Studies in Sigmatropic Rearrangement: Synthesis of a [6,6]Pyranothiopyran **Ring System by Sequential Claisen Rearrangement and Pyridine** Hydrotribromide Mediated **Regioselective "6-Endo" Cyclization[†]**

K. C. Majumdar,* U. K. Kundu, and S. K. Ghosh

Department of Chemistry, University of Kalyani, Kalyani 741 235, West Bengal, India kcm@klyuniv.ernet.in

Received April 24, 2002

ABSTRACT

4-(4'-Aryloxybut-2'-ynylthio)[1]benzopyran-2-ones are refluxed in chlorobenzene to afford 4-aryloxymethylthiopyrano[3,2-c][1]benzopyran-5(2H)ones which are subsequently subjected to heating in o-dichlorobenzene in the presence of N,N-diethylaniline and then treated with pyridine hydrotribromide to give [6,6]pyranothiopyrans in almost quantitative yield.

We have recently reported¹⁻⁵ the regioselective synthesis of pyrano- and furocoumarins and pyrido- and pyrrolocoumarins fused at the 3,4-position of the coumarin nucleus by the application of sigmatropic rearrangments. In continuation we have also successfully synthesized^{6,7} thiopyrano and thieno [3,2-c] coumarins. In the case of studying the signatropic rearrangement of 4-(4'-aryloxybut-2'-ynyloxy)coumarins and 3-(4'-aryloxybut-2'-ynyloxy)coumarins, it was observed that the products of the first Claisen rearrangement contained a aryloxyallyl moiety for a further Claisen rearrangement and the second Claisen rearrangement did afford interesting results.^{8,9} This has created our interest in undertaking a study on the sequential Claisen rearrangement of 4-(4'-aryloxybut-2'-ynylthio)coumarin. The substrate 4-(4'-aryloxybut-2'ynylthio)coumarins 3a-d for this purpose were synthesized in 70-80% yield by the phase transfer-catalyzed alkylation of 4-mercaptocoumarin with 1-chloro-4-aryloxybut-2-yne. Compounds 3a-d are all solids and were characterized from their elemental analyses and spectral data¹⁰ (Scheme 1).

ORGANIC LETTERS

2002Vol. 4, No. 16

2629-2631

Substrate 3a was refluxed in chlorobenzene (132 °C) for 4 h to give a crystalline solid, 4a (mp 186 °C), in 75% yield. This was characterized from its elemental analysis and spectral data.¹¹ The other substrates 3b-d were also similarly treated to give products 4b-d. Substrates 3a-d possess two

[†] This paper is dedicated to Professor B. S. Thyagarajan of the University of Texas at San Antonio, Texas, on the occasion of his 75th birthday.

⁽¹⁾ Majumdar, K. C.; De, R. N.; Khan, A. T.; Chattopadhyay, S. K.; Dey, K.; Patra, A. J. Chem. Soc., Chem. Commun. 1988, 777.

⁽²⁾ Majumdar, K. C.; Khan, A. T.; De, R. N. Synth. Commun. 1988, 18, 1589.

⁽³⁾ Majumdar, K. C.; Das, D. P.; Khan, A. T. Synth. Commun. 1988, 18, 2027.

⁽⁴⁾ Majumdar, K. C.; Bhattacharayya, T. Synthesis 2001, 1568.

⁽⁵⁾ Majumdar, K. C.; Samanta, S. K. Tetrahedron Lett. 2002, 43, 2119.

 ⁽⁶⁾ Majumdar, K. C.; Ghosh, S. K. *Tetrahedron Lett.* 2002, *43*, 2115.
(7) Majumdar, K. C.; Ghosh, S. K. *Tetrahedron Lett.* 2002, *43*, 2123.

^{10.1021/}ol020088g CCC: \$22.00 © 2002 American Chemical Society Published on Web 07/17/2002

^{(8) (}a) Majumdar K. C.; Chatterjee, P.; Saha, S. Tetrahedron Lett. 1998, 39, 7147. (b) Majumdar, K. C.; Das, U. J. Org. Chem. 1998, 63, 9997.

⁽⁹⁾ Majumdar, K. C.; Das, D. P.; Jana, G. H. Synth. Commun. 1993, 23, 2171.

⁽¹⁰⁾ **Compound 3a:** mp 155 °C; yield 72%; UV (EtOH) λ_{max} 218, 273 nm; IR (KBr) ν_{max} 1700, 1590, 1230 cm⁻¹; ¹H NMR (300 MHz): δ 3.81 (t, 2H, J = 2 Hz), 4.78 (t, 2H, J = 2 Hz), 6.26 (s, 1H), 6.91-7.66 (m, 7H);m/z 394, 392, 390 (M⁺). Anal. Calcd for C₁₉H₁₂Cl₂O₃S: C, 58.46; H, 3.07. Found: C, 58.59; H, 3.27.

potential sites for [3,3] sigmatropic rearrangement: an aryl propargyl ether moiety and a vinyl propargyl sulfide moiety. All the substrates underwent [3,3] sigmatropic rearrangement at the vinyl propargyl sulfide moiety to give thiopyrano-[3,2-*c*][1]benzopyran-5(2*H*)-ones. The formation of products **4a**-**d** from substrates **3a**-**d** may be easily explained by the [3,3] sigmatropic rearrangement of **3a**-**d** and rapid enolization to form the intermediate allenylene-thiols **6a**-**d** followed by [1,5] hydrogen shift and 6π -electrocyclic ring closure to give the products **4a**-**d** (Scheme 2).

Substrates 3a-d on thermal rearrangement by heating in chlorobenzene (132 °C) could have yielded other types of products, e.g. 3-aryloxymethyl-2-methylthieno[3,2-*c*]coumarin¹² or 4'-aryloxybut-2'-ynyl-4-mercaptocoumarin¹³ (by 1,3-radical shift) as a consequence of the usual course of

rearrangement. It is remarkable to note that all the substrates 3a-d studied in this instance regioselectively afforded exclusively products 4a-d.

As products $4\mathbf{a}-\mathbf{d}$ possess the aryl allyl ether moiety, these were subjected to heating in refluxing 1,2-dichlorobenzene in the presence of *N*,*N*-diethylaniline for 12–14 h to give phenolic products $8\mathbf{a}-\mathbf{d}$. These were characterized from their elemental analyses and spectral data.¹⁴ Here again the isolation of phenolic product is quite unusual. In all other previous instances either the formation of cyclic products or the rearranged endo cyclic phenolic products were reported.^{9,15} The formation of products $8\mathbf{a}-\mathbf{d}$ from $4\mathbf{a}-\mathbf{d}$ is easily explained by a [3,3] sigmatropic rearrangement followed by enolization (Scheme 3).

Our target was to synthesize polyheterocyclic compounds. We had earlier used pyridine hydrotribromide¹⁶ and hexamethylenetetramine hydrotribromide¹⁷ for regioseletive cyclization of *o*-cyclohex-2-enyl phenols. We therefore treated products **8a**-**d** with 1 equiv of pyridine hydrotribromide in chloroform at 0-5 °C for 0.5 h to afford [6,6]pyranothiopyrans¹⁸ **10a**-**d** in almost quantitative yield. The formation of products **10a**-**d** from **8a**-**d** is easily explained by the formation of a cyclic bromonium ion **11a**-**d** followed by a "6-endo" cyclization (Scheme 4).

⁽¹¹⁾ **Compound 4a:** mp 186 °C; yield 75%; UV (EtOH) λ_{max} 220, 360 nm; IR (KBr) ν_{max} 1690, 1580, 1240 cm⁻¹; ¹H NMR (300MHz) δ 3.47 (d, 2H, J = 6Hz), 5.18 (d, 2H, J = 1.0 Hz), 6.26 (tt, 1H, J = 1, 6 Hz), 6.91–7.85 (m, 7H); m/z 394, 392, 390 (M⁺). Anal. Calcd for C₁₉H₁₂Cl₂O₃S: C, 58.46; H, 3.07. Found: C, 58.31; H, 3.17.

⁽¹²⁾ Kwart, H.; George, T. J. J. Chem. Soc., Chem. Commun. 1970, 433.

^{(13) (}a) Majumdar, K. C.; Ghosh, M.; Jana, M. *Synthesis* **2002**, 669. (b) Mortensen, J. Z.; Hedegaard, B.; Lawesson, S. O. *Tetrahedron* **1971**, 27, 3831.

⁽¹⁴⁾ **Compound 8a:** mp 198 °C.; yield 75%; UV (EtOH) λ_{max} 220, 274, 334 nm; IR (KBr) ν_{max} 3390, 2910, 1670, 1600, 1210 cm⁻¹; ¹H NMR (CDCl₃ 300 MHz) δ 3.33 (dd, J = 3.3, 12.6 Hz, 1H, SCH₂), 3.62 (dd, J = 7.1, 12.6 Hz, 1H, SCH₂), 4.40 (dd, J = 3.3, 7.1 Hz, 1H), 5.38 (s, 1H, = CH₂), 5.79 (s, 1H, =CH₂), 6.75–6.86 (m, 2H, ArH) 7.28–7.33 (m, 2H, ArH), 7.50–7.55 (m, 1H, ArH), 7.72–7.75 (m, 1H, ArH); MS m/z 394, 392, 390 (M⁺). Anal. Calcd for C₁₉H₁₂Cl₂O₃S: C, 58.46; H, 3.07. Found: C, 58.32; H, 3.19.

⁽¹⁵⁾ Majumdar, K. C.; Balasubramanian, K. K.; Thyagarajan, B. S. J. Heterocycl. Chem. 1973, 10, 159.

^{(16) (}a) Majumdar, K. C.; Kundu A. K. *Indian J. Chem.* **1993**, *32B*, 605. (b) Majumdar, K. C.; Kundu A. K. *Can. J. Chem.* **1995**, *73*, 1727.

⁽¹⁷⁾ Majumdar, K. C.; Kundu A. K.; Chatterjee, P. Synth. Commun. **1996**, 26, 893.

The stereochemistry of the ring fusion of the cyclic system can only be surmised from molecular models (Dreiding Model) which show a strain free *cis*-arrangement. In conclusion, all four substrates gave single products in each of the three steps used for the regioselective synthesis of the [6,6]pyranothiopyrans. This presents a simple synthesis of this type of ring system.

Acknowledgment. We thank the CSIR (New Delhi) for financial assistance. One of us (S.K.G.) is grateful to CSIR (New Delhi) for a fellowship.

Supporting Information Available: Experimental results for **3b-d**, **4b-d**, **8b-d**, and **10b-d**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL020088G

⁽¹⁸⁾ **Compound 10a:** mp 168 °C; yield 93%; UV (EtOH) λ_{max} 219, 280 nm; IR (KBr) ν_{max} 2910, 1700, 1190 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.87 (dd, J = 11.5, 13.1 Hz, 1H, SCH₂), 3.27 (dd, J = 4.2, 13.1 Hz, 1H, SCH₂), 3.65 (d, J = 9.9 Hz, 1H, $-OCH_2$), 4.12 (dd, J = 4.2, 11.5 Hz, 1H), 4.80 (d, J = 9.9 Hz, 1H, $-OCH_2$), 7.12–7.36 (m, 4H, ArH), 7.58–7.81 (m, 2H, ArH); ¹³C NMR (400 MHz, CDCl₃) δ 29.05 (C₁₄), 34.78 (C₆), 48.15 (C_{14a}), 88.06 (C_{6a}), 116.18 (C_{14b}), 117.33 (C₉), 117.74 (C_{6b}), 118.08 (C_{12a}), 123.46 (C₁₂), 124.69 (C₁₁), 125.38 (C₁), 127.23 (C₄), 130.23 (C₃), 130.64 (C₂), 133.8 (C₁₀), 151.79 (C_{12b}), 152.56 (C_{8a}), 156.04 (C_{4a}), 157.22 (C₇); MS *m*/z 468, 470, 472, 474 (M⁺). Anal. Calcd for C₁₉H₁₁BrCl₂O₃S: C, 48.71; H, 2.35. Found: C, 48.52; H, 2.29.