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Abstract—Highly efficient synthesis of protected 3%-deoxyadenosine and 3%-deoxyguanosine from adenosine and guanosine were
described. The 2%,3%-diol of protected adenosine and guanosine were reacted with a-acetoxyisobutyryl bromide to yield 9-(2%-O-
acetyl-3%-bromo-5%-O-tert-butyldiphenylsilyl-3%-deoxy-b-D-xylofuranosyl)-6-N-benzoyl adenine and 9-(2%-O-acetyl-3%-bromo-5%-O-
tert-butyldiphenylsilyl-3%-deoxy-b-D-xylofuranosyl)-2-N-(N %,N %-dimethylaminomethylene) guanine and subsequently heated with
tri-n-butyltin hydride in the presence of 2,2%-azobisisobutyronitrile to afford the protected 3%-deoxyadenosine and 3%-
deoxyguanosine in 66–73% over all yield. © 2001 Elsevier Science Ltd. All rights reserved.

Modified nucleosides play an important role in the
development of genetic therapies such as antigene and
antisense strategies.1 3%-Deoxyribonucleosides are
known to posses potential antiviral and antitumor
activities.2 The first isolated nucleotide antibiotic was
3%-deoxyadenosine, that is known as cordycepin which
inhibits Bacillus subtilis, avian tubercle bacillus and
Ehrlich ascites tumor cells.2a 3%-Deoxynucleotides have
been incorporated into oligonucleotides to form 2%,
5%-linked oligodeoxynucleotide that selectively binds
with complementary DNA or RNA.3 The 2%, 5%-linked
oligonucleotides are stable to most of the nucleases that
hydrolyze the natural DNA, making them potential
candidates for diagnostic and therapeutic antisense
applications.4 A number of methods to prepare 3%-
deoxyadenosine and several synthetic approaches for
3%-deoxyguanosine have been described.5 The most
efficient route of 3%-deoxyguanosine synthesis in five
steps with 50% overall yield from guanosine was
reported by He and Bischofberger.6 The efficient route
of 3%-deoxyadenosine synthesis in three steps with 53%
overall yield from adenosine was reported by Robins et
al.7 Norman and Reese have described that the prepa-
ration of 2%, 5%-di-O-acetyl-3%-deoxyadenosine was in
41% overall yield from adenosine.8 Herein, we report
an efficient synthetic route to prepare protected 3%-
deoxyadenosine and 3%-deoxyguanosine in very high
yield from corresponding nucleosides.

Moffatt et al. reported that adenosine reacted with
a-acetoxyisobutyryl bromide to generate 2%-O-acetyl-
3%(2%)-deoxy-3%(2%)-bromo-5%-dioxolone-adenosine mix-
tures.9 We modified the Moffatt’s reaction by
protecting 5%-hydroxy and exo-amino groups of ribonu-
cleotides prior reacting with a-acetoxyisobutyryl bro-
mide. The tert-butyldiphenylsilyl (TBDPS) group was
chosen as a protection group for 5%-hydroxy and ben-
zoyl group for the 6-amino group of adenosine. The
adenosine (1) was first converted into 6-N-benzoyl-
adenosine 2 in 96% yield10 by treating with trimethylsi-
lyl chloride, benzoyl chloride, and 1.0 M ammonium
hydroxide, respectively and then treated with tert-
butyldiphenylsilyl chloride to give 6-N-benzoyl-5%-O-
tert-butyldiphenylsilyl-adenosine (3) in 99% yield. To a
suspension of 3 (915 mg, 1.5 mmol) in acetonitrile (45
ml) containing a trace amount of water (22 ml, 1.2
mmol), a-acetoxyisobutyryl bromide (0.66 ml, 4.5
mmol) was added slowly at 0°C. The mixture was
stirred at 0°C for 2.5 h and at room temperature for 7
h when the reaction gave a clear solution. The mixture
was concentrated to about 5 ml under reduced pressure
and 150 ml of ethyl acetate was added. The solution
was washed with cold saturated sodium bicarbonate
(2×50 ml), water (50 ml), and brine (50 ml). The
aqueous solution was extracted with dichloromethane
(2×50 ml) and the combined organic layers were dried
over anhydrous sodium sulfate. After evaporation, the
crude product was purified by flash silica gel column
eluted with a gradient (0–5%) methanol–chloroform to
give 4 as a white foam solid (900 mg, yield=84.1%).11

Several methods, such as H2/Raney Ni and H2/Pd-C
(10%), have been tried for the reductive cleavage of* Corresponding author.

0040-4039/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0040 -4039 (00 )02041 -4



Z. Cui et al. / Tetrahedron Letters 42 (2001) 561–563562

Scheme 1.

3%-bromo group of 4 but gave poor yield or side prod-
ucts. When 4 was heated with an excess tri-n-butyltin
hydride in the presence of 2,2%-azobisisobutyronitrile
(AIBN) in toluene solution, a protected 3%-deoxy-
adenosine (5) was obtained in high yield but a trace
amount of N-benzoyl cleaved product was formed after
prolonged heating. The compound 4 (500 mg, 0.7
mmol) was first dissolved in dry toluene (10 ml) under
an atmosphere of argon and then tri-n-butyltin hydride
(0.57 ml, 2.1 mmol) and 2,2%-azobisisobutyronitrile (9.8
mg, 0.06 mmol) were added at room temperature. The
stirred reaction mixture was heated to 95°C. After 50
min, the starting material was disappeared monitored
by ESI-MS. The solvent was removed under reduced
pressure, the crude product was purified by flash silica
gel column eluted with 0.1–3% methanol–methylene
chloride to afford 5 as a white solid (410 mg, 92% yield)
(73% from 1) (Scheme 1).12

9-(2%-O-Acetyl-5%-O-tert-butyldiphenylsilyl-3%-b-D-2-(N %,
N %-dimethylaminomethylene) xylofuranosyl) guanine
(9) was prepared by a similar synthetic route as
described above for 5. Guanosine was first protected by
N,N-dimethylaminomethylene at 2-amino of guanine
and TBDPS at 5%-hydroxy group, and then reacted with
a-acetoxyisobutyryl bromide,13 finally treated with tri-

n-butyltin hydride and a catalytic amount of AIBN to
give the desired product (Scheme 2). Briefly, guanosine
6 was reacted with N,N-dimethylformamide dimethyl
acetal in acetonitrile to give 2-(N,N-dimethyl-
aminomethylene) guanosine in 97% yield and then
treated with tert-butyldiphenylsilyl chloride to give 7 in
90% yield. Compound 7 was reacted with a-acetoxy-
isobutyryl bromide to yield 8 (83%).14 The compound 8
(190 mg, 0.28 mmol) was dissolved in toluene (10 ml)
under an atmosphere of argon and tri-n-butyltin
hydride (0.23 ml, 0.84 mmol) and 2,2%-azobisisobuty-
ronitrile were added, and heated to 95°C for 2 h. The
pure product 9 (154 mg, 91%) was obtained after silica
gel chromatography purification (66% overall from 6).15

TBDPS or acetyl group of 5 and 9 can be selectively
deprotected with appropriate reagent. 5%-TBDPS group
of 5 and 9 was removed quantitatively with 1.0 M
tetra-n-butylammonium fluoride (TBAF) in THF at
0°C. 2%-Acetyl group of 5 and 9 was deprotected with
0.5–1.0N ammonia in methanol in �100% yield. Thus,
the 5 and 9 can be easily converted to corresponding
phosphoramidites for solid-phase oligonucleotide syn-
thesis using standard coupling protocols.16 This syn-
thetic route can be enhanced to preparative scale for
preparing 3%-deoxynucleosides.

Scheme 2.
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