ACS Medicinal Chemistry Letters

Subscriber access provided by University of Pennsylvania Libraries

Crystallographic Investigation and Selective Inhibition of Mutant Isocitrate Dehydrogenase

Baisong Zheng, Yuan Yao, Zhen Liu, Lisheng Deng, Justin L. Anglin, Hong Jiang, B. V. Venkataram Prasad, and Yongcheng Song

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/ml400036z • Publication Date (Web): 03 May 2013 Downloaded from http://pubs.acs.org on May 5, 2013

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Medicinal Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Letter

Crystallographic Investigation and Selective Inhibition of Mutant Isocitrate Dehydrogenase

Baisong Zheng,[†],[§] Yuan Yao,[†],[§] Zhen Liu,[†],[§] Lisheng Deng,[†] Justin L. Anglin,[†] Hong Jiang,[†] B. V. Venkataram Prasad,[#] Yongcheng Song^{*,†}

[†]Department of Pharmacology, #Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States. Email: ysong@bcm.edu *KEYWORDS. Gene mutation, isocitrate dehvdrogenase, Enzyme inhibition, protein crystallography*

Supporting Information Placeholder

ABSTRACT: Mutations in isocitrate dehydrogenase (IDH), a key enzyme in the tricarboxylic acid cycle, have recently been found in ~75% glioma and ~20% acute myeloid leukemia. Different from the wild-type enzyme, mutant IDH1 catalyzes the reduction of α -ketoglutaric acid to *D*-2-hydroxyglutaric acid. Strong evidence has shown mutant IDH1 represents a novel target for this type of cancer. We found two 1-hydroxypyridin-2-one compounds that are potent inhibitors of R132H and R132C IDH1 mutants with K_i values as low as 120 nM. These compounds exhibit >60-fold selectivity against wild-type IDH1 and can inhibit the production of *D*-2-hydroxyglutaric acid in IDH1 mutated cells, representing novel chemical probes for cancer biology studies. We also report the first inhibitor-bound crystal structures of IDH1(R132H), showing these inhibitors have H-bond, electrostatic and hydrophobic interactions with the mutant enzyme. Comparison with the substrate-bound IDH1 structures revealed the structural basis for the high enzyme selectivity of these compounds.

Isocitrate dehydrogenases (IDH) are a family of Mg²⁺dependent enzymes catalyzing the oxidative decarboxylation of isocitric acid (ICT) to α -ketoglutaric acid (α -KG),¹ one of the key reactions in the tricarboxylic acid cycle providing aerobic organisms the majority of energy. Humans contain three IDH isozymes, i.e., IDH1 in cytoplasm and IDH2 and IDH3 in mitochondria. IDH1/2 use NADP⁺ as their cofactor, as schematically shown in Figure 1a.

Mutations of IDH1/2 have recently been identified in several types of cancer.²⁻⁴ For example, IDH1 mutation is found in ~75% low-grade gliomas (grade II and III) and secondary glioblastomas (grade IV glioma with a 5-year survival of <10%).^{5.6} ~20% acute myeloid leukemia (AML) also harbor IDH1/2 mutations.⁴ These mutations always occur in one DNA allele with the wild-type (WT) IDH1 gene in the other, suggesting the WT-IDH1 enzyme is also essential for the cancer cells. A special feature is that the identified IDH1 mutations are exclusively located in the Arg132 residue, with R132H being the predominant (~93%).⁶ These genetic findings suggest IDH1 mutations play important roles in the initiation and/or progression of the cancer.

Biochemical investigation has revealed that all of the mutant IDH enzymes, including IDH1(R132H) and IDH1(R132C) (a frequent mutation in AML), are almost inactive in converting ICT to α -KG. Rather, these mutants were found to catalyze a new reaction, i.e., the reduction of α -KG to *D*-2-hydroxyglutaric acid (D2HG) using NADPH as the cofactor (Figure 1b).^{4,7,8} The direct

Figure 1. Enzyme reactions catalyzed by **(A)** wild-type IDH and **(B)** mutant IDH.

physiological consequence of IDH mutation is a high cellular concentration of D2HG, the hallmark of this type of cancers. Further studies showed D2HG is an inhibitor of α -KGdependent dioxygenases, including important epigenetic enzymes histone demethylases and 5-methylcytosine hydroxylases.³ The inhibition causes genome-wide hypermethylation of histone/DNA and blockage of cell differentiation, which could lead to tumorigenesis.^{9,10} Mutant IDH1 is therefore a novel target for intervention.¹¹⁻¹³ It is of interest that during our preparation of this manuscript, a series of diamide based compounds were disclosed to be the first inhibitors of mutant IDH1.¹⁴ Here, we report the discovery, activity and synthesis of two novel, selective inhibitors of mutant IDH1. We also report the first X-ray crystal structures of inhibitor-bound IDH1(R132H), providing the exact inhibitor binding mode and the structural basis for the selectivity.

First, we expressed and obtained the recombinant proteins of WT IDH1, R132H and R132C mutants (Supporting ACS Paragon Plus Environment

Information Experimental Section), which were found to have comparable enzyme activity as those reported in previous studies,4,7,15 respectively. Our previous work on developing inhibitors of 1-deoxyxylulose-5-phosphate reductoisomerase,^{16,17} another Mg²⁺ and NADPH dependent reductase, provided a rich source of compounds that could target IDH1 mutants. Upon testing this focused library ~130 compounds, 5-benzyl-1consisting of hydroxypyridin-2-one (1) shown in Table 1 was identified as an inhibitor of IDH1(R132H) and IDH1(R132C) with K_i values of 8.2 and 6.6 µM, while it has no activity against WT IDH1 at 100 µM. Compound 1 is a drug-like molecule with a calculated logP value of 1.6 and is therefore of interest in the context of this study. Medicinal chemistry based on **1** has vielded 6-substituted 1-hydroxypyridin-2-one compounds 2 and 3 (Table 1) that are potent inhibitors of IDH1(R132H) with K_i values of 190 and 280 nM, respectively (Supporting Information Figure S1). It is remarkable that the 4-methyl group is of importance for the potency, since compounds 4 and 5 with a 4-H and 4-isopropyl group, respectively, are $\sim 30 \times$ and $50 \times$ less active than 2. In addition, changing the 6-benzyl group in 2 to a phenyl group in compound **6** completely abrogates the inhibitory activity. These compounds also exhibited similar inhibitory activities against IDH1(R132C) mutant, with 2 and 3 being potent inhibitors of IDH1(R132C) with K_i values of 120 and 270 nM, respectively (Table 1).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Table 1. Structures and biological activities of 1 - 6.

॰ू			OH O N S	СОН
٩Ţ			OH V V	
IDH Enzyme K _i (µM) Cytoto				Cytotoxicity (µM)
	R132H	R132C	WT	WI-38
1	8 2	6.6	>50	>50
-	0.2	010	200	-50
2	0.19	0.12	12.3	>50
2 3	0.19 0.28	0.12 0.27	12.3 16.8	>50 >50 >50
2 3 4	0.19 0.28 5.9	0.12 0.27 10.5	12.3 16.8 >50	>50 >50 >50 >50
2 3 4 5	0.19 0.28 5.9 9.5	0.12 0.27 10.5 14.7	12.3 16.8 >50 >50	>50 >50 >50 >50 >50

We tested the activity of compounds **2** and **3** against WT-IDH1 to determine the enzyme selectivity, since compounds that also strongly block WT-IDH1 are undesirable, given the important physiological role of this enzyme. As shown in Table 1, compounds **2** and **3** exhibited very weak activity against WT-IDH1 with K_i values of 12.3 and 16.8 μ M, showing a high selectivity of >60-fold, despite only a single amino acid difference between the two enzymes. Moreover, as also can be seen in Table 1, neither **2** nor **3**

exhibits high cytotoxicity against human WI-38 fibroblast cells with EC₅₀ values of >50 μ M. HT1080 fibrosarcoma cells, which harbor an IDH1(R132C) mutation,¹⁴ was treated with the most potent inhibitor **2** for 48h. Compound **2** was found to be able to inhibit the production of D2HG with an EC₅₀ value of 2.4 μ M, using a reported HPLC-MS method.⁷ This compound is therefore a useful probe to investigate the cancer biology of IDH1 mutation.

Next, we investigated how the novel inhibitors 2 and 3 bind to the mutant IDH1 and what is the structural basis for the selectivity using X-ray crystallography. Previous crystallographic studies of R132H mutant as well as WT IDH1 proteins in complex with isocitric acid (ICT) have revealed the critical role of Arg132 for the WT enzyme.¹⁵ Without the bound ICT, mutant IDH1(R132H) exhibits an open conformation with an entrance channel of ~20 Å wide. Upon ICT binding, the protein still adopts the open conformation and, as shown in Supporting Information Figure S2a, ICT is located in the ligand binding site I with H-bond and electrostatic interactions with Arg100, Ser94, Thr77 as well as NADP. The mutated His132 is not involved in ICT binding as it is ~9.5 Å away. In contrast, WT-IDH1 behaves differently. While it adopts an open conformation without the bound ICT, upon ligand binding, the protein undergoes a considerable conformational change transiting to a closed state with an entrance channel of \sim 13 Å wide. ICT is located in the ligand binding site II, which is also the catalytic site ~ 6.5 Å away from the site I (Figure S2b). Of interest is that Arg132 is now in the active site, forming two H-bonds/electrostatic interactions with the two carboxyl groups of ICT (Figure S2c). The role of Arg132 is therefore to help pull ICT to the catalytically active site II, which occurs concomitantly with the protein transiting to the closed state. This provides an explanation as to why IDH1(R132H) loses 95% of its ability to convert ICT to α -KG. It is likely due to the shorter sidechain of His as well as the chemical nature of its imidazole group (as compared to the guanidine in Arg). On the other hand, the IDH1(R132H):α-KG structure shows a different binding mode.⁷ As shown in Figures S2d/e, it mimics the overall structure of the WT-IDH1:ICT complex. The mutant enzyme exhibits a closed conformation with the bound α -KG located in the ligand binding site II, which is the catalytic site of the mutant enzyme. His 132 has no contacts with α -KG (5.5 Å away).

We determined the X-ray structures of IDH1(R132H) in complex with NADPH and inhibitors **2** or **3** to a resolution of 3.3 Å similar to that in the previously reported structures.¹⁵ Statistics for diffraction data and structure refinement are shown in Table S1 and the overall structures of the two complexes illustrated in Figures 2a and S3a. The protein crystallizes as a homodimer with both subunits exhibiting an open conformation with a ~20 Å wide protein entrance channel. An NADPH molecule was found in each of the subunits with a similar binding characteristics as that in the IDH1(R132H):ICT. However, only one inhibitor can be clearly located in the protein based on electron

Figure 2. (**A**) The overall structure of IDH1(R132H):**2** (ball and stick model); (**B**) Close-up view of the active site of IDH1(R132H):**2**; (**C**) The active sites of the aligned structures of IDH1(R132H):**2** (with carbon and protein chain shown in green) and IDH1(R132H):ICT (in cyan), showing **2** is located in the ligand binding site I; (**D**) The aligned structures of IDH1(R132H):**2** (in green), WT-IDH1:ICT (in orange) and IDH1(R132H):**a**-KG (in blue).

density and omit maps (Figures S4). Figures 2b and S3b show the close-up views of the binding sites of 2 and 3, respectively. Compounds 2 and 3 bind to IDH1(R132H) in a very similar manner consistent with their chemical structures. The 4-methyl-1-hydroxypyridin-2-one ring is comfortably located in a pocket surrounded by Arg100, Ser94, Thr77, Asn96, Arg109 and NADPH. The two 0 atoms of 2 are ~ 2.7 Å from the two N atoms of the guanidine group of Arg100, indicating strong H-bonds and electrostatic interactions. The planar -CONH₂ of Asn96 is located right underneath the pyridine ring of **2**, with the distance of \sim 4.1 Å. The 4-methyl group of 2/3 fits into a predominantly hydrophobic cavity, 3.7 - 4.1 Å from -CH₃ of Thr77, -CH₂and -O- of Ser94. Loss of these interactions could account for the reduced activities of compounds 4 and 5 with a 4-H and 4-*i*-Pr, which are either too small or too big to be favorable at this position. The 6-benzyl group of both inhibitors is involved in hydrophobic interactions with the pyridine ring of NADPH. Although these interactions could also contribute to the high affinity binding of the inhibitors, lack of direct binding of the 6-benzyl group to the protein (4.5 Å away from Arg109) renders the electron density of the moiety less strong than that of the 1-hydroxypyridin-2-one core. In addition, the 6-phenyl group of compound 6 would have a severe steric repulsion with NADPH, if its 1hydroxypyridin-2-one ring maintains the above mentioned favorable interactions with IDH1(R132H). This should account for the loss of activity for compound 6.

We next examined the binding site of 2/3 with respect to those of ICT and α -KG in mutant and WT IDH1. Thus, the structure of IDH1(R132H):**2** complex was aligned with that of IDH1(R132H):ICT, showing these two structures are very similar with a root mean square (rms) deviation of 0.8 Å for the matching C_{α} atoms. The flexible loop 133-141 for both structures, including the catalytically important Tyr139 for the conversion of α KG to D2HG, is largely unordered. As shown in Figure 2c, compound **2** occupies the ICT binding site I in mutant IDH1. Although there are no major conformational changes for the key residues Arg100, Ser94, Thr77 and Asn96 (omitted in Fig. 2c for clarity), **2** (K_i: 0.19 μ M) binds to IDH1(R132H) with a much higher affinity than ICT (K_d >200 μ M)¹⁵, likely due to increased hydrophobic and electrostatic interactions. Structural alignment of IDH1(R132H):**2** with WT-IDH1:ICT as well as IDH1(R132H): α -KG further confirmed that **2** is not located in the catalytically active binding site II (Figure 2d). These studies suggest that the strong binding of **2/3** stabilizes IDH1(R132H) in the catalytically inactive, open conformation state. It also blocks α -KG from binding to the site II as well as protein conformational change to its closed state.

Docking using the program Glide¹⁸ was performed to investigate the observed high selectivity. First, compound 2 was docked into the IDH1(R132H):2 structure and the 10 lowest-energy docking structures shown in Figure S5a are tightly clustered and mimic the crystal structure of 2, especially with respect to the conformation of the 4-methyl-1-hydroxypyridin-2-one ring. Next, docking suggested 2 could not bind favorably to the binding site II in WT IDH1. As shown in Figure S5b, 4 out of the 10 lowest-energy docking structures are not located in the site II. In the remaining 6 docking structures, the phenyl ring, rather than the more favorable 1-hydroxypyridin-2-one ring, is located in the arginine-rich pocket. Moreover, there have been no WT-IDH1 structures with a ligand bound to the site I, suggesting Arg132 destabilizes this binding site. These studies provide a rationale for why compounds 2 and 3 exhbit weak activity against WT IDH1.

Finally, we describe the synthesis of compounds 1 - 6. 6or 5-Bromo-2-methoxypyridine was coupled with benzylmagnesium chloride using a palladium-catalyzed coupling reaction. Using our previous method,¹⁶ the benzyl products were oxidized to a pyridine oxide, followed by removal of the methyl group to give compounds **1** or **4**. An acyl chloride was reacted with ethyl 3-methyl-2-butenate in the presence of AlCl₃ to afford compound **7** as a mixture of stereoisomers, which was cyclized to become a single compound pyron-2-one **8**. Since the reaction of **8** with hydroxylamine occurred in a very poor yield (0-20%), **8** was converted to more reactive pyron-2-thione **9**,¹⁹ which was reacted readily with hydroxylamine to give compounds **2**, **3**, or **6** in 67-73% yield. 2,6-Dihydroxy-isonicotinic acid was treated with POBr₃ followed by methanolysis to give dibromo-ester **10**, whose 4-methoxycarbonyl group was converted to an isopropenyl in **11** by treatment with MeMgBr followed by an elimination reaction. One of the bromo groups of **11** was substituted by a -OMe and the other was reacted with *n*-BuLi and benzaldehyde to give compound **12**. It was hydrogenated and dehydroxylated using Et₃SiH²⁰ to produce 4-isopropyl-2-methoxy-pyridine **13**, which was then oxidized and deprotected to afford compound **5**.

Scheme 1. Synthesis for compounds 1 – 6.ª

^a*Reagents and conditions:* (i) BnMgCl, Pd(dppf)Cl₂; (ii) 3chloroperoxybenzoic acid; (iii) AcCl, reflux, then MeOH; (iv) RCOCl, AlCl₃; (v) H₂SO₄/AcOH; (vi) P4S₁₀; (vii) NH₂OH, pyridine; (viii) POBr₃, 130 °C, then MeOH; (ix) MeMgBr; (x) methanesulfonyl chloride, NEt₃; (xi) NaOMe; (xii) *n*-BuLi, tetramethylethylene diamine, THF, -78 °C, then benzaldehyde; (xiii) H₂, Pd(OH)₂/C; (ixv) Et₃SiH, trifluoroacetic acid, 50 °C.

In summary, recent biological studies have shown mutant IDH1 is a drug target for certain cancer. Using rational compound screening and medicinal chemistry, two 1hydroxypyridin-2-one compounds **2** and **3** were found to be potent inhibitors of IDH1(R132H) and IDH1(R132C), the frequent mutations in cancer, with K_i values as low as 120 nM. These compounds exhibit >60-fold selectivity over WT-IDH1 and do not have cytotoxicity against human cells, representing novel chemical probes for cancer biology studies of mutant IDH1. In addition, we report the first crystal structures of IDH1(R132H):inhibitor complexes, showing **2** and **3** are located in the ligand binding site I, with several strong H-bond, electrostatic and hydrophobic interactions with the protein. Inability of these inhibitors to bind to the catalytically active site II could account for their high selectivity. Moreover, this work suggests targeting the binding site I in mutant IDH1 is a viable strategy for future rational design of potent and selective inhibitors of mutant IDH1, and our structures could serve as a useful platform for this purpose.

AUTHOR INFORMATION

Corresponding Author

* Tel: 713-798-7415; E-mail: ysong@bcm.edu.

Author Contributions

§These authors contributed equally.

ACKNOWLEDGMENT

This work was supported by a grant (R01NS080963) from National Institute of Neurological Disorders and Stroke (NINDS/NIH) to Y.S. and a grant (Q1279) from Robert Welch Foundation to B.V.V.P. We thank the staff of the X-ray Crystallography Facility at Baylor College of Medicine for assistance in data collection.

ASSOCIATED CONTENT

Supporting Information. Supplementary figures S1 – 5, Supplementary table and Experimental Section. This information is available free of charge via the Internet at http://pubs.acs.org.

Coordinates and structure factors of the IDH1(R132H):2 and :3 complexes have been deposited in Protein Data Bank as entries 4I3L and 4I3K, respectively.

ABBREVIATIONS

AML, acute myeloid leukemia; IDH, Isocitrate dehydrogenase; ICT, isocitric acid; α -KG, α -ketoglutaric acid; WT-IDH1, wild-type IDH1 enzyme; IDH1(R132H), R132H mutant IDH1 enzyme; IDH1(R132H), R132H mutant IDH1 enzyme; D2HG, *D*-2-hydroxyglutaric acid.

REFERENCES

(1) Xu, X.; Zhao, J.; Xu, Z.; Peng, B.; Huang, Q.; Arnold, E.; Ding, J. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. *J. Biol. Chem.* **2004**, *279*, 33946-33957.

(2) Parsons, D. W.; Jones, S.; Zhang, X.; Lin, J. C.; Leary, R. J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I. M.; Gallia, G. L.; Olivi, A.; McLendon, R.; Rasheed, B. A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D. A.; Tekleab, H.; Diaz, L. A. Jr.; Hartigan, J.; Smith, D. R.; Strausberg, R. L.; Marie, S. K.; Shinjo, S. M.; Yan, H.; Riggins, G. J.; Bigner, D. D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V. E.; Kinzler, K. W. An integrated genomic analysis of human glioblastoma multiforme. *Science* **2008**, *321*, 1807-1812.

(3) Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S. H., Ito, S., Yang, C., Xiao, M. T., Liu, L. X., Jiang, W. Q., Liu, J., Zhang, J. Y., Wang, B., Frye, S., Zhang, Y., Xu, Y. H., Lei, Q. Y., Guan, K. L., Zhao, S. M. & Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. *Cancer Cell* **2011**, *19*, 17-30.

(4) Gross, S.; Cairns, R. A.; Minden, M. D.; Driggers, E. M.; Bittinger, M. A.; Jang, H. G.; Sasaki, M.; Jin, S.; Schenkein, D. P.; Su, S. M.; Dang, L.; Fantin, V. R.; Mak, T. W. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. *J. Exp. Med.* **2010**, *207*, 339-344.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 (5) Yan, H.; Parsons, D. W.; Jin, G.; McLendon, R.; Rasheed, B. A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G. J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K. W.; Velculescu, V. E.; Vogelstein, B.; Bigner, D. D. IDH1 and IDH2 mutations in gliomas. *N. Engl. J. Med.* **2009**, *360*, 765-773.

(6) Hartmann, C.; Meyer, J.; Balss, J.; Capper, D.; Mueller, W.; Christians, A.; Felsberg, J.; Wolter, M.; Mawrin, C.; Wick, W.; Weller, M.; Herold-Mende, C.; Unterberg, A.; Jeuken, J. W.; Wesseling, P.; Reifenberger, G.; von Deimling, A. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. *Acta Neuropathol.* **2009**, *118*, 469-474.

(7) Dang, L.; White, D. W.; Gross, S.; Bennett, B. D.; Bittinger, M. A.; Driggers, E. M.; Fantin, V. R.; Jang, H. G.; Jin, S.; Keenan, M. C.; Marks, K. M.; Prins, R. M.; Ward, P. S.; Yen, K. E.; Liau, L. M.; Rabinowitz, J. D.; Cantley, L. C.; Thompson, C. B.; van der Heiden, M. G.; Su, S. M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. *Nature* 2009, *462*, 739-744.

(8) Ward, P. S.; Patel, J.; Wise, D. R.; Abdel-Wahab, O.; Bennett, B. D.; Coller, H. A.; Cross, J. R.; Fantin, V. R.; Hedvat, C. V.; Perl, A. E.; Rabinowitz, J. D.; Carroll, M.; Su, S. M.; Sharp, K. A.; Levine, R. L.; Thompson, C. B. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. *Cancer Cell* **2010**, *17*, 225-234.

(9) Lu, C.; Ward, P. S.; Kapoor, G. S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C. R.; Khanin, R.; Figueroa, M. E.; Melnick, A.; Wellen, K. E.; O'Rourke, D. M.; Berger, S. L.; Chan, T. A.; Levine, R. L.; Mellinghoff, I. K.; Thompson, C. B. IDH mutation impairs histone demethylation and results in a block to cell differentiation. *Nature* **2012**, *483*, 474-478.

(10) Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L. A.; Fang, F.; Yilmaz, E.; Campos, C.; Fabius, A. W.; Lu, C.; Ward, P. S.; Thompson, C. B.; Kaufman, A.; Guryanova, O.; Levine, R.; Heguy, A.; Viale, A.; Morris, L. G.; Huse, J. T.; Mellinghoff, I. K.; Chan, T. A. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. *Nature* **2012**, *483*, 479-483.

(11) Prensner, J. R.; Chinnaiyan, A. M. Metabolism unhinged: IDH mutations in cancer. *Nat. Med.* **2011**, *17*, 291-293.

(12) Dang, L.; Jin, S.; Su, S. M. IDH mutations in glioma and acute myeloid leukemia. *Trends Mol. Med.* **2010**, *16*, 387-397.

(13) Garber, K. Oncometabolite? IDH1 discoveries raise possibility of new metabolism targets in brain cancers and leukemia. *J. Natl. Cancer Inst.* **2010**, *102*, 926-928.

(14) Popovici-Muller, J., Saunders, J. O., Salituro, F. G., Travins, J. M., Yan, S., Zhao, F., Gross, S., Dang, L., Yen, K. E., Yang, H., Straley, K. S., Jin, S., Kunii, K., Fantin, V. R., Zhang, S., Pan, Q., Shi, D., Biller, S. A. & Su, S. M. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. *ACS Med. Chem. Lett.* **2012**, *3*, 850.

(15) Yang, B.; Zhong, C.; Peng, Y.; Lai, Z.; Ding, J. Molecular mechanisms of "off-on switch" of activities of human IDH1 by tumor-associated mutation R132H. *Cell Res.* **2010**, *20*, 1188.

(16) Deng, L.; Sundriyal, S.; Rubio, V.; Shi, Z.; Song, Y. Coordination chemistry based approach to lipophilic inhibitors of 1-deoxy-D-xylulose-5-phosphate reductoisomerase. *J. Med. Chem.* **2009**, *52*, 6539.

(17) Deng, L.; Endo, K.; Kato, M.; Cheng, G.; Yajima, S.; Song, Y. Structures of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase/Lipophilic Phosphonate Complexes. *ACS Med. Chem. Lett.* **2011**, *2*, 165.

(18) Glide, version 5.5, Schrödinger, LLC, New York, NY, 2010.

(19) Deodhar, K. D.; Kekare, M. B.; Pednekar, S. R. A Facile Synthesis of 2-Pyridones by Nucleophilic Reaction on Pyran2-thiones. *Synthesis*, **1985**, 328-331.

(20) Batt, D. G.; Maynard, G. D.; Petraitis, J. J.; Shaw, J. E.; Galbraith, W.; Harris, R. R. 2-substituted-1-naphthols as potent 5-lipoxygenase inhibitors with topical antiinflammatory activity. *J. Med. Chem.* **1990**, *33*, 360-370.

