NEW MUCIC ACID GALLATES FROM *Phyllanthus emblica*

D. N. Olennikov,^{1*} N. I. Kashchenko,¹ H. Schwabl,² C. Vennos,³ and C. Loepfe³

Two new compounds that were identified as mucic acid 2,5-di-O-gallate (1) and mucic acid 2,5-di-O-gallate 1,4-lactone (2) and 14 known compounds, including for the first time in a plant 3,4,6-tri-O-galloyl- β -D-glucose, were identified by a phytochemical investigation of Phyllanthus emblica (Phyllanthaceae) fruit. Compounds 1 and 2 exhibited pronounced antioxidant activity.

Keywords: *Phyllanthus emblica*, mucic acid 2,5-di-*O*-gallate, mucic acid 2,5-di-*O*-gallate 1,4-lactone, antioxidant activity.

Phyllanthus emblica L. (*Emblica officinalis* Gaertn.; Indian gooseberry, amla) is a medicinal plant of the family Phyllanthaceae. Its fruit is widely used in traditional Asian medicine (China, India, Japan) as an anti-inflammatory and antipyretic agent [1]. A mixture of fruits from *P. emblica, Terminalia chebula* Retz., and *T. bellirica* (Gaertn.) Roxb. (Tibetan bras gsum; Indian, triphala) used individually or in combination with other plants is one of the most frequently used preparations in Tibetan and Ayurvedic medical practice [2]. Ellagotannins, gallotannins, mucic acid derivatives, nor-sesquiterpenoids, flavonoids, and essential oil occur in fruit of *P. emblica* according to reports of its chemical composition [3]. Gallates of galactaric (mucic) acid and its 1,4-lactone were isolated from *P. emblica* [4] and represent a unique group of highly hydrophilic phenolic compounds with antioxidant and antiproliferative activity [5]. We isolated 14 known compounds (3–16) and 2 new mucic acid derivatives (1 and 2) during a study of phenolic constituents from *P. emblica* fruit and studied the antioxidant activity of the new compounds.

¹⁾ Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 670047, Ulan-Ude, Ul. Sakhyanovoi, 6, fax: 7 (3012) 43 47 43, e-mail: olennikovdn@mail.ru; 2) Padma AG, Underfeldstrasse 1, CH-8340, Hinwil, Switzerland, e-mail: h.schwabl@padma.ch; 3) Regulatory and Medical Scientific Affairs, Padma AG, Underfeldstrasse 1, CH-8340, Hinwil, Switzerland, e-mail: c.vennos@padma.ch. Translated from *Khimiya Prirodnykh Soedinenii*, No. 4, July–August, 2015, pp. 574–577. Original article submitted March 10, 2015.

Solvent extraction of the Me₂CO (60%) extract of *P. emblica* fruit followed by chromatographic separation of the obtained fractions over Amberlite[®] XAD1180N, SuperliteTM DAX-8, Sepabeads[®] SP-20SS, Sephadex LH-20, Toyopearl[®] HW-75F, and RP-SiO₂ using preparative HPLC isolated 16 compounds. A comparison of the physicochemical and spectral data with those of standards and the literature identified the known compounds gallic acid (3), glucogallin (4), 1,6-di-*O*-galloyl- β -D-glucose (5), 3,4,6-tri-*O*-galloyl- β -D-glucose (6), mucic acid 2-*O*-gallate (7), mucic acid 2-*O*-gallate 1,4-lactone (8), mucic acid 5-*O*-gallate 1,4-lactone (9), chebulic acid (10), chebulanin (11), chebulagic acid (12), chebulinic acid (13), corilagin (14), ellagic acid (15), and isoquercitrin (16). Compounds 3–5 and 7–16 were detected earlier in *P. emblica* [3] whereas 6 was isolated for the first time from this species.

Compound 1 had the formula $C_{20}H_{18}O_{16}$ according to FAB-MS (m/z 513, $[M - H]^-$) and ¹³C NMR spectroscopy. Gallic acid was identified in the hydrolysate after hydrolysis of 1 by tannase. Subsequent methylation of the product mixture by methyl iodide formed mucic acid dimethyl ester, which was identified using PMR and ¹³C NMR data compared with those obtained after methylation of galactaric (mucic) acid. PMR and ¹³C NMR data showed that 1 contained four carboxylic C atoms (δ 166.4, 167.0, 170.3, 170.8), four *O*-containing methines [δ_C 71.7, 72.1, 72.9, 74.5 and the corresponding resonances δ_H 4.81 (1H, dd, J = 2.0, 9.7), 4.39 (1H, dd, J = 2.1, 9.7), 5.60 (1H, d, J = 2.1), 5.87 (1H, d, J = 2.0], and two galloyl groups [δ_H 7.15 (2H, s), 7.27 (2H, s)]. The fragmentation pathway under FAB-MS conditions also confirmed that 1 contained two galloyl groups {m/z 361 [(M – galloyl) – H]⁻ and 209 [(M – galloyl × 2) – H]⁻}. The HMBC spectrum exhibited correlations between methine proton doublets at δ_H 5.87 (C-2) and 5.60 (C-5) with galloyl carboxylic C resonances at δ_C 167.0 and 166.4, respectively. Thus, the results indicated that 1 had the structure mucic acid 2,5-di-*O*-gallate.

Compound **2** had the formula $C_{20}H_{16}O_{15}$ according to FAB-MS (m/z 495, $[M - H]^-$) and ¹³C NMR spectroscopy. An analysis of the PMR and ¹³C NMR spectra of **2** indicated that it contained the same functional groups as **1**, i.e., four carboxylic C atoms (δ 166.5, 167.1, 169.8, 171.5), four O-containing methines [δ_C 72.4, 73.4, 75.9, 79.5 and the corresponding resonances δ_H 4.96 (1H, dd, J = 9.0, 8.4), 5.69 (1H, d, J = 2.0), 6.02 (1H, d, J = 9.0), 5.03 (1H, dd, J = 2.0, 8.4)], and two galloyl groups [δ_H 7.19 (2H, s) and 7.32 (2H, s)]. The molecular ion in the FAB-MS of **2** gave a peak at m/z 495, i.e., 18 amu less than in **1**, despite the similarity of their compositions. This phenomenon could be explained by the fact that **2** was a lactone of **1**. Lactonization of hexanoic acids is known to be possible at the γ (1,4-lactone) and δ (1,5-lactone) positions [4]. According to HMBC spectra, the methine proton resonances at δ_H 6.02 (C-2) and 5.69 (C-5) correlated with galloyl carboxylic C resonances at δ_C 167.1 and 166.45, respectively. Thus, the C-5 position was occupied by galloyl, which indicated that the only possible configuration for the lactone ring was a 1,4-lactone. Moreover, PMR and ¹³C NMR spectra displayed a strong weak-field shift for the H-4 and C-4 resonances relative to those in the spectrum of **1** (δ_{H-4} 4.39 \rightarrow 5.03; δ_{C-4} 72.1 \rightarrow 79.5), which was a consequence of forming the 1,4-lactone bond. The studies characterized the structure of **2** as mucic acid 2,5-di-*O*-gallate 1,4-lactone.

The compounds mucic acid 2-*O*-gallate; 2-*O*-, 3-*O*-, and 5-*O*-gallates 1,4-lactone; and 3,5-di-*O*-gallate 1,4-lactone were isolated earlier from *P. emblica* fruit [4]. Compounds **1** and **2** were new natural compounds.

Antioxidant activity of the mucic acid gallates and its 1,4-lactone was studied against the free radicals DPPH[•], ABTS^{•+}, and superoxide radical ($O_2^{\bullet-}$) and also a model for protecting β -carotene from peroxidation (CBA). The study showed that the compounds were pronounced antioxidants (Table 1). The activities of monogallates 7, 8, and 9 were less than that of the reference compound gallic acid. The activities of 1 and 2 were similar ($O_2^{\bullet-}$) or greater than that of gallic acid (DPPH[•], ABTS^{•+}, CBA).

According to HPLC, the contents of mucic acid derivatives in *P. emblica* fruit were 44.64–53.53 mg/g (Table 2). The dominant constituent was mucic acid 2-*O*-gallate (7), the fraction of which reached 82–89% of the total of all mucic acid derivatives. The studied raw material was characterized by high concentrations of gallic acid derivatives (42.77–70.24 mg/g), ellagotannins (31.95–42.75 mg/g), and ellagic acid (8.17–12.78 mg/g).

The high content of ascorbic acid in *P. emblica* fruit that was claimed earlier [6] was not confirmed by us. Chromatographic analysis for the concentration of this compound in *P. emblica* found only traces (<0.001 mg/g). Apparently, the cause of the erroneous claim was the similarity of the retention times for ascorbic acid and mucic acid gallates. Furthermore, we could not isolate 2-ketogluconolactone hexahydroxydiphenoyl derivatives emblicanins A and B, which were determined earlier as the dominant constituents in *P. emblica* ellagotannins [7]. Only chebuloyl ellagotannins **10–13** and corilagin (**14**) were detected in them. Therefore, we agree with the previous suggestion that the identification of emblicanins A and B was erroneous and that they were probably glucogallin (**4**) and one of the mucic acid gallates (**7** or **9**) [8].

TABLE 1. Antioxidant Activity of Mucic Acid Gallates and Its 1,4-Lactone, IC₅₀, µM (±SD)

Compound	DPPH.	ABTS ⁺⁺	O2	СВА
1	4.22 ± 0.10	0.94 ± 0.02	7.03 ± 0.25	14.73 ± 0.53
2	5.63 ± 0.16	1.12 ± 0.03	6.57 ± 0.22	16.67 ± 0.58
3*	7.47 ± 0.19	1.41 ± 0.04	6.97 ± 0.24	26.35 ± 0.89
7	10.16 ± 0.36	6.37 ± 0.19	22.67 ± 0.81	31.16 ± 1.06
8	12.67 ± 0.45	7.53 ± 0.22	18.37 ± 0.64	31.74 ± 1.07
9	12.84 ± 0.48	7.93 ± 0.25	18.50 ± 0.67	31.87 ± 1.09

*Reference compound.

TABLE 2. Quantitative Contents of Phenolic Compounds (PC) in P. emblica Fruit, mg/g (±SD)

Compound	Sample						
Compound	PE-01	PE-02	PE-03				
Mucic acid derivatives (MAD)							
1	0.63 ± 0.02	0.60 ± 0.02	1.57 ± 0.03				
2	0.38 ± 0.01	0.12 ± 0.01	0.42 ± 0.01				
7	43.85 ± 0.96	38.12 ± 0.87	45.62 ± 1.14				
8	3.62 ± 0.08	3.73 ± 0.10	2.67 ± 0.06				
9	5.05 ± 0.12	2.07 ± 0.04	1.17 ± 0.03				
Gallic acid derivatives (GAD)							
3	43.84 ± 0.88	30.74 ± 0.76	40.78 ± 1.01				
4	19.63 ± 0.37	8.63 ± 0.20	25.37 ± 0.53				
5	Tr.*	0.57 ± 0.01	1.36 ± 0.03				
6	3.67 ± 0.08	2.83 ± 0.05	2.73 ± 0.06				
Ellagotannins (EL)							
10	Tr.	Tr.	0.91 ± 0.02				
11	12.67 ± 0.29	10.53 ± 0.25	14.52 ± 0.37				
12	14.36 ± 0.32	9.67 ± 0.24	12.60 ± 0.35				
13	2.75 ± 0.07	1.22 ± 0.03	3.15 ± 0.07				
14	12.97 ± 0.31	10.53 ± 0.24	9.62 ± 0.23				
	Ot	ther classes					
15	8.17 ± 0.22	12.78 ± 0.31	10.82 ± 0.27				
$\Sigma_{ m PC}$	171.59	132.14	173.31				
$\Sigma_{ m MAD}$	53.53	44.64	51.45				
$\Sigma_{ m GAD}$	67.14	42.77	70.24				
$\Sigma_{ m EL}$	42.75	31.95	40.80				
Σother classes	8.17	12.78	10.82				

*Tr.: traces (<0.05 mg/g).

EXPERIMENTAL

Plant Material. *P. emblica* fruit were acquired from commercial producers Bazaar of India, Herbal Remedies USA, LLC (USA, No. PE-01); Bliss Ayurveda (I) Pvt. Ltd. (India, No. PE-02); and NHCL Ltd. (India, No. PE-03).

Column chromatography (CC) used Amberlite[®] XAD1180N (Fluka), SuperliteTM DAX-8 (Supelco), Sepabeads[®] SP-20SS (Supelco), Sephadex LH-20 (Pharmacia), Toyopearl[®] HW-75F (Supelco), and RP-SiO₂ (Sigma). Spectrophotometery was performed on an SF-2000 spectrophotometer (spectrum) and a Uniplan microplate spectrophotometer (Pikon). MS analysis used an MAT 8200 high-resolution mass spectrometer (Finnigan). NMR spectra were recorded on a VXR 500S NMR spectrometer (Varian).

Extraction and Fractionation. Ground *P. emblica* fruit (sample PE-01, 1 kg) was extracted with Me_2CO (60%, 1:15, 2×) in an ultrasonic bath at 50°C for 60 min. The resulting extract was concentrated in vacuo at 40°C and dried to afford

dry extract (462 g), a portion (400 g) of which was suspended in H₂O and fractionated using solvent extraction by hexane and *n*-BuOH. The BuOH fraction was concentrated to dryness (215 g), placed on a column with Amberlite[®] XAD1180N (800 g), and eluted with H₂O and EtOH (40 and 90%) to afford fractions PEXAD-01 (142 g), PEXAD-02 (48 g), and PEXAD-03 (19 g), respectively. Fraction PEXAD-01 (140 g) was placed on a column with SuperliteTM DAX-8 (600 g) and eluted with H₂O to afford fraction PEXAD-01-1 (92 g), which was separated over a column of Sepabeads[®] SP-20SS (500 g) using an H₂O-Me₂CO gradient (100:0→40:60). Fractions eluted by H₂O and Me₂CO (10%) were placed on Sephadex LH-20 (CC, 2×90 cm, H₂O-Me₂CO eluent, 100:0→30:70) and on Toyopearl[®] HW-75F (CC, 500 mL, H₂O-Me₂CO eluent, 100:0→50:50) to isolate **1** (93 mg), **2** (54 mg), mucic acid 2-*O*-gallate (7, 437 mg), mucic acid 2-*O*-gallate 1,4-lactone (**8**, 118 mg), mucic acid 5-*O*-galloyl- β -D-glucose (**5**, 14 mg), and 3,4,6-tri-*O*-galloyl- β -D-glucose (**6**, 52 mg) [10]. Fraction PEXAD-02 (40 g) was separated over Sephadex LH-20 (CC, 2×50 cm, H₂O-Me₂CO eluent, 100:0→30:70) and by preparative HPLC (conditions 1) to isolate chebulic acid (**10**, 29 mg), chebulanin (**11**, 118 mg), chebulagic acid (**12**, 153 mg), chebulinic acid (**13**, 34 mg) [11], corilagin (**14**, 37 mg) [12], ellagic acid (**15**, 573 mg) [13], and isoquercitrin (**16**, 9 mg) [14]. Fraction PEXAD-03 contained polymeric phenolic constituents (probably procyanidins) and was not investigated further.

Mucic Acid 2,5-Di-*O*-gallate (1). $C_{20}H_{18}O_{16}$. UV spectrum (MeOH, λ_{max} , nm): 209, 275. FAB-MC, *m/z*: 513 [M – H]⁻, 361 [(M – galloyl) – H]⁻, 209 [(M – galloyl × 2) – H]⁻, 191 [(M – galloyl × 2 – H₂O) – H]⁻. ¹H NMR spectrum (500 MHz, MeOH-d₄, δ , ppm, J/Hz): mucoyl: 4.39 (1H, dd, J = 2.1, 9.7, H-4), 4.81 (1H, dd, J = 2.0, 9.7, H-3), 5.60 (1H, d, J = 2.1, H-5), 5.87 (1H, d, J = 2.0, H-2); 2-O-galloyl: 7.15 (2H, s, H-2', 6'); 5-O-galloyl: 7.27 (2H, s, H-2'', 6''). ¹³C NMR spectrum (125 MHz, MeOH-d₄, δ , ppm): mucoyl: 71.7 (C-3), 72.1 (C-4), 72.9 (C-5), 74.5 (C-2), 170.3 (C-6), 170.8 (C-1); 2-O-galloyl: 110.2 (C-2'', 6'), 121.0 (C-1'), 139.7 (C-4'), 146.3 (C-3', 5'), 167.0 (C-7'); 5-O-galloyl: 110.2 (C-2'', 6''), 121.5 (C-1''), 139.3 (C-4''), 146.0 (C-3'', 5''), 166.4 (C-7'').

Hydrolysis of 1. A solution of 1 (10 mg) in H_2O (1 mL) was incubated with tannase (10 U, from *Aspergillus ficuum*, Sigma, 150 U/g) at 37°C for 10 h. The resulting mixture was concentrated to dryness in vacuo, dissolved in MeOH (1 mL), and analyzed by HPLC (conditions 1). Gallic acid (t_R 3.12 min) was detected in the hydrolysate. Then, the solution was treated with MeI—Na₂CO₃ (0.5 mL/200 µg) at 25°C for 30 min. The reaction mixture was placed on an SiO₂ column (1 × 15 cm) and eluted by CHCl₃–MeOH (100:0→50:50) to afford mucic acid dimethyl ester (2.5 mg) that was identified by PMR and ¹³C NMR data and comparison with a sample prepared by methylation of mucic acid (Aldrich) in an analogous manner.

Mucic Acid Dimethyl Ester. ¹H NMR spectrum (500 MHz, Py-d₅, δ , ppm): 3.61 (6H, s, OC<u>H₃</u>), 5.12 (2H, s, H-2, 5), 5.44 (2H, s, H-3, 4). ¹³C NMR spectrum (125 MHz, Py-d₅, δ , ppm): 49.6 (O<u>C</u>H₃), 70.4 (C-2, 5), 71.9 (C-3, 4).

Mucic Acid 2,5-Di-*O*-gallate 1,4-Lactone (2). $C_{20}H_{16}O_{15}$. UV spectrum (MeOH, λ_{max} , nm): 210, 274. FAB-MC, *m/z*: 495 [M – H][–], 343 [(M – galloyl) – H][–]. ¹H NMR spectrum (500 MHz, MeOH-d₄, δ , ppm, J/Hz): mucoyl: 4.96 (1H, dd, J = 9.0, 8.4, H-3), 5.03 (1H, dd, J = 2.0, 8.4, H-4), 5.69 (1H, d, J = 2.0, H-5), 6.02 (1H, d, J = 9.0, H-2); 2-*O*-galloyl: 7.19 (2H, s, H-2', 6'); 5-*O*-galloyl: 7.32 (2H, s, H-2'', 6''). ¹³C NMR spectrum (125 MHz, MeOH-d₄, δ , ppm): mucoyl: 72.4 (C-3), 73.4 (C-5), 75.9 (C-2), 79.5 (C-4), 169.8 (C-6), 171.5 (C-1); 2-*O*-galloyl: 110.4 (C-2', 6'), 121.0 (C-1'), 139.5 (C-4'), 146.5 (C-3', 5'), 167.1 (C-7'); 5-*O*-galloyl: 110.4 (C-2'', 6''), 121.4 (C-1''), 139.1 (C-4''), 146.2 (C-3'', 5''), 166.5 (C-7'').

HPLC. Conditions 1: Summit liquid chromatograph (Dionex), LiChrospher PR-18 column (10×250 mm, \emptyset 10 µm, Merck), mobile phase H₂O (A) and MeCN (B), gradient mode (% B): 0–100 min, 0–70%; flow rate 2 mL/min, column temperature 30°C, UV detector at λ 280 nm. Conditions 2: A-02 Milikhrom microcolumn liquid chromatograph (Ekonova), ProntoSIL-120-5-C18AQ column (2×75 mm, \emptyset 5 µm, Metrohm AG), mobile phase LiClO₄ (0.2 M) in HClO₄ (0.01 M) (A) and MeCN (B), gradient mode (% B): 0–10 min, 5–15, flow rate 150 µL/min, column temperature 35°C, UV detector at λ 274 nm.

Plant material was quantitatively analyzed on an HPLC-UV microcolumn. For this, plant material (40 mg) was transferred to an Eppendorf tube (2 mL), treated with EtOH (60%, 1 mL), sonicated (50 kHz, 30 min, 40°C), and centrifuged (6,000 g, 20 min). The resulting extract was filtered through a membrane filter (0.45 μ m) and used for the analysis (1 μ L). Conditions: A-02 Milikhrom microcolumn liquid chromatograph (Ekonova), ProntoSIL-120-5-C18AQ column (2 × 75 mm, \emptyset 5 μ m, Metrohm AG), mobile phase LiClO₄ (0.2 M) in HClO₄ (0.006 M) (A) and MeCN (B), gradient mode (% B): (0–5 min, 2–5; 5–15 min, 5–7; 15–20 min, 7–15; 20–30 min, 15–30; 30–35 min, 30–50), flow rate 150 μ L/min, column temperature 35°C, UV detector at λ 254 nm.

The contents of pure constituents were calculated from calibration curves that were constructed using commercial standards (gallic acid, ellagic acid, corilagin, all Sigma-Aldrich), isolated compounds \geq 95% pure (glucogallin, 1,6-di-*O*-galloyl- β -D-glucose, 3,4,6-tri-*O*-galloyl- β -D-glucose, chebulic acid, chebulanin, chebulagic acid, chebulinic acid, mucic acid

2-*O*-gallate, mucic acid 5-*O*-gallate 1,4-lactone), and external reference samples taking into account the differences in the molecular weights (mucic acid 2,5-di-*O*-gallate for mucic acid 2-*O*-gallate and mucic acid 2-*O*-gallate 1,4-lactone and mucic acid 2,5-di-*O*-gallate 1,4-lactone for mucic acid 5-*O*-gallate 1,4-lactone).

Antioxidant Activity. Antiradical activity against the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH[•]) and the cation radical 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS^{•+}) was determined using a microplate spectrophotometric method [15]. Superoxide radical ($O_2^{\bullet-}$) binding was studied by spectrophotometry using phenazine methosulfate:NAD:nitroblue tetrazolium [16]. The effect of the compounds on peroxidation of β -carotene (CBA) in DMSO:H₂O₂:linoleic acid was determined by the literature method [9].

ACKNOWLEDGMENT

The work was sponsored by SB, RAS, Project No. VI.62.1.8.

REFERENCES

- 1. T. K. Lim, Edible Medicinal and Non-Medicinal Plants, Vol. 4, 2012, p. 258.
- 2. Tibetan Medicine in Buryatia [in Russian], Sib. Br. Russ. Acad. Sci., Novosibirsk, 2008, 324 pp.
- 3. W. Qi, L. Hua, and K. Gao, Chem. Biodiversity, 11, 364 (2014).
- 4. Y. Zhang, T. Tanaka, C. Yang, and I. Kouno, *Chem. Pharm. Bull.*, 49, 537 (2001).
- W. Luo, M. Zhao, B. Yang, J. Ren, G. Shen, and G. Rao, *Food Chem.*, **126**, 227 (2011); W. Luo, L. Wen, M. Zhao, B. Yang, J. Ren, G. Shen, and G. Rao, *Food Chem.*, **132**, 1527 (2012).
- E. K. J. Ammal and R. S. Raghavan, *Proc. Indian Acad. Sci., Sect. B*, 47, 312 (1958); Pragati, S. Dahuya, and S. S. Dhawan, *Plant Foods Hum. Nutr.*, 58, 1 (2003); S. K. Jani and D. S. Khurdiya, *Plant Foods Hum. Nutr.*, 59, 63 (2004).
- S. Ghosal, V. K. Tripathi, and S. Chauhan, *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.*, **35**, 941 (1996);
 O. N. Pozharitskaya, S. A. Ivanova, and A. N. Shikov, *J. Sep. Sci.*, **30**, 1250 (2007).
- 8. M. Majeed, B. Bhat, A. N. Jadhav, J. S. Srivastava, and K. Nagabhushanam, J. Agric. Food Chem., 57, 220 (2009).
- 9. D. N. Olennikov, L. M. Tankhaeva, and S. V. Agafonova, Appl. Biochem. Microbiol., 47, 419 (2011).
- 10. T. Yoshida, T. Hatano, T. Okuda, M. U. Memon, T. Shingu, and K. Inoue, Chem. Pharm. Bull., 32, 1790 (1984).
- H. Gao, Y. Huang, P. Xu, and J. Kawabata, *Food Chem.*, **105**, 628 (2007); B. Pfundstein, S. K. El Desouky, W. E. Hull, R. Hauber, G. Erben, and R. W. Owen, *Phytochemistry*, **71**, 1132 (2010).
- 12. W.-X. Wi, Y.-J. Pan, H. Zhang, C.-W. Lin, and T.-Y. Wei, Chem. Nat. Compd., 40, 460 (2004).
- M. Zehl, C. Braunberger, J. Conrad, M. Crnogorac, S. Krasteva, B. Vogler, U. Beifuss, and L. Krenn, *Anal. Bioanal. Chem.*, 400, 2565 (2011).
- 14. D. N. Olennikov and V. V. Partilkhaev, J. Planar Chromatogr.-Mod. TLC, 25, 30 (2012).
- 15. D. N. Olennikov, N. K. Chirikova, Z. M. Okhlopkova, and I. S. Zulfugarov, *Molecules*, 18, 14105 (2013).
- 16. T. Ozen, I. Demirtas, and H. Aksit, *Food Chem.*, **124**, 58 (2011).