Article

Catalyzing the Hydrodefluorination of CF3-substituted Alkenes by PhSiH3. H• Transfer from a Nickel Hydride

Chengbo Yao, Shuai Wang, Jack R. Norton, and Matthew Hammond

J. Am. Chem. Soc., Just Accepted Manuscript • Publication Date (Web): 14 Jan 2020

Downloaded from pubs.acs.org on January 14, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Hydrogen Atom Transfer Initiation

ACS Paragon Plus Environment

Catalyzing the Hydrodefluorination of CF₃-substituted Alkenes by PhSiH₃. H• Transfer from a Nickel Hydride

Chengbo Yao¹, Shuai Wang^{1†}, Jack Norton^{1*}, Matthew Hammond¹

¹Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States.

ABSTRACT: The hydrodefluorination of CF₃-substituted alkenes can be catalyzed by a nickel(II) hydride bearing a pincer ligand. The catalyst loading can be as low as 1 mol%. *gem*-Difluoroalkenes containing a number of functional groups can be formed in good to excellent yields, by a radical mechanism initiated by H• transfer from the nickel hydride. The relative reactivity of various substrates supports the proposed mechanism, as does a TEMPO trapping experiment.

INTRODUCTION

7

8 9 10

11 12

13 14

15

16

17

18 19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

43

44

45 46 47

48

49

50

51 52

53

54

55

56

57 58 59

60

Fluorine chemistry is gaining increasing attention because of the importance of fluorine-containing compounds in medicinal chemistry and agrochemistry.¹⁻⁶ Among fluorine-containing functional groups, *gem*-difluoroalkenes are intriguing, contained in a series of biologically active compounds, ⁷⁻¹⁰ and well established as a bioisostere of carbonyl compounds with increased metabolic stability and thus improved pharmaceutical performance.¹¹⁻¹⁴ In the case of artemisinin, the replacement of a carbonyl with a *gem*difluoralkene gives enhanced antimalarial activity. In some cases, the *gem*-difluoroalkene moiety reverses the regioselectivity of enzyme-catalyzed hydride reduction. (Figure 1) *gem*-Difluoroalkenes can also serve as versatile building blocks for the synthesis of other fluorine-containing molecules.¹⁵⁻²⁰

(TDP = thymidine diphosphate)

Figure 1. Representative applications of gem-difluoroalkenes.

The growing interest in the *gem*-difluoroalkene moiety has led to a number of strategies for its preparation (Scheme 1). The conventional approach relies on functional group interconversion, i.e., the difluoromethylenation of carbonyl or diazo compounds (Scheme 1a).¹⁶⁻¹⁷ However, these functional-group interconversion strategies typically involve highly reactive intermediates or harsh reaction conditions, limiting their substrate scope.

There are several ways in which gem difluoroalkenes can be prepared from the readily available²¹⁻²⁵ trifluoromethylsubstituted alkenes. In one convergent approach, nucleophilic attack on a CF₃ can lead to fluoride loss, but an S_N2' reaction with strong nucleophiles, such as Grignard reagents or organolithium reagents, will suffer from poor functional group tolerance (Scheme 1b). Recently, radical chemistry has been used for the synthesis of *gem*-difluoroalkenes, with defluorination of CF₃ by either photocatalysis or Ni catalysis (Scheme 1c, d).²⁶⁻³⁶

a. function group interconversion

$$F_3C \xrightarrow{R} R$$
 Mg
X reduction / elimination $F_2C \xrightarrow{R} R$

b. S_N2' type

$$\mathsf{R} \overset{\mathsf{CF}_3}{\longleftarrow} + \mathsf{Nu} \overset{\mathsf{Nu} = \mathsf{RMgX}, \mathsf{RLi}, \mathsf{R}_2\mathsf{NLi} \text{ etc.}}{\overset{\mathsf{CF}_2}{\longrightarrow}} \mathsf{R} \overset{\mathsf{CF}_2}{\overset{\mathsf{Nu}}{\longrightarrow}} \mathsf{Nu}$$

c. photocatalysis

$$\begin{array}{c} CF_{3} \\ R \end{array} + R - RP \xrightarrow{4CzIPN, Ru \text{ or } Ir \text{ complex}} \\ R \end{array} \xrightarrow{CF_{2}} R$$

d. Ni catalysis

$$\underset{R}{\overset{CF_{3}}{\longleftarrow}} + \underset{R-RP}{\overset{Cata. Ni}{\overbrace{Zn}}} \underset{R}{\overset{CF_{2}}{\longleftarrow}} R$$

 $RP = X, OR, CO_2NPhth etc.$

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

60

Scheme 1. Typical synthetic routes to gem-difluoroalkenes.

Typical Ni-catalyzed defluorinations of trifluoromethyl alkenes for the synthesis of *gem*-difluoroalkenes begin with single electron transfer from the nickel to an alkyl radical precursor. The resulting alkyl radical adds to another CF₃ alkene, producing a new radical which is then quenched by the formation of a Ni-C bond; β -F elimination gives the final product. Other routes to functionalized *gem*-difluoroalkenes, such as alkenylation,³⁷ arylation,³⁸ and borylation,³⁹ have also been reported.

In general C-F bond activation provides an easy approach to the synthesis of partially fluorinated compounds from readily available polyfluorinated species.^{15, 40-41} The simplest transformation of this sort, hydrodefluorination, has attracted much attention and features a unique mechanistic diversity.42-45 However, most hydrodefluorination reactions promoted by transition metals are limited to aromatic or olefinic C-F bonds and show little selectivity among such bonds. The Hisaeda group has reported a (Co)B12-TiO2 hybrid catalyst for the photochemical hydrodefluorination of substituted α-CF₃ styrenes,⁴⁶ although a hydrogenation byproduct is always generated along with the gem-difluoroalkene. Zhang and his coworkers reported a copper-catalyzed reductive defluorination of β-trifluoromethylated enones.⁴⁷ However, the use of Grignard reagents limited its functional group tolerance. Herein, we report that the iso-PmBox Ni(II) hydride 1a can catalyze the synthesis of gem-difluoroalkenes by the hydrodefluorination of trifluoromethyl-substituted alkenes with silanes.

RESULTS AND DISCUSSION

The iso-PmBox nickel hydride system **1a** was developed by, and has been studied by, the Gade group.⁴⁸ It is well established that the Ni(II) hydride is in dynamic equilibrium with Ni(I) metalloradical. The Ni(I) can abstract halides from organic compounds and make Ni(II) halides, from which Ni(II)-H can be regenerated with silanes and boron hydrides.⁴⁹⁻⁵²

While investigating hydrogen atom transfer (HAT) from **1a**, we found that it carried out the hydrodefluorination of α -CF₃ styrene **2a** (Scheme 2). During that reaction the characteristic ¹⁹F NMR resonance of the Ni(II)-F complex **1b** was observed at δ –444.3.⁴⁹ Moreover, the disappearance of **2a** (a ¹⁹F singlet at δ –64.50) was accompanied by the appearance of an ABX₃ pattern centered at δ –90.69 (²J_{F,F} = 44.1Hz, ⁴J_{H,F} = 3.3 Hz) belonging to the *gem*-difluoroalkene **3a**. After the addition of PhSiH₃, the ¹⁹F peak of **1b** disappeared and the ¹H NMR peak of **1a** reappeared. (Et₃SiH did not regenerate **1a**.) Indeed, **1a** was able to catalyze, in quantitative yield (as determined by ¹⁹F NMR) at room temperature, the dehydrofluorination of **2a** with a stoichiometric amount of PhSiH₃.

Scheme 2. Hydrodefluorination by PhSiH₃ of α -CF₃ styrene 2a by isoPmBox Ni(II)-H 1a in a stoichiometric and a catalytic manner.

Table 1 displays the scope of our reaction. Various substituents, either electron-donating or electron-withdrawing, and different substitution patterns on the aromatic ring are well tolerated. All the substrates give yields ranging from good to near quantitative. No substantial amount of hydrogenation products was observed for any of the substrates, demonstrating a satisfying chemoselectivity. A thioether 3c, an ether 3d, a tertiary amine 3m, and the heteroaromatic rings in 3g and 3p remain intact. Even the acidic protons of an amide 3e or the carboxylic acid 3f do not interfere with the reaction. An exocyclic gem-difluoroalkene **3h**, and the 2,2-difluorostyrene **3r**, can be obtained from trisubstituted alkenes bearing a CF3 substituent, although an elevated temperature is required. Interestingly, only the *E* isomer of the starting material gives product, with elevated temperature and extended reaction time, while the Z isomer remains unreacted.53 A monofluoroalkene 3i can be obtained from an alkene bearing a difluoromethyl substituent. Nitrile 3j, ester 3k, ketone 3n, and aldehyde **30**, which are not compatible with Wittig or Julia-type olefinations or with strong nucleophiles in S_N2'-type reactions, are all well tolerated by our method. Product 31 shows that our reaction can achieve chemoselective activation of the C-F bonds in trifluoromethyl alkenes without attacking an aryl fluoride C-F bond. Other radical stabilizing groups, like a carboalkoxy substituent, can also facilitate the reaction, as shown by the formation of product 3q. Unfortunately, the reaction does not work on CF₃ alkenes with aliphatic substituents, even at elevated temperatures — a result that is to be expected from the mechanism we propose below.

Table 1. Substrate scope of the nickel-hydride-catalyzed hydrodefluorination of trifluoromethyl-substituted alkenes.^{*a*}

^{*a*}Isolated yields, unless otherwise noted. ^{*b*}70 °C; ^{*c*}50 °C; ^{*d*}95 °C, 10 days, only from the *E* isomer of starting material. The yield is determined by ¹⁹F NMR.

The control experiment in Table 2 (entry 2) shows that the nickel hydride **1a** is required for the reaction. Attempts at replacing **1a** with metal hydrides previously used in our lab (entry 3), such as HCpCr(CO)₃ and HV(CO)₄(dppe) (dppe = 1,2-bis(diphenylphosphino)ethane), have been unsuccessful,⁵⁴ so the reactivity of **1a** is unique. The catalyst loading can be reduced (entry 4) to 1 mol% without diminishing the yield, although a longer reaction time is necessary. The number of equivalents of PhSiH₃ can be reduced without affecting the yield (entry 5), which suggests that all three silane hydrides can be used.

Table 2. Control Experiments

All reactions are performed on 0.5 mmol scale. ^aDetermined by 19 F-NMR

Two mechanisms for this reaction seem worth considering. One (shown in the top of Scheme 3) is similar to Gade's proposal for the hydrodefluorination (eq 3) of geminal difluorocyclopropanes.49 The Ni(I) (complex 1c) may abstract an F atom from the substrate 2a to form the Ni(II) fluoride **1b** and the organic radical **4**; H• transfer from the Ni(II) hydride **1a** will then give the product **3a** and regenerate **1c**, while the silane will reduce the fluoride **1b** back to the hydride 1a. The other possible mechanism (shown at the bottom of Scheme 3) involves the sort of H• transfer to olefins that we have used to generate radicals for cyclization and isomerization.⁵⁵⁻⁵⁸ Transfer to the methylene of **2a** from the hydride **1a** is expected,⁵⁹⁻⁶⁰ generating the organic radical 5 while leaving the Ni(I) complex 1c. Abstraction of an F atom from **5** by **1c** gives the product **3a** and yields the Ni fluoride **1b**,⁶¹ which can be reduced by the silane back to 1a.

Fluorine Atom Abstraction Initiation

2

3 4

5

6

7

8

9

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

60

The structure of **6** has been confirmed by singlecrystal X-ray diffraction (Figure 2).

Scheme 3. Two possible mechanisms initiated by fluorine atom abstraction and hydrogen atom transfer respectively

The second mechanism is supported by several lines of evidence. First, it explains why aliphatic alkenes do not work (Scheme 4a), even at an elevated temperature. The aryl group is essential for stabilizing the organic radical resulting from HAT, given that CF₃ is a radical destabilizing group;⁶²⁻⁶³ however, the fluorine atom abstraction in the first mechanism would not require an aryl substituent. Second, the slow reaction of trisubstituted alkenes (in Scheme 4b) is more easily explained by the second mechanism using the established^{60,64} effects of olefin substitution on the rate of HAT to an olefin from a metal hydride. A methyl substituent on the carbon receiving the H• (in the second mechanism) is known to slow HAT by about three orders of magnitude, while the rate of fluorine atom abstraction (in the first mechanism) should not change much with the extra substituent on carbon. Third, and the most conclusive, is the successful trapping of the radical 5 by TEMPO (TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (Scheme 4c). The addition of 3 equiv of TEMPO to the reaction results in the formation of the TEMPO adduct 6 in 73% isolated yield.

Scheme 4. Evidences in favor of HAT-initiating mechanism

Figure 2. Molecular structure of TEMPO-adduct **6**. Hydrogen atoms are omitted for clarity.

CONCLUSION

gem-Difluoroalkenes with a variety of functional groups can be generated by the nickel-hydride-catalyzed hydrodefluorination of CF₃ alkenes. The reaction is initiated by H• transfer from Ni to the substrate. Trapping of the radical **5** with TEMPO demonstrates a new mechanism for the previously reported⁴⁸ NNN-pincer nickel(I/II) system.

EXPERIMENTAL SECTION

General Procedures. All manipulations were carried out in an inert atmosphere box $(O_2 < 1 \text{ ppm})$ or under Ar by standard Schlenk techniques unless otherwise noted. Glassware was oven-dried or flame-dried prior to use. All commercial reagents were used as received without further purification unless specified. Deuterated benzene (C₆D₆) was distilled from molten potassium & benzophenone ketyl. Benzene (C₆H₆) and tetrahydrofuran (THF) were distilled from sodium-benzophenone ketyl. isoPmbox-Ni(II)-H 1a48, CpCr(CO)₃H⁶⁵, HV(CO)₄(dppe)⁶⁶ and Co(dmgBF₂)₂(THF)₂⁶⁷ were synthesized according to the literature procedures and stored in an argon atmosphere glovebox ($O_2 < 1$ ppm). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded using a Bruker 500 Ascend, DRX 500, DRX 400, or DRX 300 spectrometer. Peaks are referenced relative to solvent residual peaks in benzene-d⁶, THF-d⁸, CD₃CN and CDCl₃. The data are reported as follows: chemical shift in parts per million from internal tetramethylsilane on the δ scale, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), and coupling constants (Hz). High-resolution mass spectra were acquired on a Waters XEVO G2-XS OToF mass spectrometer equipped with a UPC2 SFC inlet and a LockSpray source with one of three probes: electrospray ionization (ESI) probe, atmospheric pressure chemical ionization (APCI) probe, or atmospheric pressure solids analysis probe (ASAP). X- ray diffraction data were collected on a Bruker Apex II diffractometer. Crystal data, data collection and refinement parameters are summarized in Table S1. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F^2 with SHELXTL (Version 2013/4).⁶⁸⁻⁷⁰

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

General Procedure of NiH Catalyzed Hydrodefluorination. In an inert atmosphere glovebox, CF_3 substituted alkenes (0.25 mmol or 0.5 mmol), PhSiH₃ (1 equiv), and isoPmbox Ni(II)-H **1a** (0.05 equiv) were weighed in a glass vial and transferred to a J-Young tube using 1ml of dry and degassed C_6D_6 . The reaction was carried out at room temperature for 24 hours unless otherwise noted. The crude reaction mixture was directly subjected to flash column chromatography for purification. Spectroscopic details of all the reaction products can be found in the Supporting Information.

Reaction with other metal hydrides. In an inert atmosphere glovebox, (1,1-difluoroprop-1-en-2-yl)benzene **2a** (0.25 mmol), PhSiH₃ (0.25 mmol, 1 equiv), and HCpCr(CO)₃ (10 mg, 0.05 mmol, 0.2 equiv), Co(dmgBF₂)₂(THF)₂ (27 mg, 0.05 mmol, 0.2 equiv), or HV(CO)₄(dppe) (28 mg, 0.05 mmol, 0.2 equiv) were weighed in a glass vial and transferred to a J-Young tube using 1ml of dry and degassed C₆D₆. The reaction was carried out at room temperature for 24 hours. Crude ¹H NMR and ¹⁹F NMR were taken directly or after silica plug.

TEMPO trapping experiment. In an inert atmosphere glovebox, (1,1-difluoroprop-1-en-2-yl)benzene **2a** (0.5 mmol), PhSiH₃ (0.5 mmol, 1 equiv), TEMPO (1.5 mmol, 3 equiv) and isoPmbox Ni(II)-H **1a** (0.025 mmol, 0.05 equiv) were weighed in a glass vial and transferred to a J-Young tube using 1ml of dry and degassed C_6D_6 . The reaction was carried out at room temperature for 144 hours. The reaction conversion was 56%, 77% and 89% at 3 hours, 17 hours and 144 hours. The crude reaction mixture was directly subjected to flash column chromatography for purification. Flash column chromatography was done using pure hexane. Product was obtained with 73% yield.

2,2,6,6-tetramethyl-1-((1,1,1-trifluoro-2-phenylpropan-2-yl)oxy)piperidine, 6 ¹H NMR (400 MHz, Chloroform-d) δ 7.68 – 7.62 (m, 2H), 7.46 – 7.34 (m, 3H), 1.95 (q, J = 1.2 Hz, 3H), 1.69 – 1.50 (m, 3H), 1.47 - 1.41 (m, 2H), 1.29 – 1.36 (m, 7H), 1.13 (s, 3H), 0.43 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-d) δ -74.83. ¹³C NMR (101 MHz, Chloroform-d) δ 140.86, 128.27, 127.76, 127.68, 126.00 (q, J = 287.6 Hz), 82.54 (q, J = 26.4 Hz), 60.98, 60.26, 41.68, 41.56, 33.13, 33.08 (q, J = 4.1 Hz), 20.89, 20.80, 16.92, 16.35 (q, J = 1.7 Hz). HRMS-ASAP+ (m/z): calcd for C₁₈H₂₇F₃NO [M+H]+: 330.2045, found: 330.2025.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Starting material preparation, NMR spectra of substrates and products, and 2D-NMR characterization of compound **6** (pdf) X-ray crystallographic data for **6** (cif)

AUTHOR INFORMATION

Corresponding Author

jrn11@columbia.edu (J. N.)

Present Addresses

†Shuai Wang: Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive Pacific Hall 4500, La Jolla, CA 92093

Orcid ID

Chengbo Yao: <u>0000-0003-4470-7414</u> Shuai Wang: <u>0000-0001-9464-6758</u> Jack Norton: <u>0000-0003-1563-9555</u>

Notes

The authors declare no competing financial interests.

ACKNOWLEDGEMENT

We thank Rebecca Wiles and Gary Molander for providing some of the CF₃ alkenes (**2b-2h** in Table 1). Lutz Gade and Chris Lorenc are acknowledged for helpful discussions. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award R01GM124295.

REFERENCES

1. Kirsch, P., Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH: Weinhelm, Germany: 2004.

2. Müller, K.; Faeh, C.; Diederich, F., Fluorine in Pharmaceuticals: Looking Beyond Intuition. *Science* **2007**, *317* (5846), 1881.

3. Hagmann, W. K., The Many Roles for Fluorine in Medicinal Chemistry. *J. Med. Chem.* **2008**, *51* (15), 4359-4369.

4. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V., Fluorine in medicinal chemistry. *Chem. Soc. Rev.* **2008**, *37* (2), 320-330.

5. Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H., Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. *Chem. Rev.* **2016**, *116* (2), 422-518.

6. Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H., Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). *Chem. Rev.* **2014**, *114* (4), 2432-2506.

7. Pan, Y.; Qiu, J.; Silverman, R. B., Design, Synthesis, and Biological Activity of a Difluoro-Substituted, Conformationally Rigid Vigabatrin Analogue as a Potent γ-Aminobutyric Acid Aminotransferase Inhibitor. *J. Med. Chem.* **2003**, *46* (25), 5292-5293.

8. Altenburger, J.-M.; Lassalle, G. Y.; Matrougui, M.; Galtier, D.; Jetha, J.-C.; Bocskei, Z.; Berry, C. N.; Lunven, C.; Lorrain, J.; Herault, J.-P.; Schaeffer, P.; O'Connor, S. E.; Herbert, J.-M., SSR182289A, a selective and potent orally active thrombin inhibitor. *Biorg. Med. Chem.* **2004**, *12* (7), 1713-1730.

9. Messaoudi, S.; Tréguier, B.; Hamze, A.; Provot, O.; Peyrat, J.-F.; De Losada, J. R.; Liu, J.-M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami, M., Isocombretastatins A versus Combretastatins A: The Forgotten isoCA-4 Isomer as a Highly Promising Cytotoxic and Antitubulin Agent. *J. Med. Chem.* **2009**, *52* (14), 4538-4542.

10. Bobek, M.; Kavai, I.; De Clercq, E., Synthesis and biological activity of 5-(2,2-difluorovinyl)-2'-deoxyuridine. *J. Med. Chem.* **1987**, *30* (8), 1494-1497.

2	
3	
4	
5	
2	
6	
7	
8	
9	
1	n
1	1
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	1
1	8
1	9
2	0
2	1
2	י ר
2	2
2	3
2	4
2	5
2	6
2	7
2	, o
2	0
2	9
3	0
3	1
3	2
3	3
2 2	<u>л</u>
2	 -
5	S
3	6
3	7
3	8
3	9
۵	1
1	n
- 1	0 1
4	0
4	0 1 2
4 4 4	0 1 2 3
4 4 4	0 1 2 3 4
4 4 4 4	0 1 2 3 4 5
4 4 4 4 4	0 1 2 3 4 5 6
4 4 4 4 4 4	0 1 2 3 4 5 6 7
4 4 4 4 4 4 4 4 4	01234567
4 4 4 4 4 4 4	012345678
4 4 4 4 4 4 4 4	0123456789
444444445	01234567890
444444455	012345678901
4444444555	0123456789012
44444445555	01234567890122
4444444555555	01234567890123
4444444555555	012345678901234

60

11. Meanwell, N. A., Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. *J. Med. Chem.* **2011**, *54* (8), 2529-2591.

12. Magueur, G.; Crousse, B.; Ourévitch, M.; Bonnet-Delpon, D.; Bégué, J.-P., Fluoro-artemisinins: When a gem-difluoroethylene replaces a carbonyl group. *J. Fluorine Chem.* **2006**, *127* (4), 637-642.

13. Leriche, C.; He, X.; Chang, C.-w. T.; Liu, H.-w., Reversal of the Apparent Regiospecificity of NAD(P)H-Dependent Hydride Transfer: The Properties of the Difluoromethylene Group, A Carbonyl Mimic. *J. Am. Chem. Soc.* **2003**, *125* (21), 6348-6349.

 14. Zhao, Z.; Liu, H.-w., Synthesis of a Deoxysugar Dinucleotide Containing an exo-Difluoromethylene Moiety As a Mechanistic Probe for Studying Enzymes Involved in Unusual Sugar Biosynthesis. J. Org. Chem 2001, 66 (20), 6810-6815.

Fujita, T.; Fuchibe, K.; Ichikawa, J., Transition-Metal Mediated and -Catalyzed C-F Bond Activation by Fluorine Elimination.
 Angew. Chem. Int. Ed. 2019, 58 (2), 390-402.

5 16. Zhang, X.; Cao, S., Recent advances in the synthesis and CF
4 functionalization of gem-difluoroalkenes. *Tetrahedron Lett.* 2017, 58
5 (5), 375-392.

17. Chelucci, G., Synthesis and Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. *Chem. Rev.* **2012**, *112* (3), 1344-1462.

Hu, J.; Han, X.; Yuan, Y.; Shi, Z., Stereoselective Synthesis of Z
Fluoroalkenes through Copper-Catalyzed Hydrodefluorination of gem-Difluoroalkenes with Water. *Angew. Chem. Int. Ed.* 2017, 56 (43), 13342-13346.

19. Hu, J.; Zhao, Y.; Shi, Z., Highly tunable multi-borylation of gem-difluoroalkenes via copper catalysis. *Nat. Catal.* **2018**, *1* (11), 860-869.

20. Yoo, W.-J.; Kondo, J.; Rodríguez-Santamaría, J. A.; Nguyen, T. V. Q.; Kobayashi, S., Efficient Synthesis of α -Trifluoromethyl Carboxylic Acids and Esters through Fluorocarboxylation of gem-Difluoroalkenes. *Angew. Chem. Int. Ed.* **2019**, *58* (20), 6772-6775.

21. Hamlin, T. A.; Kelly, C. B.; Cywar, R. M.; Leadbeater, N. E., Methylenation of Perfluoroalkyl Ketones using a Peterson Olefination Approach. *J. Org. Chem* **2014**, *79* (3), 1145-1155.

Jiang, B.; Xu, Y., Trifluoroisopropenylzinc reagent as a useful
 .alpha.-(trifluoromethyl)ethenyl carbanion synthetic equivalent.
 Preparation and palladium-catalyzed coupling with aryl halides. J. Org.
 Chem 1991, 56 (26), 7336-7340.

23. Kobayashi, O.; Uraguchi, D.; Yamakawa, T., Synthesis of α-trifluoromethylstyrene derivatives via Ni-catalyzed cross-coupling of 2-bromo-3,3,3-trifluoropropene and aryl Grignard reagents. *J. Fluorine Chem.* 2009, *130* (6), 591-594.

24. Phelan, J. P.; Wiles, R. J.; Lang, S. B.; Kelly, C. B.; Molander, G. A., Rapid access to diverse, trifluoromethyl-substituted alkenes using complementary strategies. *Chem. Sci.* **2018**, *9* (12), 3215-3220.

25. Trost, B. M.; Debien, L., Palladium-Catalyzed Trimethylenemethane Cycloaddition of Olefins Activated by the σ -Electron-Withdrawing Trifluoromethyl Group. J. Am. Chem. Soc. **2015**, 137 (36), 11606-11609.

 26. Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A., Photoredox Generation of Carbon-Centered Radicals Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics. *Angew. Chem. Int. Ed.* 2017, *56* (47), 15073-15077.

27. Phelan, J. P.; Lang, S. B.; Sim, J.; Berritt, S.; Peat, A. J.; Billings, K.; Fan, L.; Molander, G. A., Open-Air Alkylation Reactions in Photoredox-Catalyzed DNA-Encoded Library Synthesis. *J. Am. Chem. Soc.* **2019**, *141* (8), 3723-3732.

28. He, Y.; Anand, D.; Sun, Z.; Zhou, L., Visible-Light-Promoted Redox Neutral γ,γ-Difluoroallylation of Cycloketone Oxime Ethers with Trifluoromethyl Alkenes via C–C and C–F Bond Cleavage. *Org. Lett.* **2019**, *21* (10), 3769-3773.

29. Xia, P.-J.; Ye, Z.-P.; Hu, Y.-Z.; Song, D.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H., Photocatalytic, Phosphoranyl Radical-Mediated N–O Cleavage of Strained Cycloketone Oximes. *Org. Lett.* **2019**, *21* (8), 2658-2662.

30. Ding, D.; Lan, Y.; Lin, Z.; Wang, C., Synthesis of gem-Difluoroalkenes by Merging Ni-Catalyzed C–F and C–C Bond Activation in Cross-Electrophile Coupling. *Org. Lett.* **2019**, *21* (8), 2723-2730.

31. Lu, X.; Wang, X.-X.; Gong, T.-J.; Pi, J.-J.; He, S.-J.; Fu, Y., Nickelcatalyzed allylic defluorinative alkylation of trifluoromethyl alkenes with reductive decarboxylation of redox-active esters. *Chem. Sci.* **2019**, *10* (3), 809-814. 32. Lin, Z.; Lan, Y.; Wang, C., Synthesis of gem-Difluoroalkenes via Nickel-Catalyzed Reductive C–F and C–O Bond Cleavage. *ACS Catal.* **2019**, *9* (1), 775-780.

33. Lan, Y.; Yang, F.; Wang, C., Synthesis of gem-Difluoroalkenes via Nickel-Catalyzed Allylic Defluorinative Reductive Cross-Coupling. *ACS Catal.* **2018**, *8* (10), 9245-9251.

34. Xiao, T.; Li, L.; Zhou, L., Synthesis of Functionalized gem-Difluoroalkenes via a Photocatalytic Decarboxylative/Defluorinative Reaction. *J. Org. Chem.* **2016**, *81* (17), 7908-7916.

35. Chen, H.; Anand, D.; Zhou, L., Photoredox Defluorinative Alkylation of 1-Trifluoromethyl Alkenes and 1,3-Butadienes with 1,4-Dihydropyridines as Alkylation Reagents. *Asian. J. Org. Chem* **2019**, *8* (5), 661-664.

36. Wiles, R. J.; Phelan, J. P.; Molander, G. A., Metal-free defluorinative arylation of trifluoromethyl alkenes via photoredox catalysis. *Chem. Commun.* **2019**, *55* (53), 7599-7602.

37. Ichitsuka, T.; Fujita, T.; Ichikawa, J., Nickel-Catalyzed Allylic C(sp³)-F Bond Activation of Trifluoromethyl Groups via β -Fluorine Elimination: Synthesis of Difluoro-1,4-dienes. *ACS Catal.* **2015**, *5* (10), 5947-5950.

38. Huang, Y.; Hayashi, T., Rhodium-Catalyzed Asymmetric Arylation/Defluorination of 1-(Trifluoromethyl)alkenes Forming Enantioenriched 1,1-Difluoroalkenes. *J. Am. Chem. Soc.* **2016**, *138* (38), 12340-12343.

39. Liu, Y.; Zhou, Y.; Zhao, Y.; Qu, J., Synthesis of gem-Difluoroallylboronates via FeCl₂-Catalyzed Boration/ β -Fluorine Elimination of Trifluoromethyl Alkenes. *Org. Lett.* **2017**, *19* (4), 946-949.

40. Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T., Functionalization of Fluorinated Molecules by Transition-Metal-Mediated C–F Bond Activation To Access Fluorinated Building Blocks. *Chem. Rev.* **2015**, *115* (2), 931-972.

41. Amii, H.; Uneyama, K., C–F Bond Activation in Organic Synthesis. *Chem. Rev.* **2009**, *109* (5), 2119-2183.

42. Whittlesey, M. K.; Peris, E., Catalytic Hydrodefluorination with Late Transition Metal Complexes. *ACS Catal.* **2014**, *4* (9), 3152-3159.

43. Kuehnel, M. F.; Lentz, D.; Braun, T., Synthesis of Fluorinated Building Blocks by Transition-Metal-Mediated Hydrodefluorination Reactions. *Angew. Chem. Int. Ed.* **2013**, *52* (12), 3328-3348.

44. Hu, J.-Y.; Zhang, J.-L., Hydrodefluorination Reactions Catalyzed by Transition-Metal Complexes. In *Organometallic Fluorine Chemistry*, Braun, T.; Hughes, R. P., Eds. Springer International Publishing: Cham, 2015; pp 143-196.

45. Andrella, N. O.; Xu, N.; Gabidullin, B. M.; Ehm, C.; Baker, R. T., Selective Copper Complex-Catalyzed Hydrodefluorination of Fluoroalkenes and Allyl Fluorides: A Tale of Two Mechanisms. J. Am. Chem. Soc. **2019**, *141* (29), 11506-11521.

46. Tian, H.; Shimakoshi, H.; Imamura, K.; Shiota, Y.; Yoshizawa, K.; Hisaeda, Y., Photocatalytic alkene reduction by a B₁₂–TiO₂ hybrid catalyst coupled with C–F bond cleavage for gem-difluoroolefin synthesis. *Chem. Commun.* **2017**, *53* (68), 9478-9481.

47. Wu, X.; Xie, F.; Gridnev, I. D.; Zhang, W., A Copper-Catalyzed Reductive Defluorination of β-Trifluoromethylated Enones via Oxidative Homocoupling of Grignard Reagents. *Org. Lett.* **2018**, *20* (6), 1638-1642.

48. Rettenmeier, C.; Wadepohl, H.; Gade, L. H., Stereoselective Hydrodehalogenation via a Radical-Based Mechanism Involving T-Shaped Chiral Nickel(I) Pincer Complexes. *Chem. Eur. J.* **2014**, *20* (31), 9657-9665.

49. Wenz, J.; Rettenmeier, C. A.; Wadepohl, H.; Gade, L. H., Catalytic C–F bond activation of geminal difluorocyclopropanes by nickel(I) complexes via a radical mechanism. *Chem. Commun.* **2016**, *52* (1), 202-205.

50. Rettenmeier, C. A.; Wenz, J.; Wadepohl, H.; Gade, L. H., Activation of Aryl Halides by Nickel(I) Pincer Complexes: Reaction Pathways of Stoichiometric and Catalytic Dehalogenations. *Inorg. Chem.* **2016**, *55* (16), 8214-8224.

51. Wenz, J.; Kochan, A.; Wadepohl, H.; Gade, L. H., A Readily Accessible Chiral NNN Pincer Ligand with a Pyrrole Backbone and Its Ni(II) Chemistry: Syntheses, Structural Chemistry, and Bond Activations. *Inorg. Chem.* **2017**, *56* (6), 3631-3643. 52. Wenz, J.; Wadepohl, H.; Gade, L. H., Regioselective hydrosilylation of epoxides catalysed by nickel(II) hydrido complexes. *Chem. Commun.* **2017**, *53* (31), 4308-4311.

53. This difference in reactivity is probably due to a steric effect on the initial HAT step (see the mechanism we propose in the bottom half of Scheme 3).

54. When substrate **2a** is treated with 20 mol% $CpCr(CO)_3H$ at 70 °C for 24 hours, the hydrogenation product is obtained in 23% yield; no hydrodefluorination product is observed. The difference in results between $CpCr(CO)_3H$ and **1a** is probably due to steric effects: the Ni complex **1a** has a bulky ligand environment, and thus cannot transfer a second hydrogen atom to **5**. In contrast, $CpCr(CO)_3H$ is able to transfer a second hydrogen atom and to give the hydrogenation product. The bulkiness of the Ni hydride **1a** is also demonstrated by the HAT experiments in footnote 59.

 Li, G.; Kuo, J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.; Norton,
 J. R.; Palmer, J. H., Radical Isomerization and Cycloisomerization Initiated by H• Transfer. J. Am. Chem. Soc. 2016, 138 (24), 7698-7704.

56. Kuo, J. L.; Hartung, J.; Han, A.; Norton, J. R., Direct Generation of Oxygen-Stabilized Radicals by H• Transfer from Transition Metal Hydrides. *J. Am. Chem. Soc.* **2015**, *137* (3), 1036-1039.

57. Kuo, J. L.; Lorenc, C.; Abuyuan, J. M.; Norton, J. R., Catalysis of Radical Cyclizations from Alkyl Iodides under H₂: Evidence for Electron Transfer from [CpV(CO)₃H]–. *J. Am. Chem. Soc.* **2018**, *140* (13), 4512-4516.

58. Hartung, J.; Pulling, M. E.; Smith, D. M.; Yang, D. X.; Norton, J. R., Initiating radical cyclizations by H transfer from transition metals. *Tetrahedron* **2008**, *64* (52), 11822-11830.

59. Compound **1a** is able to catalyze the hydrogenation of styrene or methyl methacrylate in C₆D₆ at 60 °C under 70 psig H₂. H/D exchange is observed when α -methyl styrene is treated with **1a** under 70 psig D₂

60. Choi, J.; Tang, L.; Norton, J. R., Kinetics of Hydrogen Atom Transfer from $(\eta^5-C_5H_5)Cr(CO)_3H$ to Various Olefins: Influence of Olefin Structure. *J. Am. Chem. Soc.* **2007**, *129* (1), 234-240.

61. At this stage we are not sure if the Ni(I) metalloradical **1c** recombines with the carbon-centered radical and then undergoes β-fluorine elimination.

62. Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L., Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals. *J. Phys. Chem. A* **2001**, *105* (27), 6750-6756.

63. Johnny Hioe, H. Z., Radical Stability—Thermochemical Aspects. In *Encyclopedia of Radicals in Chemistry, Biology and Materials*, 2012.

64. Estes, D. P.; Norton, J. R.; Jockusch, S.; Sattler, W., Mechanisms by which Alkynes React with CpCr(CO)₃H. Application to Radical Cyclization. *J. Am. Chem. Soc.* **2012**, *134* (37), 15512-15518.

65. Yao, C.; Dahmen, T.; Gansäuer, A.; Norton, J., Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. *Science* **2019**, *364* (6442), 764-767.

66. Choi, J.; Pulling, M. E.; Smith, D. M.; Norton, J. R., Unusually Weak Metal–Hydrogen Bonds in HV(CO)₄(P–P) and Their Effectiveness as H• Donors. *J. Am. Chem. Soc.* **2008**, *130* (13), 4250-4252.

67. Estes, D. P.; Grills, D. C.; Norton, J. R., The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics. *J. Am. Chem. Soc.* **2014**, *136* (50), 17362-17365.

68. Sheldrick, G. M., A short history of SHELX. *Acta crystallographica. Section C, Foundations and advances* **2008**, *64*, 112-122.

69. Sheldrick, G. M., SHELXTL, An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. University of Göttingen, Göttingen, Federal Republic of Germany: 1981.
70. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta crystallographica. Section C, Structural chemistry 2015, 71 (Pt 1), 3-8.

Table of Contents:

intermediate trapped by TEMPO.