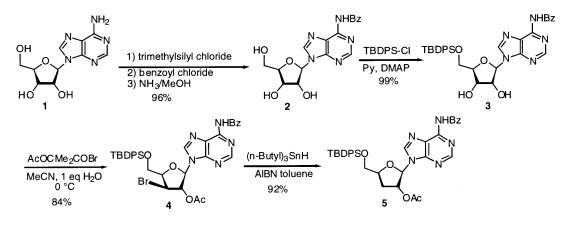


Tetrahedron Letters 42 (2001) 561-563

TETRAHEDRON LETTERS

Efficient synthesis of protected 3'-deoxyadenosine and 3'-deoxyguanosine from adenosine and guanosine

Zhiyong Cui, Lei Zhang and Biliang Zhang*

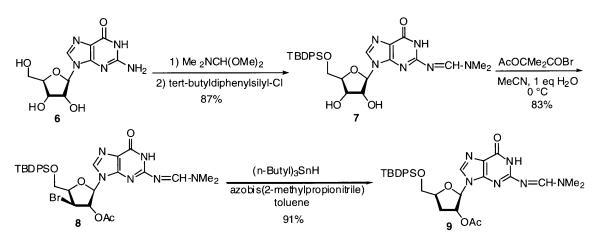

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA Received 8 November 2000; accepted 14 November 2000

Abstract—Highly efficient synthesis of protected 3'-deoxyadenosine and 3'-deoxyguanosine from adenosine and guanosine were described. The 2',3'-diol of protected adenosine and guanosine were reacted with α -acetoxyisobutyryl bromide to yield 9-(2'-*O*-acetyl-3'-bromo-5'-*O*-tert-butyldiphenylsilyl-3'-deoxy- β -D-xylofuranosyl)-6-*N*-benzoyl adenine and 9-(2'-*O*-acetyl-3'-bromo-5'-*O*-tert-butyldiphenylsilyl-3'-deoxy- β -D-xylofuranosyl)-6-*N*-benzoyl adenine and 9-(2'-*O*-acetyl-3'-bromo-5'-*O*-tert-butyldiphenylsilyl-3'-deoxy- β -D-xylofuranosyl)-2-*N*-(*N'*,*N'*-dimethylaminomethylene) guanine and subsequently heated with tri-*n*-butyltin hydride in the presence of 2,2'-azobisisobutyronitrile to afford the protected 3'-deoxyadenosine and 3'-deoxyguanosine in 66–73% over all yield. © 2001 Elsevier Science Ltd. All rights reserved.

Modified nucleosides play an important role in the development of genetic therapies such as antigene and 3'-Deoxyribonucleosides are antisense strategies.¹ known to posses potential antiviral and antitumor activities.² The first isolated nucleotide antibiotic was 3'-deoxyadenosine, that is known as cordycepin which inhibits *Bacillus subtilis, avian tubercle bacillus* and *Ehrlich ascites* tumor cells.^{2a} 3'-Deoxynucleotides have been incorporated into oligonucleotides to form 2', 5'-linked oligodeoxynucleotide that selectively binds with complementary DNA or RNA.3 The 2', 5'-linked oligonucleotides are stable to most of the nucleases that hydrolyze the natural DNA, making them potential candidates for diagnostic and therapeutic antisense applications.⁴ A number of methods to prepare 3'deoxyadenosine and several synthetic approaches for 3'-deoxyguanosine have been described.⁵ The most efficient route of 3'-deoxyguanosine synthesis in five steps with 50% overall yield from guanosine was reported by He and Bischofberger.⁶ The efficient route of 3'-deoxyadenosine synthesis in three steps with 53% overall yield from adenosine was reported by Robins et al.⁷ Norman and Reese have described that the preparation of 2', 5'-di-O-acetyl-3'-deoxyadenosine was in 41% overall yield from adenosine.8 Herein, we report an efficient synthetic route to prepare protected 3'deoxyadenosine and 3'-deoxyguanosine in very high yield from corresponding nucleosides.

Moffatt et al. reported that adenosine reacted with α -acetoxyisobutyryl bromide to generate 2'-O-acetyl-3'(2')-deoxy-3'(2')-bromo-5'-dioxolone-adenosine mixtures.⁹ We modified the Moffatt's reaction by protecting 5'-hydroxy and exo-amino groups of ribonucleotides prior reacting with *a*-acetoxyisobutyryl bromide. The tert-butyldiphenylsilyl (TBDPS) group was chosen as a protection group for 5'-hydroxy and benzoyl group for the 6-amino group of adenosine. The adenosine (1) was first converted into 6-N-benzoyladenosine 2 in 96% yield¹⁰ by treating with trimethylsilyl chloride, benzoyl chloride, and 1.0 M ammonium hydroxide, respectively and then treated with tertbutyldiphenylsilyl chloride to give 6-N-benzoyl-5'-Otert-butyldiphenylsilyl-adenosine (3) in 99% yield. To a suspension of 3 (915 mg, 1.5 mmol) in acetonitrile (45 ml) containing a trace amount of water (22 µl, 1.2 mmol), *a*-acetoxyisobutyryl bromide (0.66 ml, 4.5 mmol) was added slowly at 0°C. The mixture was stirred at 0°C for 2.5 h and at room temperature for 7 h when the reaction gave a clear solution. The mixture was concentrated to about 5 ml under reduced pressure and 150 ml of ethyl acetate was added. The solution was washed with cold saturated sodium bicarbonate $(2\times 50 \text{ ml})$, water (50 ml), and brine (50 ml). The aqueous solution was extracted with dichloromethane (2×50 ml) and the combined organic layers were dried over anhydrous sodium sulfate. After evaporation, the crude product was purified by flash silica gel column eluted with a gradient (0-5%) methanol-chloroform to give 4 as a white foam solid (900 mg, yield = 84.1%).¹¹ Several methods, such as H₂/Raney Ni and H₂/Pd-C (10%), have been tried for the reductive cleavage of

^{*} Corresponding author.


Scheme 1.

3'-bromo group of 4 but gave poor yield or side products. When 4 was heated with an excess tri-n-butyltin hydride in the presence of 2,2'-azobisisobutyronitrile (AIBN) in toluene solution, a protected 3'-deoxyadenosine (5) was obtained in high yield but a trace amount of N-benzoyl cleaved product was formed after prolonged heating. The compound 4 (500 mg, 0.7 mmol) was first dissolved in dry toluene (10 ml) under an atmosphere of argon and then tri-*n*-butyltin hydride (0.57 ml, 2.1 mmol) and 2,2'-azobisisobutyronitrile (9.8 mg, 0.06 mmol) were added at room temperature. The stirred reaction mixture was heated to 95°C. After 50 min, the starting material was disappeared monitored by ESI-MS. The solvent was removed under reduced pressure, the crude product was purified by flash silica gel column eluted with 0.1-3% methanol-methylene chloride to afford 5 as a white solid (410 mg, 92% yield) (73% from 1) (Scheme 1).¹²

9-(2'-O-Acetyl-5'-O-tert-butyldiphenylsilyl-3'- β -D-2-(N', N'-dimethylaminomethylene) xylofuranosyl) guanine (9) was prepared by a similar synthetic route as described above for 5. Guanosine was first protected by N,N-dimethylaminomethylene at 2-amino of guanine and TBDPS at 5'-hydroxy group, and then reacted with α -acetoxyisobutyryl bromide,¹³ finally treated with tri-

n-butyltin hydride and a catalytic amount of AIBN to give the desired product (Scheme 2). Briefly, guanosine **6** was reacted with *N*,*N*-dimethylformamide dimethyl acetal in acetonitrile to give 2-(*N*,*N*-dimethylaminomethylene) guanosine in 97% yield and then treated with *tert*-butyldiphenylsilyl chloride to give 7 in 90% yield. Compound 7 was reacted with α -acetoxyisobutyryl bromide to yield **8** (83%).¹⁴ The compound **8** (190 mg, 0.28 mmol) was dissolved in toluene (10 ml) under an atmosphere of argon and tri-*n*-butyltin hydride (0.23 ml, 0.84 mmol) and 2,2'-azobisisobutyronitrile were added, and heated to 95°C for 2 h. The pure product **9** (154 mg, 91%) was obtained after silica gel chromatography purification (66% overall from **6**).¹⁵

TBDPS or acetyl group of **5** and **9** can be selectively deprotected with appropriate reagent. 5'-TBDPS group of **5** and **9** was removed quantitatively with 1.0 M tetra-*n*-butylammonium fluoride (TBAF) in THF at 0°C. 2'-Acetyl group of **5** and **9** was deprotected with 0.5–1.0N ammonia in methanol in $\sim 100\%$ yield. Thus, the **5** and **9** can be easily converted to corresponding phosphoramidites for solid-phase oligonucleotide synthesis using standard coupling protocols.¹⁶ This synthetic route can be enhanced to preparative scale for preparing 3'-deoxynucleosides.

Scheme 2.

Acknowledgements

This work was partially supported by grants from the CFAR development grant of UMass Medical School and Biomedical Research Annual Research Fund Innovation Grant of Worcester Foundation.

References

- (a) Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 544–584.
 (b) De Mesmaeker, A.; Haener, R.; Martin, P.; Moser, H. E. Acc. Chem. Res. 1995, 28, 366–372.
 (c) Dan Cook, P. Nuckleosides & Nucleotides 1999, 1141–1162
- (a) Suhadolnik, R. J. Nucleoside Antibiotics.; New York: Wiley-Interscience, 1970. (b) Suhadolnik, R. J. Nucleoside as Biological Probes; New York: Wiley-Interscience, 1979. (c) Cameron, J. M. New Developments in Antiviral Therapy, Control of Virus Diseases for General Microbiology Symposium 45; eds. Dimmock et al., p. 341, 1990.
- (a) Hashimoto, H.; Switzer, C. J. Am. Chem. Soc. 1992, 114, 6256–6257. (b) Jin, R.; Chapman, W. H., Jr.; Srinivasan, A. R.; Olson, W. K.; Breslow, R.; Breslauer, K. J. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 10568–10572. (c) Jung, K.-E.; Switzer, C. J. Am. Chem. Soc. 1994, 116, 6059–6061. (d) Robinson, H.; Jung, K.-E.; Switzer, C.; Wang, A. H.-J. J. Am. Chem. Soc. 1995, 117, 837–838. (e) Kierzek, R.; He, L.; Turner, D. H. Nucleic Acids Res. 1992, 20, 1685–1690. (f) Breslow, R. C; Sheppard, T. L. Pure & Appl. Chem. 1996, 68, 2037–2041.
- Sheppard, T. L.; Breslow, R. C. J. Am. Chem. Soc. 1996, 40, 9810–9811.
- (a) Ogilvie, K. K.; Hakimelahi, G. H.; Proba, Z. A., Usman, N. *Tetrahedron Lett.* **1983**, *24*, 865–868. (b) Bazin, H.; Chattopadhyaya, J. *Synthesis* **1985**, *26*, 1108– 1111. (c) Rizzo, C. J.; Dougherty, J. P.; Breslow, R. *Tetrahedron Lett.* **1992**, *33*, 4129–4132. (d) Dougherty, J. P.; Rizzo, C. J.; Breslow, R. J. Am. Chem. Soc. **1992**, *114*, 6254–6255. (e) Sheppard, T. L.; Rosenblatt, A. T.; Breslow, R. J. Org. Chem. **1994**, *59*, 7243–7248.
- He, G. X.; Bischofberger, N. Tetrahedron Lett. 1995, 36, 6991–6994.
- 7. Robins, M. J., et al. J. Org. Chem. 1995, 60, 7902-7908.
- 8. Norman, D. G.; Reese, C. B. Synthesis 1983, 304-306.

- Russell, A. F.; Greenberg, S.; Moffatt, J. G. J. Am. Chem. Soc. 1973, 95, 4025–4030.
- Ti, G. S.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1982, 104, 1316–1319.
- Compound 4: R_f=0.50 (chloroform: methanol=95:5); ¹H NMR (400 MHz, CDCl₃): δ 1.09 (s, 9H), 2.19 (s, 3H), 4.04 (m, 2H), 4.47-4.39 (m, 2H), 5.75 (s, 1H), 6.28 (d, J=2.0 Hz, 1H), 8.01-7.37 (m, 15H), 8.33 (s, 1H), 8.74 (s, 1H), 9.51 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 19.2, 20.7, 26.8, 50.2, 64.5, 81.5, 82.8, 88.0, 123.3, 127.9, 128.0, 128.6, 130.0, 132.6, 132.7, 133.7, 135.5, 141.1, 149.8, 151.5, 152.8, 165.2, 169.1; ESI-Mass (m/e): 736.2 (M+ Na)⁺; 738.2 (M+Na+2)⁺.
- 12. Compound **5**: R_f =0.45 (chloroform: methanol = 20:1); ¹H NMR (400 MHz, CDCl₃): δ 1.05 (s, 9H), 2.12 (s, 3H), 2.14–2.18 (m, 1H), 2.66–2.73 (m, 1H), 3.77 (dd, *J*=4.03, 11.74 Hz, 1H), 4.02 (dd, *J*=3.30, 11.74 Hz, 1H), 4.51 (m, 1H), 5.67 (m, 1H), 6.20 (d, *J*=1.47 Hz, 1H), 7.30–7.55 (m, 9H), 7.61–7.64 (m, 4H), 8.00 (m, 2H), 8.28 (s, 1H), 8.73 (s, 1H), 9.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 19.4, 21.2, 27.1, 32.4, 64.7, 78.3, 81.6, 89.7, 123.6, 128.0, 128.1, 128.9, 130.1, 132.9, 133.0, 134.0, 135.7, 141.7, 149.9, 151.4, 153.0, 165.11, 170.3; ESI-MS positive ion 636.1 (M +1)⁺, 658.3 (M+Na)⁺.
- Matulic-Adamic, J.; Beigelman, L. Helv. Chim. Acta 1999, 82, 2141–2150.
- 14. Compound 8: R_f =0.65 (chloroform: methanol=85:15); ¹H NMR (400 MHz, CDCl₃): δ 1.08 (s, 9H), 2.22 (s, 3H), 3.10 (s, 3H), 3.18 (s, 3H), 4.03 (m, 2H), 4.37 (d, *J*=3.6 Hz, 1H), 4.43 (m, 1H), 5.94 (d, *J*=1.8 Hz, 1H), 6.12 (s, 1H), 7.72–7.38 (m, 10H), 7.83 (s, 1H), 8.64 (s, 1H), 8.81 (br, 1H). The ¹H NMR spectrum is coincident with that reported in the literature.¹³
- 15. Compound **9**: R_f =0.44 (chloroform: methanol=10:1); ¹H NMR (400 MHz, CDCl₃): δ 1.05 (s, 9H), 2.02–2.07 (m, 1H), 2.12 (s, 3H), 2.34–2.41 (m, 1H), 3.06 (s, 3H), 3.13 (s, 3H), 3.76 (dd, *J*=4.03, 11.37 Hz, 1H), 3.93 (dd, *J*= 3.66, 11.37 Hz, 1H), 4.49 (m, 1H), 5.82 (m, 1H), 5.96 (d, *J*=1.1 Hz, 1H), 7.33–7.41 (m, 6H), 7.61–7.66 (m, 4H), 7.81 (s, 1H), 8.62 (s, 1H), 9.72 (br, s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 19.4, 21.3, 27.1, 32.3, 35.3, 41.6, 65.0, 77.7, 81.6, 89.4, 121.1, 128.1, 130.1, 133.0, 135.7, 136.1, 149.7, 157.2, 158.4, 159.0, 170.0; ESI-MS positive ion: 603.2 (M+1)⁺, 625.3 (M+Na)⁺; negative ion, 601.4 (M–1)⁻.
- Vinayak, R. Methods: A Companion to Methods in Enzymol. 1993, 5, 7–18.