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Catalyzing the Hydrodefluorination of CF3-substituted Alkenes by 

PhSiH3. H• Transfer from a Nickel Hydride 

Chengbo Yao1, Shuai Wang1†, Jack Norton1*, Matthew Hammond1 

1Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States. 

 

ABSTRACT: The hydrodefluorination of CF3-substituted alkenes can be catalyzed by a nickel(II) hydride bearing a pincer 
ligand. The catalyst loading can be as low as 1 mol%. gem-Difluoroalkenes containing a number of functional groups can be 
formed in good to excellent yields, by a radical mechanism initiated by H• transfer from the nickel hydride. The relative reac-
tivity of various substrates supports the proposed mechanism, as does a TEMPO trapping experiment. 

INTRODUCTION 

Fluorine chemistry is gaining increasing attention be-
cause of the importance of fluorine-containing compounds 
in medicinal chemistry and agrochemistry.1-6 Among fluo-
rine-containing functional groups, gem-difluoroalkenes are 
intriguing, contained in a series of biologically active com-
pounds,7-10 and well established as a bioisostere of car-
bonyl compounds with increased metabolic stability and 
thus improved pharmaceutical performance.11-14 In the case 
of artemisinin, the replacement of a carbonyl with a gem-
difluoralkene gives enhanced antimalarial activity. In some 
cases, the gem-difluoroalkene moiety reverses the regiose-
lectivity of enzyme-catalyzed hydride reduction. (Figure 1) 
gem-Difluoroalkenes can also serve as versatile building 
blocks for the synthesis of other fluorine-containing mole-
cules.15-20  

 

 

Figure 1. Representative applications of gem-difluoroalkenes. 

The growing interest in the gem-difluoroalkene moiety 
has led to a number of strategies for its preparation 
(Scheme 1). The conventional approach relies on functional 
group interconversion, i.e., the difluoromethylenation of 

carbonyl or diazo compounds (Scheme 1a).16-17 However, 
these functional-group interconversion strategies typically 
involve highly reactive intermediates or harsh reaction con-
ditions, limiting their substrate scope.  

There are several ways in which gem difluoroalkenes can 
be prepared from the readily available21-25 trifluoromethyl-
substituted alkenes. In one convergent approach, nucleo-
philic attack on a CF3 can lead to fluoride loss, but an SN2’ 
reaction with strong nucleophiles, such as Grignard rea-
gents or organolithium reagents, will suffer from poor func-
tional group tolerance (Scheme 1b). Recently, radical chem-
istry has been used for the synthesis of gem-difluoroal-
kenes, with defluorination of CF3 by either photocatalysis or 
Ni catalysis (Scheme 1c, d).26-36  
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Scheme 1. Typical synthetic routes to gem-difluoroalkenes. 

 

Typical Ni-catalyzed defluorinations of trifluoromethyl 
alkenes for the synthesis of gem-difluoroalkenes begin with 
single electron transfer from the nickel to an alkyl radical 
precursor. The resulting alkyl radical adds to another CF3 
alkene, producing a new radical which is then quenched by 
the formation of a Ni-C bond; β-F elimination gives the final 
product. Other routes to functionalized gem-difluoroal-
kenes, such as alkenylation,37 arylation,38 and borylation,39 
have also been reported.  

 

In general C-F bond activation provides an easy approach 
to the synthesis of partially fluorinated compounds from 
readily available polyfluorinated species.15, 40-41 The sim-
plest transformation of this sort, hydrodefluorination, has 
attracted much attention and features a unique mechanistic 
diversity.42-45 However, most hydrodefluorination reactions 
promoted by transition metals are limited to aromatic or 
olefinic C-F bonds and show little selectivity among such 
bonds. The Hisaeda group has reported a (Co)B12-TiO2 hy-
brid catalyst for the photochemical hydrodefluorination of 
substituted ⍺-CF3 styrenes,46 although a hydrogenation by-
product is always generated along with the gem-difluoroal-
kene. Zhang and his coworkers reported a copper-catalyzed 
reductive defluorination of β-trifluoromethylated enones.47 
However, the use of Grignard reagents limited its functional 
group tolerance. Herein, we report that the iso-PmBox 
Ni(II) hydride 1a can catalyze the synthesis of gem-difluoro-
alkenes by the hydrodefluorination of trifluoromethyl-sub-
stituted alkenes with silanes.  

 

RESULTS AND DISCUSSION 

The iso-PmBox nickel hydride system 1a was developed 
by, and has been studied by, the Gade group.48 It is well es-
tablished that the Ni(II) hydride is in dynamic equilibrium 
with Ni(I) metalloradical. The Ni(I) can abstract halides 
from organic compounds and make Ni(II) halides, from 
which Ni(II)-H can be regenerated with silanes and boron 
hydrides.49-52  

While investigating hydrogen atom transfer (HAT) from 
1a, we found that it carried out the hydrodefluorination of 
⍺-CF3 styrene 2a (Scheme 2). During that reaction the char-
acteristic 19F NMR resonance of the Ni(II)-F complex 1b was 
observed at  –444.3.49 Moreover, the disappearance of 2a 
(a 19F singlet at  –64.50) was accompanied by the appear-
ance of an ABX3 pattern centered at  –90.69 (2JF,F = 44.1Hz, 
4JH,F = 3.3 Hz) belonging to the gem-difluoroalkene 3a.  After 
the addition of PhSiH3, the 19F peak of 1b disappeared and 
the 1H NMR peak of 1a reappeared. (Et3SiH did not regener-
ate 1a.) Indeed, 1a was able to catalyze, in quantitative yield 
(as determined by 19F NMR) at room temperature, the de-
hydrofluorination of 2a with a stoichiometric amount of 
PhSiH3.  

 

 

Scheme 2.  Hydrodefluorination by PhSiH3 of ⍺-CF3 styrene 
2a by isoPmBox Ni(II)-H 1a in a stoichiometric and a catalytic 
manner.  

Table 1 displays the scope of our reaction. Various sub-
stituents, either electron-donating or electron-withdraw-
ing, and different substitution patterns on the aromatic ring 
are well tolerated. All the substrates give yields ranging 
from good to near quantitative. No substantial amount of 
hydrogenation products was observed for any of the sub-
strates, demonstrating a satisfying chemoselectivity. A thi-
oether 3c, an ether 3d, a tertiary amine 3m, and the het-
eroaromatic rings in 3g and 3p remain intact. Even the 
acidic protons of an amide 3e or the carboxylic acid 3f do 
not interfere with the reaction. An exocyclic gem-difluoro-
alkene 3h, and the 2,2-difluorostyrene 3r, can be obtained 
from trisubstituted alkenes bearing a CF3 substituent, alt-
hough an elevated temperature is required. Interestingly, 
only the E isomer of the starting material gives product, 
with elevated temperature and extended reaction time, 
while the Z isomer remains unreacted.53 A monofluoroal-
kene 3i can be obtained from an alkene bearing a difluoro-
methyl substituent. Nitrile 3j, ester 3k, ketone 3n, and alde-
hyde 3o, which are not compatible with Wittig or Julia-type 
olefinations or with strong nucleophiles in SN2’-type reac-
tions, are all well tolerated by our method. Product 3l shows 
that our reaction can achieve chemoselective activation of 
the C-F bonds in trifluoromethyl alkenes without attacking 
an aryl fluoride C–F bond. Other radical stabilizing groups, 
like a carboalkoxy substituent, can also facilitate the reac-
tion, as shown by the formation of product 3q. Unfortu-
nately, the reaction does not work on CF3 alkenes with ali-
phatic substituents, even at elevated temperatures — a re-
sult that is to be expected from the mechanism we propose 
below.  
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Table 1. Substrate scope of the nickel-hydride-cata-
lyzed hydrodefluorination of trifluoromethyl-substi-
tuted alkenes.a 

 

aIsolated yields, unless otherwise noted.   b70 oC; c50 oC; d95 
oC, 10 days, only from the E isomer of starting material. The 
yield is determined by 19F NMR. 

The control experiment in Table 2 (entry 2) shows that 
the nickel hydride 1a is required for the reaction. Attempts 
at replacing 1a with metal hydrides previously used in our 
lab (entry 3), such as HCpCr(CO)3 and HV(CO)4(dppe) (dppe 
= 1,2-bis(diphenylphosphino)ethane), have been unsuc-
cessful,54 so the reactivity of 1a is unique. The catalyst load-
ing can be reduced (entry 4) to 1 mol% without diminishing 
the yield, although a longer reaction time is necessary. The 
number of equivalents of PhSiH3 can be reduced without af-
fecting the yield (entry 5), which suggests that all three 
silane hydrides can be used.    

 

 

 

Table 2. Control Experiments 

 

Entry Deviation from “Standard 
Condition” 

Yielda 

1 None >95% 

2 No 1a < 5% 

3 20 mol% HCpCr(CO)3, or 20 
mol% HV(CO)4(dppe) in-
stead of 1a 

< 5% 

 

4 1 mol% 1a, 72h >95% 

5 0.4 equiv PhSiH3 >95% 

All reactions are performed on 0.5 mmol scale. aDetermined 
by 19F-NMR 

Two mechanisms for this reaction seem worth consider-
ing.  One (shown in the top of Scheme 3) is similar to Gade’s 
proposal for the hydrodefluorination (eq 3) of geminal 
difluorocyclopropanes.49 The Ni(I) (complex 1c) may ab-
stract an F atom from the substrate 2a to form the Ni(II) flu-
oride 1b and the organic radical 4; H• transfer from the 
Ni(II) hydride 1a will then give the product 3a and regener-
ate 1c, while the silane will reduce the fluoride 1b back to 
the hydride 1a.  The other possible mechanism (shown at 
the bottom of Scheme 3) involves the sort of H• transfer to 
olefins that we have used to generate radicals for cyclization 
and isomerization.55-58 Transfer to the methylene of 2a from 
the hydride 1a is expected,59-60 generating the organic radi-
cal 5 while leaving the Ni(I) complex 1c. Abstraction of an F 
atom from 5 by 1c gives the product 3a and yields the Ni 
fluoride 1b,61 which can be reduced by the silane back to 
1a.   
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Scheme 3. Two possible mechanisms initiated by fluorine 
atom abstraction and hydrogen atom transfer respectively 

The second mechanism is supported by several lines of 
evidence. First, it explains why aliphatic alkenes do not 
work (Scheme 4a), even at an elevated temperature. The 
aryl group is essential for stabilizing the organic radical re-
sulting from HAT, given that CF3 is a radical destabilizing 
group;62-63 however, the fluorine atom abstraction in the 
first mechanism would not require an aryl substituent. Sec-
ond, the slow reaction of trisubstituted alkenes (in Scheme 
4b) is more easily explained by the second mechanism — 
using the established60, 64 effects of olefin substitution on the 
rate of HAT to an olefin from a metal hydride. A methyl sub-
stituent on the carbon receiving the H• (in the second mech-
anism) is known to slow HAT by about three orders of mag-
nitude, while the rate of fluorine atom abstraction (in the 
first mechanism) should not change much with the extra 
substituent on carbon. Third, and the most conclusive, is the 
successful trapping of the radical 5 by TEMPO (TEMPO, 
(2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (Scheme 4c). The 
addition of 3 equiv of TEMPO to the reaction results in the 
formation of the TEMPO adduct 6 in 73% isolated yield.  

 
Scheme 4. Evidences in favor of HAT-initiating mechanism  

 The structure of 6 has been confirmed by single-
crystal X-ray diffraction (Figure 2). 

 

Figure 2. Molecular structure of TEMPO-adduct 6. Hydrogen 
atoms are omitted for clarity.  

CONCLUSION 

gem-Difluoroalkenes with a variety of functional groups 
can be generated by the nickel-hydride-catalyzed hydro-
defluorination of CF3 alkenes. The reaction is initiated by H• 
transfer from Ni to the substrate. Trapping of the radical 5 
with TEMPO demonstrates a new mechanism for the previ-
ously reported48 NNN-pincer nickel(I/II) system.  

 

EXPERIMENTAL SECTION 

   General Procedures. All manipulations were carried out 
in an inert atmosphere box (O2 < 1 ppm) or under Ar by 
standard Schlenk techniques unless otherwise noted. Glass-
ware was oven-dried or flame-dried prior to use. All com-
mercial reagents were used as received without further pu-
rification unless specified. Deuterated benzene (C6D6) was 
distilled from molten potassium & benzophenone ketyl. 
Benzene (C6H6) and tetrahydrofuran (THF) were distilled 
from sodium-benzophenone ketyl. isoPmbox-Ni(II)-H 1a48, 
CpCr(CO)3H65, HV(CO)4(dppe)66 and Co(dmgBF2)2(THF)267 
were synthesized according to the literature procedures and 

stored in an argon atmosphere glovebox (O2 < 1 ppm). 1H NMR, 
13C NMR and 19F NMR spectra were recorded using a Bruker 
500 Ascend, DRX 500, DRX 400, or DRX 300 spectrometer. 
Peaks are referenced relative to solvent residual peaks in 
benzene-d6, THF-d8, CD3CN and CDCl3. The data are reported 

as follows: chemical shift in parts per million from internal tet-

ramethylsilane on the δ scale, integration, multiplicity (br = 

broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, 

m = multiplet), and coupling constants (Hz). High-resolution 
mass spectra were acquired on a Waters XEVO G2-XS QToF 
mass spectrometer equipped with a UPC2 SFC inlet and a 
LockSpray source with one of three probes: electrospray 
ionization (ESI) probe, atmospheric pressure chemical ion-
ization (APCI) probe, or atmospheric pressure solids analy-
sis probe (ASAP). X- ray diffraction data were collected on a 
Bruker Apex II diffractometer. Crystal data, data collection 
and refinement parameters are summarized in Table S1. 
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The structure was solved using direct methods and stand-
ard difference map techniques, and was refined by full-ma-

trix least-squares procedures on F2 with SHELXTL (Version 
2013/4). 68-70 

General Procedure of NiH Catalyzed Hydrodefluori-
nation. In an inert atmosphere glovebox, CF3 substituted al-
kenes (0.25 mmol or 0.5 mmol), PhSiH3 (1 equiv), and isoP-
mbox Ni(II)-H 1a (0.05 equiv) were weighed in a glass vial 
and transferred to a J-Young tube using 1ml of dry and de-
gassed C6D6. The reaction was carried out at room temper-
ature for 24 hours unless otherwise noted. The crude reac-
tion mixture was directly subjected to flash column chroma-
tography for purification. Spectroscopic details of all the re-
action products can be found in the Supporting Information. 

Reaction with other metal hydrides. In an inert atmos-
phere glovebox, (1,1-difluoroprop-1-en-2-yl)benzene 2a 
(0.25 mmol), PhSiH3 (0.25 mmol, 1 equiv), and HCpCr(CO)3 

(10 mg, 0.05 mmol, 0.2 equiv), Co(dmgBF2)2(THF)2 (27 mg, 
0.05 mmol, 0.2 equiv), or HV(CO)4(dppe) (28 mg, 0.05 
mmol, 0.2 equiv) were weighed in a glass vial and trans-
ferred to a J-Young tube using 1ml of dry and degassed C6D6. 
The reaction was carried out at room temperature for 24 
hours. Crude 1H NMR and 19F NMR were taken directly or 
after silica plug.  

TEMPO trapping experiment. In an inert atmosphere 
glovebox, (1,1-difluoroprop-1-en-2-yl)benzene 2a (0.5 
mmol), PhSiH3 (0.5 mmol, 1 equiv), TEMPO (1.5 mmol, 3 
equiv) and isoPmbox Ni(II)-H 1a (0.025 mmol, 0.05 equiv) 
were weighed in a glass vial and transferred to a J-Young 
tube using 1ml of dry and degassed C6D6. The reaction was 
carried out at room temperature for 144 hours. The reac-
tion conversion was 56%, 77% and 89% at 3 hours, 17 
hours and 144 hours. The crude reaction mixture was di-
rectly subjected to flash column chromatography for purifi-
cation. Flash column chromatography was done using pure 
hexane. Product was obtained with 73% yield.  

2,2,6,6-tetramethyl-1-((1,1,1-trifluoro-2-phenylpro-
pan-2-yl)oxy)piperidine, 6 1H NMR (400 MHz, Chloro-
form-d) δ 7.68 – 7.62 (m, 2H), 7.46 – 7.34 (m, 3H), 1.95 (q, J 
= 1.2 Hz, 3H), 1.69 – 1.50 (m, 3H), 1.47 - 1.41 (m, 2H), 1.29 
– 1.36 (m, 7H), 1.13 (s, 3H), 0.43 (s, 3H). 19F NMR (376 MHz, 
Chloroform-d) δ -74.83. 13C NMR (101 MHz, Chloroform-d) 
δ 140.86, 128.27, 127.76, 127.68, 126.00 (q, J = 287.6 Hz), 
82.54 (q, J = 26.4 Hz), 60.98, 60.26, 41.68, 41.56, 33.13, 
33.08 (q, J = 4.1 Hz), 20.89, 20.80, 16.92, 16.35 (q, J = 1.7 Hz). 
HRMS-ASAP+ (m/z): calcd for C18H27F3NO [M+H]+: 
330.2045, found: 330.2025.  
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