-amino-1,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl hydrochloride (0.844 g, 2.200 mmol) in anhydrous DCM (10 mL) at 0 °C. After 5 min chloroacetic anhydride (0.640 g, 3.740 mmol) was added. The reaction mixture was stirred for 3.5 hours at room temperature and controlled by TLC. Next, the solution was diluted with DCM (50 mL), washed successively with 1N HCl (2 x 50 mL) and brine (50 mL). The organic phase was dried over Na₂SO₄ and solvent was evaporated. The resulting crude product was crystallized from EtOAc/CH giving **19** as a light grey and white solid. Yield: (0.807 g) 87%; ¹³C NMR (101 MHz, CDCl₃): δ 170.9 \underline{C} (O)CH₃, 170.7 \underline{C} (O)CH₃, 169.3 $\underline{2x}\underline{C}$ (O)CH₃, 166.6 \underline{C} (O)CH₂Cl, 92.1 C-1, 72.9 C-5, 71.9 C-3, 67.9 C-4, 61.7 C-6, 53.3 C-2, 42.3 \underline{C} H₂Cl, 20.9 C(O)CH₃, 20.7 C(O)CH₃, 20.58 C(O)CH₃, 20.57 C(O)CH₃; MS (ESI) m/z [M+H]⁺ calcd for C₁₆H₂₃ClNO₁₀: 424.1010; found: 424.1011 m/z [M+Na]⁺ calcd for C₁₆H₂₂ClNNaO₁₀: 446.0830; found: 446.0843.

4.9. 3,4,6-Tri-O-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6,7,7-pentadecafluoromethoxy)- β -D-glucopyranoside **20**

To a stirred solution of 1,3,4,6-tetra-O-acetyl-2-chloroacetamido-2-deoxy- β -D-glucopyranose **19** (0.048 g, 0.113 mmol) in anhydrous DCM (0.23 mL) under an argon atmosphere and room temperature BF₃·Et₂O (0.03 mL, 0.226 mmol) and 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7-pentadecafluorooctanol **16** (0.090 g, 0.226 mmol) were added and stirred for 24 h. The reaction mixture was diluted with EtOAc (2 mL) and washed with aq. sat. NaHCO₃ (2mL). The organic

¹⁶ ACCEPTED MANUSCRIPT

phase was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (EtOAc/CH 1:1, v/v) afforded **20** as a white solid. Yield: (0.052 g) 60%; 1 H NMR (400 MHz, CDCl₃): δ 6.75 (d, J = 8.5 Hz, 1H, NH), 5.44 (appt, J = 9.9 Hz, 1H, H-3), 5.10 (t, J = 9.5 Hz, 1H, H-4), 4.94 (d, J = 8.2 Hz, 1H, H-1), 4.37-4.25 (m, 2H, H-6a,H-6b), 4.21-4.02 (m, 2H, OCH₂(CF₂)₆CF₃), 3.98 (s, 2H, CH₂Cl), 3.93-3.84 (m, 1H, H-2), 3.78 (ddd, J = 2.5 Hz, J = 4.6 Hz, J = 9.8 Hz, 1H, H-5), 2.10 (s, 3H, OAc), 2.04 (s, 6H, 2xOAc); 13 C NMR (101 MHz, CDCl₃) δ 170.6 \underline{C} (O)CH₃, 170.5 \underline{C} (O)CH₃, 169.3 \underline{C} (O)CH₃, 166.5 \underline{C} (O)CH₂Cl, 122.7-106.8 (m, (CF₂)₆CF₃), 100.4 C-1, 72.2 C-5, 71.0 C-3, 68.2 C-4, 65.3 (t, J = 26.2 Hz, OCH₂(CF₂)₆CF₃), 61.7 C-6, 54.8 C-2, 42.2 CH₂Cl, 20.64 C(O)CH₃, 20.56 C(O)CH₃, 20.53 C(O)CH₃; 19 F NMR (376 MHz, CDCl₃) δ : -80.77, -119.86, -122.02, -122.73, -123.13, -126.10; MS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₂ClF₁₅NO₉: 764.0744; found: 764.0734; m/z [M+Na]⁺ calcd for C₂₂H₂₁ClF₁₅NNaO₉: 786.0563; found: 786.0559.

4.10. 3,4,6-Tri-*O*-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoroethoxy)-β-D-glucopyranoside **21**

To a stirred solution of 1,3,4,6-tetra-*O*-acetyl-2-chloroacetamido-2-deoxy-β-D-glucopyranose **19** (0.091 g, 0.214 mmol) in anhydrous DCM (4.3 mL) under an argon atmosphere and room temperature BF₃·Et₂O (0.06 mL, 0.428 mmol) and 1,1,1,2,2,3,3,4,4,5,5-pentadecafluorooctanol **17** (0.076 g, 0.214 mmol) were added and stirred for 24 h. The reaction mixture was diluted with EtOAc (3 mL) and washed with aq. sat. NaHCO₃ (3 mL). The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (EtOAc/CH 1:1, v/v) gave **21** as a white solid. Yield: (0.106 g) 69%; ¹H NMR (300 MHz, CDCl₃) δ 6.65 (d, J = 8.6 Hz, 1H, NH), 5.40 (dd, J = 10.5 Hz, J = 9.3 Hz, 1H, H-3), 5.09 (t, J =

¹⁷ ACCEPTED MANUSCRIPT

9.6 Hz, 1H, H-4), 4.83 (d, J = 8.2 Hz, 1H, H-1), 4.29 (dd, J = 12.3 Hz, J = 4.9 Hz, 1H, H-6a), 4.21-4.12 (m, 2H, H-6b, H-2), 4.00 (d, J = 2.7 Hz, 2H, CH₂Cl), 3.91-3.82 (m, 2H, OCH₂CH₂(CF₂)₅CF₃), 3.77 (ddd, J = 9.9 Hz, J = 4.9 Hz, J = 2.4 Hz, 1H, H-5), 2.53-2.37 (m, 2H, CH₂(CF₂)₅CF₃), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.06 (s, 3H, OAc); ¹³C NMR (101 MHz, CDCl₃) δ 170.60 $\underline{\text{C}}$ (O)CH₃, 170.58 $\underline{\text{C}}$ (O)CH₃, 169.4 $\underline{\text{C}}$ (O)CH₃, 166.4 $\underline{\text{C}}$ (O)CH₂Cl, 121.7-106.4 (m, (CF₂)₅CF₃), 100.4 C-1, 72.0 C-5, 71.4 C-3, 68.4 C-4, 61.9 C-6, OCH₂CH₂(CF₂)₅CF₃, 55.0 C-2, 42.3 $\underline{\text{C}}$ H₂Cl, 31.3 (t, J = 21.5 Hz, OCH₂CH₂(CF₂)₅CF₃), 20.63 C(O)CH₃, 20.60 C(O)CH₃, 20.55 C(O)CH₃; ¹⁹F NMR (377 MHz, CDCl₃) δ -80.77, -113.39, -121.89, -122.86, -123.53, -126.12; MS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₄ClF₁₃NO₉: 728.0932; found: 728.0930; m/z [M+Na]⁺ calcd for C₂₂H₂₃ClF₁₃NNaO₉: 750.0751; found: 750.0748.

4.11. 3,4,6-Tri-O-acetyl-2-chloroacetamido-2-deoxy-1-

(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-eicosafluorononylmethoxy)-β-D-glucopyranoside **22** To a stirred solution of 1,3,4,6-tetra-*O*-acetyl-2-chloroacetamido-2-deoxy-β-D-glucopyranose **19** (0.059 g, 0.139 mmol) in anhydrous DCM (0.60 mL) under an argon atmosphere and room temperature, BF₃·Et₂O (0.17 mL, 1.390 mmol) and 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-eicosafluoroundecanol **18** (0.074 g, 0.139 mmol) gave **22** as a white solid. Yield: (0.081 g) 55%; 1 H NMR (403MHz, CDCl₃) δ 6.70 (d, J = 8.5 Hz, 1H, NH), 6.06 (tt, J = 5.0 Hz, J = 51.9 Hz, 1H, CF₂H), 5.43 (dd, J = 10.6 Hz, J = 9.2 Hz, 1H, H-3), 5.10 (t, J = 9.5 Hz, 1H, H-4), 4.93 (d, J = 8.2 Hz, 1H, H-1), 4.34-4.23 (m, 3H, H-6a, OCH₂(CF₂)₉CF₂H), 4.18 (dd, J = 12.4 Hz, J = 2.5 Hz, 1H, H-6b), 3.99 (apps, 2H, CH₂Cl), 3.87 (m, 1H, H-2), 3.77 (ddd, J = 9.9 Hz, J = 4.9 Hz, J = 2.4 Hz, 1H, H-5), 2.10 (s, 3H, OAc), 2.04 (s, 6H, 2xOAc); 13 C NMR (101 MHz, CDCl₃) δ 170.6 13 C(O)CH₃, 170.5 14 C(O)CH₃, 169.3 14 C(O)CH₃, 160.5 14 C(O)CH₂Cl, 118.2-105.8 (m, (CF₂)₉CF₂H),

100.3 C-1, 72.2 C-5, 70.9 C-3, 68.2 C-4, 65.3 (t, J = 25.9, OCH₂(CF₂)₉CF₂H), 61.7 C-6, 54.9 C-2, 42.2 CH₂Cl, 20.7 C(O)CH₃, 20.64 C(O)CH₃, 20.58 C(O)CH₃; ¹⁹F NMR (379 MHz, CDCl₃) δ -120.33, -122.35, -123.70, -129.74, -137.47; MS (ESI) m/z [M+H]⁺ calcd for C₂₅H₂₃ClF₂₀NO₉: 896.0742; found: 896.0731; m/z [M+Na]⁺ calcd for C₂₅H₂₂ClF₂₀NNaO₉: 918.0561; found: 918.0558.

4.12. General procedure for the synthesis of fluorinated phosphonates 23, 24, 25

To a solution of sugar with fluorinated aliphatic chain **20**, **21**, **22** (1 equiv.) in MeCN (29.70 mL for 1 mmol of sugar), KI (2.26 equiv.) and P(OEt)₃ (5 equiv.) were added. The reaction mixture was heated in 65 °C for 4 h. Solvent was evaporated and the crude product was purified by column chromatography using a 20:1 mixture of DCM/MeOH as eluent to afforded compounds **23**, **24**, **25**.

4.12.1.3,4,6-Tri-O-acetyl-2-deoxy-2-diethylphosphonoacetamido-1-

(1,1,1,2,2,3,3,4,4,5,5,6,6,7,7-pentadecafluoromethoxy)-β-D-glucopyranoside **23**

3,4,6-Tri-*O*-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6,7,7-

pentadecafluoromethoxy)-β-D-glucopyranoside **20** (0.069 g, 0.090 mmol) and P(OEt)₃ (0.08 mL, 0.450 mmol) gave **23** as a white solid. Yield: (0.062 g) 80%; ¹H NMR (300 MHz, CDCl₃) δ 7.05 (d, J = 8.2 Hz, 1H, NH), 5.44 (dd, J = 10.5 Hz, J = 9.1 Hz, 1H, H-3), 5.10 (t, J = 9.5 Hz, 1H, H-4), 5.00 (d, J = 8.2 Hz, 1H, H-1), 4.28 (dd, J = 4.8 Hz, J = 12.3 Hz, 1H, H-6a), 4.23-3.95 (m, 7H, OCH₂(CF₂)₆CF₃, H-6b, 2xOCH₂CH₃), 3.83-3.72 (m, 2H, H-2, H-5), 2.78 (d, J = 21.6 Hz, 2H, CH₂P(O)), 2.09 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.38-1.29 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.6 \underline{C} (O)CH₃, 170.5 \underline{C} (O)CH₃, 169.5 \underline{C} (O)CH₃, 169.4 (d, J = 3.4 Hz, \underline{C} (O)CH₂P(O)(OEt)₂), 122.0-106.4 (m, (CF₂)₆CF₃), 100.5 C-1, 72.0 C-5, 71.2 C-3, 68.8

C-4, 62.4 C-6, 61.9 (d, J = 6.6 Hz, OCH₂CH₃), 61.6 (d, J = 6.4 Hz, OCH₂CH₃), 64.6 (appm, $OCH_2(CF_2)_6CF_3$, 54.6 C-2, 34.4 (d, J = 129.2 Hz, $C(O)CH_2P(O)(OEt)_2$), 20.6 $C(O)CH_3$, 20.4 $C(O)CH_3$, 20.3 $C(O)CH_3$, 16.2 (d, J = 4.8 Hz, OCH_2CH_3), 16.1 (d, J = 4.4 Hz, OCH_2CH_3); ¹⁹F NMR (282 MHz, CDCl₃) δ: -81.23, -120.56, -122.51, -123.23, -123.70, -126.62; ³¹P NMR (121 MHz, CDCl₃): δ 22.53 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₆H₃₂F₁₅NO₁₂P: 866.1423; found: $886.1430 \, m/z \, [M+Na]^+ \, \text{calcd for } C_{26}H_{31}F_{15}NNaO_{12}P$: 888.1242; found: 888.1253. 4.12.2. 3,4,6-Tri-*O*-acetyl-2-deoxy-2-diethylphosphonoacetamido-1-(1,1,1,2,2,3,3,4,4,5,5,6,6tridecafluoroethoxy)-β-D-glucopyranoside 24 3,4,6-Tri-*O*-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoroethoxy)β-D-glucopyranoside **21** (0.105 g, 0.144 mmol) and P(OEt)₃ (0.05 mL, 0.288 mmol) gave **24** as a white solid. Yield: (0.103 g) 86 %; ¹H NMR $(403\text{MHz}, \text{CDCl}_3)$ δ 6.93 (d, J = 8.2 Hz, 1H, NH),5.38 (dd, J = 9.2 Hz, J = 10.5 Hz, 1H, H-3), 5.03 (t, J = 9.6 Hz, 1H, H-4), 4.84 (d, J = 8.3 Hz, 1H, H-1), 4.26 (dd, J = 5.0 Hz, J = 12.3 Hz, 1H, H-6a), 4.17-4.06 (m, 6H, H-6b, 2xOCH₂CH₃, H-2), 3.89-3.78 (m, 2H, OCH₂CH₂(CF₂)₅CF₃), 3.75 (ddd, J = 9.9 Hz, J = 4.9 Hz, J = 2.4 Hz, 1H, H-5), 2.79 (d, J = 21.0 Hz, 2H, CH₂P(O)), 2.53-2.38 (m, 2H, CH₂(CF₂)₅CF₃), 2.08 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.33 (td, J = 1.7 Hz, J = 7.1 Hz, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.6 C(O)CH₃, 170.4 C(O)CH₃, 169.5 C(O)CH₃, 164.4 (d, J = 3.3 Hz, $\underline{C}(O)CH_2P(O)(OEt)_2$, 122.0-106.7 (m, $(CF_2)_5CF_3$), 100.5 C-1, 71.8 C-5, 71.7 C-3, 68.8 C-4, 62.8 (d, J = 6.6 Hz, OCH₂CH₃), 62.7 (d, J = 7.1 Hz, OCH₂CH₃), 62.0 C-6, 61.8 (app m, $OCH_2CH_2(CF_2)_5CF_3$, 54.9 C-2, 34.9 (d, J = 129.6 Hz, $C(O)CH_2P(O)(OEt)_2$), 31.4 (t, J = 21.4Hz, $OCH_2CH_2(CF_2)_5CF_3$), $20.7 C(O)CH_3$, $20.61 C(O)CH_3$, $20.59 C(O)CH_3$, 16.21 (d, J = 4.7 Hz)OCH₂CH₃), 16.15 (d, J = 4.8 Hz, OCH₂CH₃); ¹⁹F NMR (379 MHz, CDCl₃) δ -81.30, -113.85, -

122.56, -123.38, -124.10, -126.65; ³¹P NMR (121 MHz, CDCl₃): δ 22.52 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₆H₃₄F₁₃NO₁₂P: 830.1611; found: 830.1584 m/z [M+Na]⁺ calcd for C₂₆H₃₃F₁₃NNaO₁₂P: 852.1430; found: 852.1404.

4.12.3. 3,4,6-Tri-O-acetyl-2-deoxy-2-diethylphosphonoacetamido-1-

(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-eicosafluorononylmethoxy)-β-D-glucopyranoside **25** 3,4,6-Tri-*O*-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10eicosafluorononylmethoxy)-β-D-glucopyranoside 22 (0.065 g, 0.073 mmol) and P(OEt)₃ (0.03 mL, 0.146 mmol) gave **25** as a white solid. Yield: (0.050 g) 68 %; ¹H NMR (403MHz, CDCl₃) δ 6.86 (d, J = 9.2 Hz, 1H, NH), 6.07 (tt, J = 4.9 Hz, J = 51.7 Hz, 1H, CF₂H), 5.37 (dd, J = 10.8Hz, J = 9.5 Hz, 1H, H-3), 5.15 (t, J = 9.4 Hz, 1H, H-4), 4.87 (d, J = 8.2 Hz, 1H, H-1), 4.27 (dd, J = 8.2 Hz, 1H, H-3), 5.15 (t, J = 9.4 Hz, 1H, H-4), 4.87 (d, J = 8.2 Hz, 1H, H-1), 4.27 (dd, J = 8.2 Hz, 1H, H-3), 4.27 (dd, J = $= 4.8 \text{ Hz}, J = 12.3 \text{ Hz}, 1\text{H}, \text{H-6a}, 4.33-4.21 (m, 6\text{H}, \text{H-6b}, 2\text{xOCH}_2\text{CH}_3, \text{H-2}), 4.17-4.08 (m, 2\text{H}, 2\text{H}_3, 2$ $OCH_2(CF_2)_9CF_2H$), 3.69-3.65 (m, 1H, H-5), 2.77 (d, J = 21.1 Hz, 2H, $CH_2P(O)$), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc); ¹³C NMR (101 MHz, CDCl₃) δ 171.2 C(O)CH₃, 170.9 C(O)CH₃, 169.4 C(O)CH₃, 166.2 (d, J = 3.6 Hz, C(O)CH₂P(O)(OEt)₂), 116.2-96.0 (m, $(CF_2)_9CF_2H$, 100.4 C-1, 70.5 C-5, 68.3 C-3, 67.8 C-4, 62.0 (d, J = 6.6 Hz, OCH_2CH_3), 62.1 (d, J = 6.6 Hz, OCH_2CH_3), 62.1 (d, J = 6.6 Hz, OCH_2CH_3), 62.1 (d, J = 6.6 Hz, OCH_2CH_3) = 6.5 Hz, OCH₂CH₃), 62.4 C-6, 60.5 (m, OCH₂(CF₂)₉CF₂H), 52.6 C-2, 34.8 (d, J = 129.4 Hz, $C(O)CH_2P(O)(OEt)_2$, 20.9 $C(O)CH_3$, 20.5 $C(O)CH_3$, 20.4 $C(O)CH_3$, 16.21 (d, J=4.8 Hz, OCH_2CH_3), 16.18 (d, J = 4.6 Hz, OCH_2CH_3); ¹⁹F NMR (376 MHz, $CDCl_3$) δ -119.91, -121.88, -123.28, -129.22, -137.05; ³¹P NMR (162 MHz, CDCl₃): δ 22.18 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for $C_{29}H_{33}F_{20}NO_{12}P$: 998.1421; found: 998.1423 m/z $[M+Na]^+$ C₂₉H₃₂F₂₀NNaO₁₂P: 1020.1240; found: 1020.1248.

²¹ ACCEPTED MANUSCRIPT

4.13. General procedure for the synthesis of fluorinated sugar azides 26, 27, 28

Monosaccharides with 2-chloroacetamido group **20**, **21**, **22** (1 equiv.) were heated overnight with KI (2.3 equiv.) and NaN₃ (3 equiv.) in anhydrous DMF (12 mL for 1 mmol of sugar) under an argon atmosphere in 80 °C. The solvent was evaporated from the reaction mixture and the residue diluted with EtOAc (2 mL for 1 mmol of sugar) washed with brine (2x3 mL for 1 mmol of sugar). The organic phase was dried over Na₂SO₄ and solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using a 3:1 mixture of EtOAc/CH as eluent to afforded compounds **26**, **27**, **28**.

4.13.1.3,4,6-Tri-O-acetyl-2-azidoacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6,7,7-pentadecafluoromethoxy)- β -D-glucopyranoside **26**

3,4,6-Tri-*O*-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoroethoxy)β-D-glucopyranoside **21** (0.032 g, 0.042 mmol), KI (0.016 g, 0.096 mmol) and NaN₃ (0.008 g, 0.126 mmol) gave **26** as a white solid. Yield: (0.030 g) 93 %; ¹H NMR (403 MHz, CDCl₃) δ 6.74 (d, J = 8.6 Hz, 1H, NH), 5.42 (dd, J = 9.2 Hz, J = 10.6 Hz, H, H-3), 5.09 (t, J = 9.6 Hz, 1H, H-4), 4.95 (d, J = 8.2 Hz, 1H, H-1), 4.33-4.23 (m, 2H, H-6a, OCH₂(CF₂)₆CF₃), 4.17 (dd, J = 12.7 Hz, J = 2.7 Hz, 1H, H6b), 3.94-3.83 (m, 3H, H-2, CH₂N₃), 3.77 (ddd, J = 2.4 Hz, J = 4.6 Hz, J = 9.9 Hz, 1H, H-5), 2.10 (s, 3H, OAc), 2.038 (s, 3H, OAc), 2.036 (s, 3H, OAc); ¹³C NMR (101 MHz, CDCl₃) δ 170.59 \underline{C} (O)CH₃, 170.54 \underline{C} (O)CH₃, 169.2 \underline{C} (O)CH₃, 169.2 \underline{C} (O)CH₂N₃, 122.5-109.5 (m, (CF₂)₆CF₃), 100.4 C-1, 72.4 C-5, 71.3 C-3, 68.3 C-4, 65.2 C-6, 65.3 (t, J = 65.3 Hz, \underline{C} H₂(CF₂)₆CF₃), 54.5 C-2, 52.5 \underline{C} H₂N₃, 20.64 C(O) \underline{C} H₃, 20.57 C(O) \underline{C} H₃, 20.54 C(O) \underline{C} H₃; ¹⁹F NMR (379 MHz, CDCl₃) δ: -81.24, -120.38, -122.52, -123.22, -123.62, -126.60; MS (ESI) m/z

 $[M+H]^+$ calcd for $C_{22}H_{22}F_{15}N_4O_9$: 771.1147; found: 771.1155 m/z $[M+Na]^+$ calcd for $C_{22}H_{21}F_{15}N_4NaO_9$: 793.0967; found: 793.0977.

4.13.2. 3,4,6-Tri-*O*-acetyl-2-azidoacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoroethoxy)-β-D-glucopyranoside **27**

3,4,6-Tri-*O*-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoroethoxy)- β -D-glucopyranoside **21** (0.114 g, 0.157 mmol), KI (0.060 g, 0.361 mmol) and NaN₃ (0.031 g, 0.471 mmol) gave **27** as a white solid. Yield: (0.108 g) 94 %; ¹H NMR (403 MHz, CDCl₃) δ 6.43 (d, J = 8.7 Hz, 1H, NH), 5.36 (dd, J = 10.6 Hz, J = 9.3 Hz, 1H, H-3), 5.08 (t, J = 9.6 Hz, 1H, H-4), 4.80 (d, J = 8.3 Hz, 1H, H-1), 4.27 (dd, J = 12.3 Hz, J = 4.8 Hz, 1H, H-6a), 4.18-4.11 (m, 3H, H-6b, OCH₂CH₂(CF₂)₅CF₃), 3.93 (s, 2H, CH₂N₃), 3.87-3.80 (m, 1H, H-2), 3.74 (ddd, J = 10.0 Hz, J = 4.9 Hz, J = 2.5 Hz, 1H, H-5), 2.52-2.34 (m, 2H, CH₂(CF₂)₅CF₃), 2.09 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc); ¹³C NMR (101 MHz, CDCl₃) δ 170.7 \underline{C} (O)CH₃, 170.6 \underline{C} (O)CH₃, 169.4 \underline{C} (O)CH₃, 167.1 \underline{C} (O)CH₂N₃, 121.7-106.4 (m, (CF₂)₅CF₃), 100.5 C-1, 72.0 C-5, 71.6 C-3, 68.4 C-4, 61.9 C-6, OCH₂CH₂(CF₂)₅CF₃, 54.7 C-2, 52.5 \underline{C} H₂N₃, 31.3 (t, J = 21.4 Hz, OCH₂CH₂(CF₂)₅CF₃), 20.6 C(O)CH₃, 20.59 C(O)CH₃, 20.57 C(O)CH₃; ¹⁹F NMR (379 MHz, CDCl₃) δ -81.30, -113.91, -122.41, -123.38, -124.12, -126.64; MS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₄F₁₃N₄O₉: 735.1336; found: 735.1330 m/z [M+Na]⁺ calcd for C₂₂H₂₃F₁₃N₄NaO₉: 757.1155; found: 757.1148.

4.13.3. 3,4,6-Tri-O-acetyl-2-azidoacetamido-2-deoxy-1-(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-eicosafluorononylmethoxy)- β -D-glucopyranoside **28**

3,4,6-Tri-O-acetyl-2-chloroacetamido-2-deoxy-1-(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-eicosafluorononylmethoxy)- β -D-glucopyranoside **22** (0.090 g, 0.101 mmol), KI (0.037 g, 0.225

mmol) and NaN₃ (0.033 g, 0.505 mmol) gave **28** as a white solid. Yield: (0.081 g) 89 %; 1 H NMR (403MHz, CDCl₃) δ 6.68 (d, J = 8.6 Hz, 1H, NH), 6.06 (tt, J = 5.1 Hz, J = 51.8 Hz, 1H, CF₂H), 5.42 (dd, J = 10.6 Hz, J = 9.2 Hz, 1H, H-3), 5.11 (t, J = 9.4 Hz, 1H, H-4), 4.95 (d, J = 8.2 Hz, 1H, H-1), 4.34-4.25 (m, 3H, H-6a, OCH₂(CF₂)₉CF₂H), 4.17 (dd, J = 12.4 Hz, J = 2.5 Hz, 1H, H-6b), 3.96-3.84 (m, 3H, CH₂N₃, H-2), 3.76 (ddd, J = 9.9 Hz, J = 4.9 Hz, J = 2.4 Hz, 1H, H-5), 2.11 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.04 (s, 3H, OAc); 13 C NMR (101 MHz, CDCl₃) δ 171.2 $^{\circ}$ C(O)CH₃, 170.9 $^{\circ}$ C(O)CH₃, 169.5 $^{\circ}$ C(O)CH₃, 169.5 $^{\circ}$ C(O)CH₂N₃, 116.2-98.0 (m, (CF₂)₉CF₂H), 100.4 C-1, 70.5 C-5, 68.2 C-3, 67.7 C-4, 65.0 C-6, 61.5 $^{\circ}$ CH₂(CF₂)₉CF₂H, 53.6 C-2, 52.3 $^{\circ}$ CH₂N₃, 20.7 C(O)CH₃, 20.5 C(O)CH₃, 20.4 C(O)CH₃; 19 F NMR (379 MHz, CDCl₃) δ -120.36, -122.40, -123.76, -129.60, -137.41; MS (ESI) m/z [M+H]⁺ calcd for C₂₅H₂₃F₂₀N₄O₉: 903.1146; found: 903.1144; m/z [M+Na]⁺ calcd for C₂₅H₂₂F₂₀N₄NaO₉: 925.0965; found: 925.0962.

4.14. General procedure for the synthesis of fluorinated phosphoramidates 29, 30, 31

Corresponding florinated azides **26**, **27**, **28** in anhydrous DCM (43.3 mL for 1 mmol of sugar), molecular sieves 4Å (0.213 g for 1 mmol of sugar) was added and the reaction mixture was stirred for 1 h at room temperature. Next, P(OEt)₃ (5 equiv.) was added and stirring was continued overnight. Then, it was diluted with DCM, passed through a pad of Celite and solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (DCM:MeOH 20:1, v/v) gave **29**, **30**, **31**.

4.14.1.3,4,6-Tri-O-acetyl-2-deoxy-2-diethylphosphoramidoacetamido-1-

(1,1,1,2,2,3,3,4,4,5,5,6,6,7,7-pentadecafluoromethoxy)-β-D-glucopyranoside **29**

3,4,6-Tri-*O*-acetyl-2-azidoacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6,7,7-

pentadecafluoromethoxy)-β-D-glucopyranoside 26 (0.051 g, 0.066 mmol) and P(OEt)₃ (0.06 mL,

²⁴ ACCEPTED MANUSCRIPT

0.330 mmol) gave **29** as a white solid. Yield: (0.044 g) 76%; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.6 Hz, 1H, NH), 5.42 (dd, J = 10.4 Hz, J = 9.3 Hz, 1H, H-3), 5.08 (t, J = 9.6 Hz, 1H, H-4), 4.99 (d, 1H, J = 8.2 Hz, H-1), 4.28 (dd, J = 12.3 Hz, J = 4.8 Hz, 1H, H-6a), 4.16 (dd, J = 2.4 Hz, J = 12.3 Hz, 1H, H-6b), 4.12-4.03 (m, 6H, 2xCH₂CH₃, OCH₂(CF₂)₆CF₃), 3.94-3.84 (m, 1H, H-2), 3.76 (ddd, J = 9.9 Hz, J = 5.0 Hz, J = 2.3 Hz, 1H, H-5), 3.53-3.99 (m, 3H, CH₂NHP(O)), 2.09 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.36-1.28 (m, 6H, 2xCH₃); ¹³C NMR (151 MHz, CDCl₃) δ 170.6 C(O)CH₃, 170.5 C(O)CH₃, 169.5 C(O)CH₃, 169.4 (d, J = 9.4 Hz, C(O)CH₂NHP(O)(OEt)₂), 122.8-108.6 (m, (CF₂)₅CF₃), 100.6 C-1, 72.3 C-5, 71.7 C-3, 68.7 C-4, 63.0 (d, J = 6.6 Hz, OCH₂CH₃), 62.9 (d, J = 6.6 Hz, OCH₂CH₃), 62.1 C-6, 64.5 (m, OCH₂(CF₂)₆CF₃), 54.5 C-2, 44.8 (s, C(O)CH₂NHP(O)(OEt)₂), 20.6 C(O)CH₃, 20.5 C(O)CH₃, 20.3 C(O)CH₃, 16.09 (d, J = 6.8 Hz, OCH₂CH₃), 16.06 (d, J = 6.7 Hz, OCH₂CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.29, -120.68, -122.54, -123.27, -123.80, -126.65; ³¹P NMR (121 MHz, CDCl₃): δ 8.51 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂6H₃₃F₁₅N₂O₁₂P: 881.1532; found: 881.1555 m/z [M+Na]⁺ calcd for C₂6H₃₂F₁₅N₂NaO₁₂P: 903.1351; found: 903.1372.

4.14.2. 3,4,6-Tri-O-acetyl-2-deoxy-2-diethylphosphoramidoacetamido-1-

(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoroethoxy)-β-D-glucopyranoside **30**

3,4,6-Tri-*O*-acetyl-2-azidoacetamido-2-deoxy-1-(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoroethoxy)- β -D-glucopyranoside **27** (0.102 g, 0.139 mmol) and P(OEt)₃ (0.12 mL, 0.695 mmol) gave **30** as a white solid. Yield: (0.100 g) 85%; ¹H NMR (403 MHz, CDCl₃) δ 7.18 (d, J = 8.8 Hz, 1H, NH), 5.34 (dd, J = 10.3 Hz, J = 9.4 Hz, 1H, H-3), 5.06 (t, J = 9.6 Hz, 1H, H-4), 4.83 (d, J = 8.3 Hz, 1H, H-1), 4.26 (dd, J = 12.3 Hz, J = 5.1 Hz, 1H, H-6a), 4.15 (dd, J = 2.4 Hz, J = 12.3 Hz, 1H, H-6b), 4.12-4.03 (m, 4H, 2xCH₂CH₃), 3.92-3.82 (m, 3H, H-2, OCH₂CH₂(CF₂)₅CF₃), 3.73 (ddd, J =

9.9 Hz, J = 5.0 Hz, J = 2.3 Hz, 1H, H-5), 3.58-3.43 (m, 3H, CH₂NHP(O)), 2.52-2.36 (m, 2H, CH₂(CF₂)₅CF₃), 2.08 (s, 3H, OAc), 2.02 (s, 3H, OAc), 2.01 (s, 3H, OAc), 1.36-1.29 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.7 \underline{C} (O)CH₃, 170.6 \underline{C} (O)CH₃, 170.5 \underline{C} (O)CH₃, 169.4 (d, J = 9.4 Hz, \underline{C} (O)CH₂NHP(O)(OEt)₂), 120.8-107.6 (m, (CF₂)₅CF₃), 100.6 C-1, 72.2 C-5, 71.9 C-3, 68.6 C-4, 62.95 (d, J = 6.6 Hz, O \underline{C} H₂CH₃), 62.90 (d, J = 6.5 Hz, O \underline{C} H₂CH₃), 62.0 C-6, 61.6 (appm, O \underline{C} H₂CH₂(CF₂)₅CF₃), 54.4 C-2, 44.8 (s, C(O) \underline{C} H₂NHP(O)(OEt)₂), 31.4 (t, J = 21.7 Hz, OCH₂CH₂(CF₂)₅CF₃), 20.64 C(O) \underline{C} H₃, 20.61 C(O) \underline{C} H₃, 20.57 C(O) \underline{C} H₃, 16.09 (d, J = 6.8 Hz, O \underline{C} H₂CH₃), 16.04 (d, J = 6.8 Hz, OCH₂CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.29, -113.99, -122.42, -123.40, -124.15, -126.66; ³¹P NMR (121 MHz, CDCl₃): δ 8.59 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₆H₃₅F₁₃N₂O₁₂P: 845.1720; found: 845.1706 m/z [M+Na]⁺ calcd for C₂₆H₃₄F₁₃N₂NaO₁₂P: 867.1539; found: 867.1530.

4.14.3. 3,4,6-Tri-O-acetyl-2-deoxy-2-diethylphosphoramidoacetamido-

(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-eicosafluorononylmethoxy)-β-D-glucopyranoside **31** 3,4,6-Tri-*O*-acetyl-2-azidoacetamido-2-deoxy-1-(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-eicosafluorononylmethoxy)-β-D-glucopyranoside **28** (0.052 g, 0.058 mmol) and P(OEt)₃ (0.05 mL, 0.290 mmol) gave **30** as a white solid. Yield: (0.053 g) 92%; ¹H NMR (400MHz, CDCl₃) δ 6.65 (d, J = 8.6 Hz, 1H, NH), 6.06 (tt, J = 5.1 Hz, J = 51.8 Hz, CF₂H), 5.44 (dd, J = 10.6 Hz, J = 9.2 Hz, 1H, H-3), 5.10 (t, J = 9.4 Hz, 1H, H-4), 4.96 (d, J = 8.2 Hz, 1H, H-1), 4.34-4.23 (m, 7H, H-6a, 2xCH₂CH₃, OCH₂(CF₂)₉CF₂H), 4.17 (dd, J = 12.4 Hz, J = 2.5 Hz, 1H, H-6b), 3.96-3.84 (m, 3H, H-2, CH₂NHP(O)), 3.77 (ddd, J = 9.9 Hz, J = 4.9 Hz, J = 2.4 Hz, 1H, H-5), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc); ¹⁹F NMR (379 MHz, CDCl₃) δ -120.36, -122.42, -

²⁶ ACCEPTED MANUSCRIPT

123.74, -129.72, -137.39; MS (ESI) m/z [M+H]⁺ calcd for $C_{29}H_{34}F_{20}N_2O_{12}P$: 1013.1530; found: 1013.1529 m/z [M+Na]⁺ calcd for $C_{29}H_{33}F_{20}N_2NaO_{12}P$: 1035.1349; found: 1035.1349.

4.15. General synthesis of phosphonates **32** and **34**

To a solution of sugar chloride **19** (1 equiv.) or sugar bromide **33** (1 equiv.) in MeCN (30 mL for 1 mmol of sugar), KI (2.26 equiv.) and P(OEt)₃ (2 equiv.) were added. The reaction mixture was heated in 65 °C for 3.5-4 h. The solvent was evaporated and the crude product was purified by column chromatography using a 20:1 mixture of DCM/MeOH as eluent.

4.15.1. 2-Diethylhosphonoacetamido-1,2,4,6-tetra-O-acetyl-2-deoxy-β-D-glucopyranoside 32 1,3,4,6-tetra-O-acetyl-2-chloroacetamido-2-deoxy-β-D-glucopyranoside **19** (0.021 g, 0.050 mmol) and P(OEt)₃ (0.02 mL, 0.100 mmol) gave **32** as a white solid. Yield: (0.018 g) 69%; ¹H NMR (600 MHz, CDCl₃): δ 6.81 (d, J = 9.0 Hz, 1H, NH), 5.85 (d, J = 8.8 Hz, 1H, H-1), 5.33 (dd, J = 9.3 Hz, J = 10.6 Hz, 1H, H-4), 5.10 (t, J = 9.6 Hz, 1H, H-3), 4.29 (dd, J = 4.5 Hz, J = 4.5 Hz)12.5 Hz, 1H, H-6a), 4.20-4.14 (m, 1H, H-2), 4.13-4.09 (m, 5H, H-6b, 2xOCH₂CH₃), 3.87 (ddd, J = 2.2 Hz, J = 4.5 Hz, J = 10.0 Hz, 1H, H-5), 2.81 (d, J = 21.0 Hz, 2H, CH₂P(O)(OEt)₂), 2.13 (s, 3H, OAc), 2.09 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.37-1.32 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 170.7 C(O)CH₃, 170.6 C(O)CH₃, 169.4 C(O)CH₃, 169.3 $C(O)CH_3$, 164.5 (d, J = 4.1 Hz, $C(O)CH_2P(O)(OEt)_2$), 91.9 C-1, 72.6 C-5, 72.0 C-3, 68.2 C-4, $62.9 \text{ (d, } J = 6.4 \text{ Hz, OCH}_2\text{CH}_3), 61.6 \text{ C-6}, 53.3 \text{ C-2}, 35.3 \text{ (d, } J = 129.9 \text{ Hz, C(O)}_2\text{CH}_2\text{P(O)}(\text{OEt)}_2),$ 20.9 C(O)CH_3 , 20.71 C(O)CH_3 , 20.68 C(O)CH_3 , 20.60 C(O)CH_3 , $16.28 \text{ (d, } J = 6.1 \text{ Hz, } 1.00 \text{ C(O)CH}_3$) OCH₂CH₃); ³¹P NMR (243 MHz, CDCl₃): δ 21.53 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for $C_{20}H_{33}NO_{13}P$: 526.1690; found: 526.1698 m/z [M+Na]⁺ calcd for $C_{20}H_{32}NNaO_{13}P$: 548.1509; found: 548.1522.

²⁷ ACCEPTED MANUSCRIPT

4.15.2. 2-Diethylphosphonopropanamido-1,2,4,6-tetra-O-acetyl-2-deoxy-β-D-glucopyranoside **34** 1,3,4,6-tetra-O-acetyl-2-(3-bromopropionylamido)-2-deoxy- β-D-glucopyranoside (33) (0.097 g, 0.200 mmol) and P(OEt)₃ (0.1 mL, 0.600 mmol) gave **34** as a white solid. Yield: (0.046 g) 43 %; ¹H NMR (400 MHz, CDCl₃): δ 7.07 (d, J = 9.2 Hz, 1H, NH), 5.76 (d, J = 8.8 Hz, 1H, H-1), 5.23 (appt, J = 9.9 Hz, 1H, H-3), 5.10 (t, J = 9.6 Hz, 1H, H-4), 4.30-4.25 (m, 2H, H-6a, H-6b), 4.14-4.05 (m, 5H, $2xOCH_2CH_3$, H-2), 3.81 (ddd, J = 2.2 Hz, J = 4.6 Hz, J = 9.8 Hz, IH, H-5), 2.35-2.45 (m, 2H, $CH_2CH_2P(O)(OEt)_2$), 2.06-1.96 (m, 2H, $CH_2P(O)(OEt)_2$), 2.10 (s, 3H, OAc), 2.08 (s, 3H, OAc), 2.02 (s, 6H, 2xOAc), 1.37-1.26 (m, 6H, 2xCH₃); ¹³C NMR (151 MHz, CDCl₃): δ 171.4 \underline{C} (O)CH₃, 171.3 \underline{C} (O)CH₃, 170.72 \underline{C} (O)CH₃, 170.68 \underline{C} (O)CH₃, 169.4 (d, J = 4.4Hz, $C(O)CH_2CH_2P(O)(OEt)_2$, 92.4 C-1, 72.66 C-5, 72.65 C-3, 68.1 C-4, 62.05 (d, J = 6.5 Hz, OCH_2CH_3), 61.99 (d, J = 6.6 Hz, OCH_2CH_3), 61.7 C-6, 53.0 C-2, 29.1 (d, J = 3.6 Hz, $C(O)CH_2CH_2P(O)(OEt)_2$, 20.9 $C(O)CH_3$, 20.72 $C(O)CH_3$, 20.74 (d, J = 143.8 Hz, $C(O)CH_2CH_2P(O)(OEt)_2$, 20.65 $C(O)CH_3$, 20.59 $C(O)CH_3$, 16.4 (d, J = 5.6 Hz, 2xOCH₂CH₃); ³¹P NMR (121 MHz, CDCl₃): δ 31.33 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₁H₃₅NO₁₃P: 540.1846; found: 540.1852 m/z [M+Na]⁺ calcd for C₂₁H₃₄NNaO₁₃P: 562.1665; found: 562.1674. 4.16. 1,3,4,6-tetra-*O*-acetyl-2-(3-bromopropionylamido)-2-deoxy-β-D-glucopyranoside **33** A solution of 2-deoxy-2-amino-1,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl hydrochloride (0.099) g, 0.258 mmol) in anhydrous DCM (3.3 mL) was cooled to 0 °C. Next Et₃N (0.1 mL) was added followed by DCC (0.186 g, 0.903 mmol) and 3-bromopropionic acid (0.276 g, 1.806 mmol). The reaction mixture was allowed to warm up to room temperature and stirred overnight. After finishing the precipitate was filtered and the solvents were evaporated. Product was purified by column chromatography (EtOAc:CH 1:1, v/v) gave 33 as white solid. Yield: (0.092 g) 75%; ¹H

NMR (403 MHz, CDCl₃): δ 6.02 (d, J = 9.4 Hz, 1H, NH), 5.72 (d, J = 8.8 Hz, 1H, H-1), 5.21 (dd, J = 9.4 Hz, J = 10.5 Hz, 1H, H-3), 5.13 (t, J = 9.6 Hz, 1H, H-4), 4.41-4.32 (m, 1H, H-2), 4.28 (dd, J = 4.7 Hz, J = 12.5 Hz, 1H, H-6a), 4.13 (dd, J = 2.6 Hz, J = 12.3 Hz, 1H, H-6b), 3.85 (ddd, J = 2.2 Hz, J = 4.6 Hz, J = 9.8 Hz, 1H, H-5), 3.61 (t, J = 6.2 Hz, 1H, CH₂Br), 2.70 (t, J = 6.2 Hz, 1H, CH₂CH₂Br), 2.13 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc); ¹³C NMR (101 MHz, CDCl₃): δ 171.3 \underline{C} (O)CH₃, 170.7 \underline{C} (O)CH₃, 169.7 \underline{C} (O)CH₃, 169.6 \underline{C} (O)CH₂CH₂Br, 92.4 C-1, 72.8 C-5, 72.4 C-3, 67.9 C-4, 61.6 C-6, 52.8 C-2, 39.6 C(O) \underline{C} H₂CH₂Br, 27.3 CH₂ \underline{C} H₂Br, 21.0 C(O) \underline{C} H₃, 20.9 C(O) \underline{C} H₃, 20.7 C(O) \underline{C} H₃, 20.6 C(O) \underline{C} H₃; MS (ESI) m/z [M+H]⁺ calcd for C₁₇H₂₅BrNO₁₀: 482.0662; found: 482.0676 m/z [M+Na]⁺ calcd for C₁₇H₂₄BrNNaO₁₀: 504.0481; found: 504.0485.

4.17. General synthesis of phosphoramidates **36** and **38**

To the mixture of **35** (1 equiv.) or **37** (1 equiv.) in anhydrous DCM (43.3 mL for 1 mmol of sugar), molecular sieves 4Å (0.213 g for 1 mmol of sugar) was added and the reaction mixture was stirred for 1h at room temperature. Next, P(OEt)₃ (5 equiv.) was added and stirring was continued overnight. Then, it was diluted with DCM, passed through a pad of Celite and solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (DCM:MeOH 20:1, v/v) gave **36** or **38**.

4.17.1. 2-diethylphosphoramidoacetamido-1,2,4,6-tetra-O-acetyl-2-deoxy-β-D-glucopyranose **36** 1,3,4,6-tetra-O-acetyl-2-azidoacetamide-2-deoxy-β-D-glucopyranose **35** (0.079 g, 0.184 mmol) and P(OEt)₃ (0.16 mL, 0.920 mmol) gave **36** as a white solid. Yield: (0.068 g) 69%; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, J = 9.5 Hz, 1H, NH), 5.86 (d, J = 8.7 Hz, 1H, H-1), 5.38 (dd, J = 9.4 Hz, J = 10.5 Hz, 1H, H-3), 5.13 (t, J = 9.7 Hz, 1H, H-4), 4.35-4.25 (m, 1H, H-6a, H-2), 4.16-

²⁹ ACCEPTED MANUSCRIPT

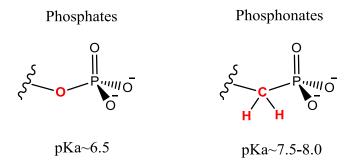
3.95 (m, 6H, 2xOCH₂CH₃, H-6b, NHP(O)), 3.87 (ddd, J = 2.2 Hz, J = 4.7 Hz, J = 10.0 Hz, 1H, H-5), 3.53 (dd, J = 7.7 Hz, J = 11.2 Hz, 2H, CH₂NH), 2.11 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.37-1.27 (m, 6H, 2xCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 170.98 $\underline{\text{C}}$ (O)CH₃, 170.71 $\underline{\text{C}}$ (O)CH₃, 170.64 $\underline{\text{C}}$ (O)CH₃, 170.63 $\underline{\text{C}}$ (O)CH₃, 169.3 (d, J = 9.4 Hz, $\underline{\text{C}}$ (O)CH₂NHP(O)(OEt)₂), 92.2 C-1, 72.6 C-5, 72.5 C-3, 68.0 C-4, 62.9 (d, J = 5.5 Hz, OCH₂CH₃), 62.8 (d, J = 5.6 Hz, OCH₂CH₃), 61.7 C-6, 52.7 C-2, 44.6 $\underline{\text{C}}$ H₂NHP(O)(OEt)₂, 20.9 C(O)CH₃, 20.7 C(O)CH₃, 20.6 C(O)CH₃, 20.5 C(O)CH₃, 16.16 (d, J = 5.4 Hz, OCH₂CH₃), 16.07 (d, J = 5.4 Hz, OCH₂CH₃); ³¹P NMR (121 MHz, CDCl₃): δ 8.7 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₀H₃₄N₂O₁₃P: 541.1799; found: 541.1801 m/z [M+Na]⁺ calcd for C₂₀H₃₃N₂NaO₁₃P: 563.1618; found: 563.1632.

4.17.2. 2-diethylphosphoramidopropionamido-1,2,4,6-tetra-*O*-acetyl-2-deoxy-β-D-glucopyranose **38**

1,3,4,6-tetra-*O*-acetyl-2-(3-azidopropionylamido)-2-deoxy-β-D-glucopyranoside (**37**) (0.073 g, 0.164 mmol) and P(OEt)₃ (0.14 mL, 0.820 mmol) gave **38** as a white solid. Yield: (0.055 g) 60%; 1 H NMR (600 MHz, CDCl₃): δ 6.35 (d, J = 9.2 Hz, 1H, NH), 5.80 (d, J = 8.7 Hz, 1H, H-1), 5.26 (dd, J = 9.4 Hz, J = 10.2 Hz, 1H, H-3), 5.13 (t, J = 9.7 Hz, 1H, H-4), 4.29 (dd, J = 4.7 Hz, J = 12.5 Hz, 1H, H-6a), 4.22 (dt, J = 9.0 Hz, J = 19.4 Hz, 1H, H-2), 4.13 (dd, J = 2.4 Hz, J = 12.4 Hz, 1H, H-6b), 4.09-4.03 (m, 4H, 2xOCH₂CH₃), 3.84 (ddd, J = 2.2 Hz, J = 4.6 Hz, J = 10.0 Hz, 1H, H-5), 3.31-3.25 (m, 1H, NHP(O)), 3.21-3.13 (m, 2H, CH₂NH), 2.37-2.31 (m, 2H, CH₂CH₂NH), 2.13 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.33 (appt, J = 7.1 Hz, 6H, 2xCH₃); 13 C NMR (75 MHz, CDCl₃): δ 171.6 \underline{C} (O)CH₃, 171.1 \underline{C} (O)CH₃, 170.6 \underline{C} (O)CH₃, 169.4 \underline{C} (O)CH₃, 169.3 \underline{C} (O)CH₂CH₂NHP(O)(OEt)₂, 92.3 C-1, 72.8 C-5, 72.5

C-3, 67.8 C-4, 62.5 (d, J = 5.6 Hz, OCH₂CH₃), 61.8 (d, J = 5.6 Hz, OCH₂CH₃), 61.6 C-6, 53.2 C-2, 37.8 (d, J = 4.1 Hz, CH₂CH₂NHP(O)(OEt)₂), 37.5 CH₂CH₂NHP(O)(OEt)₂, 20.9 C(O)CH₃, 20.7 C(O)CH₃, 20.6 C(O)CH₃, 20.5 C(O)CH₃, 16.3 (d, J = 6.5 Hz, OCH₂CH₃), 16.1 (d, J = 6.9 Hz, OCH₂CH₃); ³¹P NMR (243 MHz, CDCl₃): δ 8.9 (s, 1P); MS (ESI) m/z [M+H]⁺ calcd for C₂₁H₃₆N₂O₁₃P: 555.1955; found: 555.1957 m/z [M+Na]⁺ calcd for C₂₁H₃₅N₂NaO₁₃P: 577.1774; found: 577.1773.

4.18. 1,3,4,6-tetra-O-acetyl-2-(3-azidopropionylamido)-2-deoxy-β-D-glucopyranoside 37 To the mixture of bromide 33 (0.086 g, 0.178 mmol) in acetone (6 mL), KI (0.006 g, 0.036 mmol) and NaN₃ (0.058 g, 0.890 mmol) were added and stirred overnight. The solvent was evaporated, diluted with EtOAc and washed with aq. sat. NaHCO₃ and brine. The organic phase was dried over Na₂SO₄ and solvent was evaporated under reduced pressure. Purification by column chromatography (EtOAc/CH, 3:1,v/v) afforded 37 as a white solid. Yield: (0.073 g) 92%; ¹H NMR (400 MHz, CDCl₃): δ 6.02 (d, J = 9.4 Hz, 1H, NH), 5.74 (d, J = 8.8 Hz, 1H, H-1), 5.21 (dd, J = 9.4 Hz, J = 10.5 Hz, 1H, H-3), 5.13 (t, J = 9.6 Hz, 1H, H-4), 4.41-4.32 (m, 1H, H-2), 4.28 (dd, J = 4.7 Hz, J = 12.5 Hz, 1H, H-6a), 4.13 (dd, J = 2.6 Hz, J = 12.3 Hz, 1H, H-6b), 3.88 (ddd, J = 2.2 Hz, J = 4.6 Hz, J = 9.8 Hz, 1H, H-5), 3.62 (t, J = 6.2 Hz, 2H, CH₂N₃), 2.70 (t, J = 6.2 Hz, 2H, CH₂CH₂N₃), 2.13 (s, 3H, OAc), 2.10 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc) ¹³C NMR (75 MHz, CDCl₃): δ 171.3 <u>C(O)CH₃</u>, 170.6 <u>C(O)CH₃</u>, 170.0 <u>C(O)CH₃</u>, 169.5 C(O)CH₃, 169.2 C(O)CH₂CH₂CH₂N₃, 92.4 C-1, 72.9 C-5, 72.4 C-3, 67.8 C-4, 61.6 C-6, 53.0 C-2, 47.1 CH₂CH₂N₃, 35.8 CH₂CH₂N₃, 20.8 C(O)CH₃, 20.7 C(O)CH₃, 20.59 C(O)CH₃, 20.55 $C(O)CH_3$; MS (ESI) m/z [M+H]⁺ calcd for $C_{17}H_{25}N_4O_{10}$: 445.1571; found: 445.1567 m/z $[M+Na]^+$ calcd for $C_{17}H_{24}N_4NaO_{10}$: 467.1390; found: 467.1389.


Acknowledgments

This work was partially financed by Foundation for Polish National Science Centre (grant SONATA 4 - 2012/07/D/ST5/02303).

- 5. References
- Vidal, S.; Bruyère, I.; Malleron, A.; Augé, C.; Praly, J.-P. *Bioorg. Med. Chem.* 2006, 14, 7293-7301.
- Forget, S. M.; Jee, A.; Smithen, D. A.; Jagdhane, R.; Anjum, S.; Beaton, S. A.; Palmer, D. R.
 J.; Syvitski, R. T.; Jakeman, D. L. *Org. Biomol. Chem.* 2015, *13*, 866-875.
- 3. Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868-3935.
- 4. Plante, O. J.; Andrade, R. B.; Seeberger, P. H. Org. Lett. 1999, 1, 211-214.
- 5. Gaurat, O.; Xie, J.; Valéry, J.-M. Tetrahedron Lett. 2000, 41, 1187-1189.
- 6. Engel, R. Chem. Rev. 1977, 77, 349-367.
- 7. Wiemer, D. F. Tetrahedron 1997, 53, 16609-16644.
- 8. Nicotra, F. *Carbohydrate Mimics: Concepts and Methods*, ed. Y. Chapleur, Wiley-VCH, Weinheim, New York, 1998, pp. 67-85.
- 9. O'Hagan, D.; Rzepa, H. S. Chem. Commun. 1997, 645-652.
- 10. Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626-9627.
- Denmark, S. E.; Eklov, B. M.; Yao, P. J.; Eastgate, M. D. J. Am. Chem. Soc. 2009, 131, 11770-11787.
- Mucha, A.; Kunert, A.; Grembecka, J.; Pawełczak, M.; Kafarski, P. Eur. J. Med. Chem.
 2006, 41, 768-789.
- Wu, L. Y.; Anderson, M. O.; Toriyabe, Y.; Maung, J.; Campbell, T. Y.; Tajon, C.; Kazak,
 M.; Moser, J.; Berkman, C. E. *Bioorg. Med. Chem.* 2007, *15*, 7434-7443.
- Serwa, R.; Wilkening, I.; Del Signore, G.; Mühlberg, M.; Claußnitzer, I.; Weise, C.; Gerrits,
 M.; Hackenberger, C. P. R. Angew. Chem. Int. Ed. 2009, 48, 8234-8239.

- 15. Cox, R. J.; Gibson, J. S.; Mayo Martín, M. B. ChemBioChem 2002, 3, 874-886.
- 16. Roush, R. F.; Nolan, E. M.; Löhr, F.; Walsh, C. T. J. Am. Chem. Soc. 2008, 130, 3603-3609.
- 17. Kim, H.; Park, J.; Kim, J. G.; Chang, S. Org. Lett. 2014, 16, 5466-5469.
- 18. Wittine, K.; Benci, K.; Rajić, Z.; Zorc, B.; Kralj, M.; Marjanović, M.; Pavelić, K.; De Clercq, E.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas, M. Eur. J. Med. Chem. 2009, 44, 143-151.
- Serpi, M.; Bibbo, R.; Rat, S.; Roberts, H.; Hughes, C.; Caterson, B.; Alcaraz, M. J.; Gibert,
 A. T.; Verson, C. R. A.; McGuigan, C. *J. Med. Chem.* 2012, 55, 4629-4639.
- Kannan, T.; Vinodhkumar, S.; Varghese, B.; Loganathan, D. Bioorg. Med. Chem. Lett. 2001, 11, 2433-2435.
- 21. Tomaszewska, J.; Kowalska, K.; Koroniak-Szejn, K. J. Fluorine Chem. 2016, 1-13.
- 22. Platt, V. M.; Szoka, F. C. Mol. Pharm. 2008, 5, 474-486.
- 23. Mero, A.; Campisi, M. *Polymers* **2014**, *6*, 346-369.
- 24. Smart, B. E. J. Fluorine Chem. 2011, 109, 3-11.
- 25. Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-143.
- 26. Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415-430.
- 27. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635-646.
- Enes, R. F.; Tomé, A. C.; Cavaleiro, J. A. S.; El-Agamey, A.; McGarvey, D. J. Tetrahedron
 2005, 61, 11873-11881.
- Greig, I. R.; Macauley, M. S.; Williams, I. H.; Vocadlo, D. J. J. Am. Chem. Soc. 2009, 131, 13415-13422.
- 30. Lei, Z.; Wang, J.; Tian, Y.; Song, G.; Zhao, G.; Xu, H. Dyes Pigments 2015, 113, 627-633.

- 31. Shiao, T. C.; Rej, R.; Rose, M.; Pavan, G. M.; Roy, R. Molecules 2016, 21, 448-463.
- 32. Gaurat, O.; Xie, J.; Valéry, J.-M. J. Carbohydr. Chem. 2003, 22, 645-656.
- 33. Petrig, J.; Schibli, R.; Dumas, C.; Alberto, R.; Schubiger, P. A. *Chem. Eur. J.* **2001**, *7*, 1868-1873
- 34. Yi, H.; Maisonneuve, S.; Xie, J. Synthesis 2012, 44, 1647-1656.
- 35. Makosza, M.; Fedoryński, M. Arkivoc 2006, 7-17.
- 36. Lin, H.; Walsh, C. T. J. Am. Chem. Soc. 2004, 126, 13998-14003.
- 37. Miljković, M. In *Carbohydrates*; Springer: New York, 2010; pp. 169–190.
- 38. Wipf, P.; Eyer, B. R.; Yamaguchi, Y.; Zhang, F.; Neal, M. D.; Sodhi, C. P.; Good, M.; Branca, M.; Prindle Jr., T.; Lu, P.; Brodsky, J. L.; Hackam, D. J. *Tetrahedron Lett.* **2015**, *56*, 3097-3100.
- 39. Wittmann, V.; Lennartz, D. Eur. J. Org. Chem. 2002, 2002, 1363-1367.
- 40. Fondy, T. P.; Roberts, S. B.; Tsiftsoglou, A. S.; Sartorelli, A. C. *J. Med. Chem.* **1978**, *21*, 1222-1225.
- 41. Ritter, T. K.; Wong, C.-H. Tetrahedron Lett. 2001, 42, 615-618.
- Witte, M. D.; Florea, B. I.; Verdoes, M.; Adeyanju, O.; Van der Marel, G. A.; Overkleeft, H.
 S. J. Am. Chem. Soc. 2009, 131, 12064-12065.
- 43. Lakoud, S. G.; Berredjem, M.; Aouf, N.-E. *Phosphorus, Sulfur Silicon Relat. Elem.* **2012**, 187, 762-768.

Figure 1 Diminishing of acidity P - C bond in phosphonates in relation to P - O bond in phosphates

Phosphoramidates

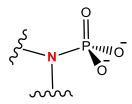


Figure 2 General structure of phosphoramidates

Figure 3 Hyaluronic acid (HA)

Figure 4 Partially fluorinated alcohols used in substitution reaction with sugar 19

Scheme 1 Synthesis of sugar phosphonates $\bf 4$ and $\bf 8$ from D-glucose $\bf 1$ and D-glucosamine hydrochloride $\bf 5$

Scheme 2 Synthesis of sugar phosphoramidates 11 and 13

Scheme 3 Synthesis of fluorinated phosphonates 23-25 and phosphoramidates 29-31

Scheme 4 Synthesis of nonfluorinated phosphonates 32 and 34

Scheme 5 Synthesis of nonfluorinated phosphoramidates 36 and 38