

Diterpenoids and Bisnorditerpenoids from Blumea aromatica

Chien-Chang Shen,[†] Wen-Chi Wei,[†] and Lie-Chwen Lin*^{,†,‡}

[†]National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan [‡]Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan

Supporting Information

ABSTRACT: Three new labdane-type diterpenoids, 6α -Oisovalerylnidorellol (1), (12S)-blumdane (2), and (12R)epiblumdane (3), and three new bisnorditerpenoids, 6α -O-(3methyl-2-butenoyl)sterebin A (5), 6α -O-angeloylsterebin A (6), and 6α -O-isovalerylsterebin A (7), plus 17 known compounds were isolated from *Blumea aromatica*. Their structures of the new compounds were proposed by detailed spectroscopic analysis. The absolute configuration at C-12 of blumdane (2) was determined by the modified Mosher's method. The anti-inflammatory and anti-immunosuppressive

effects of these isolated compounds were assessed. Compounds 9, 16, and 23 (at 40 μ M) showed a slight suppression of TNF- α production, but no or little effect on the expression of PD-L1 in granulocytic myeloid-derived suppressor cells was observed for all test compounds.

Blumea aromatica DC. (Asteraceae) is a tall perennial herb occurring in forests at low to medium elevations in Taiwan.¹ The whole herbs of *B. aromatica* have been used as an herbal remedy in folk medicine to treat leukemia, arthritis, headache, and skin eczema.² A previous chemical study on this species reported the identification of a xanthoxylin, an anthraquinone, and flavonoids.³

TNF- α , a key proinflammatory cytokine, plays an important role in the acute immune response and systemic inflammation.^{4,5} Myeloid-derived suppressor cells (MDSCs) have been demonstrated to induce immune suppression, resulting in protecting tumor cells from immune surveillance. Programmed cell death protein 1 (PD-L1), an immune checkpoint molecule, plays a key role in cancer immune evasion.^{6,7} In order to develop new bioactive components from natural resources, a systemic chemical study of B. aromatica was carried out, along with an anti-inflammatory assay on TNF- α expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and an anti-immunosuppressive assay on PD-L1 expression in LPS-activated MDSCs. Herein are reported the isolation and structural determination of six new compounds, 1-3 and 5-7, together with the evaluation of the anti-inflammatory and anti-immunosuppressive activities for these compounds and several known constituents in B. aromatica.

The *B. aromatica* EtOH extract was fractionated by solvent partition. Each fraction was subjected subsequently to a coalescence of chromatographic steps, as described in the *Experimental Section*, to afford compounds 1–23. Among these compounds, 1–3 are new labdane-type diterpenoids and 5–7 are new bisnorditerpenoids. The other 17 compounds were known previously and were determined from their ¹H and ¹³C NMR and MS data as 6α -hydroxynidorellol (4),⁸

sterebin A (8),⁹ 4,5-di-O-caffeoylquinic acid (9),¹⁰ 4,5-di-Ocaffeoylepiquinic acid (10),¹⁰ 3,5-di-O-caffeoylquinic acid (11),¹⁰ 1,5-di-O-caffeoylquinic acid (12), butyl 4,5-di-Ocaffeoylquinate (13),¹⁰ methyl 4,5-di-O-caffeoylquinate (14),¹⁰ 5-O-caffeoylquinic acid (15),⁸ 3,6,4'-trimethoxy-5,7dihydroxyflavone (16), kaempferol-3-O-glucoside (17),¹¹ fumaric acid (18), 2-sec-butylmaleic acid (19), 2-secbutylmaleic acid 4-methyl ether (20), β -sitosterol (21), indole-3-carboxaldehyde (22),¹² and (Z)-2-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)acetic acid (23).¹³

 6α -O-Isovalerylnidorellol (1), $[\alpha]_D$ +56.6 (*c* 0.1, MeOH), gave signals for 25 carbons in its ¹³C NMR spectrum, including seven methyl carbons, five secondary sp³ carbons, five tertiary sp³ carbons, three quaternary sp³ carbons, one secondary sp² carbon, two tertiary sp² carbons, one quaternary sp² carbon, and one carbonyl carbon. Two tertiary and one quaternary sp³

Received: July 19, 2019

Table 1	I. ¹ H NMR	Spectroscopic	Data for Com	pounds 1–4	(δ in	ppm and <i>j</i>	J in Hz)"
---------	-----------------------	---------------	--------------	------------	-------	------------------	-----------

position	1	2	3	4
1	0.92 ^b /1.53, d (14.0)	1.05, m/1.64, m	1.05 ^b /1.53, m	0.89, dt (13.5, 4.0) /1.49, d (13.5)
2	1.38 ^b /1.60, dt (13.5, 3.5)	1.44, m/1.64, m	1.41, dt (13.8, 4.2)/1.63, d (13.8)	1.33 ^b /1.58, dt (13.0, 3.5)
3	1.22, td (14.0, 4.0)/1.31 ^b	1.24, td (13.6, 4.0)/1.35, d (13.6)	$1.25^{b}/1.31^{b}$	1.21, td (14.5, 4.0)/1.32 ^b
5	1.39, d (11.5)	1.15 ^b	1.13 ^b	1.12 ^b
6	5.17, dd (11.5, 9.5)	3.54, dd (10.8, 9.6)	3.54, dd (10.8, 9.6)	3.55, dd (11.0, 9.0)
7	3.38, d (9.5)	3.30 ^b	3.30 ^b	3.27, d (9.5)
9	1.36, dd (7.0, 3.0)	1.50, t (3.6)	1.58 ^b	1.33, m
11	2.21, dd (15.5, 7.5)	1.57, ddd (15.0, 10.2, 4.2)/1.72, ddd (15.0, 3.0, 2.4)	1.53 ^b /1.88, m	2.18, dt (16.0, 8.0)
	2.42, br d (15.5)			2.39, dd (16.0, 4.0)
12	5.52, t (7.0)	4.22, br d (10.2)	4.57, dd (9.6, 3.6)	5.51, t (7.0)
14	6.32, dd (17.5, 11.0)	6.37, dd (17.4, 10.8)	6.38, dd (17.4, 10.8)	6.32, dd (17.5, 10.5)
15	4.83 ^b /5.02, d (17.5)	5.07, d (10.8)/5.34, d (17.4)	5.09, d (10.8)/5.44, dd (18.0, 1.2)	4.83 ^b /5.01, d (17.0)
16	1.74, s	5.11, s/5.28, s	5.24, s/5.25, s	1.73, s
17	1.15, s	1.14, s	1.12, s	1.11, s
18	0.98, s	1.17, s	1.17, s	1.15, s
19	0.89, s	1.00, s	1.00, s	1.00, s
20	0.98, s	0.85, s	0.85, s	0.93, s
2′	$2.17^{b}/2.33^{b}$			
3′	2.13, m			
4′	0.98, d (6.5)			
5'	0.99, d (7.5)			
^a Compo	unds 1–4 were measured	d in methanol- d_4 . ^b Signal partially obscured.		

. -

. .

carbons were oxygenated. The UV absorption at 224 nm (log ε 3.44) and the IR absorption bands at 3447, 1722, and 1635 cm⁻¹ suggested the occurrence of hydroxy and carbonyl groups and a diene system in the molecule. The ¹H NMR spectrum of 1 showed seven methyl groups [$\delta_{\rm H}$ 0.89 (s, H₃-19), 0.98 (s, H_3 -18/ H_3 -20), 0.98 (d, J = 6.5 Hz, H_3 -4'), 0.99 (d, J = 7.5 Hz, H₃-5'), 1.15 (s, H₃-17), and 1.74 (s, H₃-16)], four olefinic protons [$\delta_{\rm H}$ 4.83 (H-15a), 5.02 (d, J = 17.5 Hz, H-15b), 5.52 (t, J = 7.0 Hz, H-12), and 6.32 (dd, J = 17.5, 11.0 Hz, H-14)], and two oxymethine groups [$\delta_{\rm H}$ 3.38 (d, *J* = 9.5 Hz, H-7) and 5.17 (dd, J = 11.5, 9.5 Hz, H-6)]. The COSY spectrum of 1 indicated five isolated spin systems as follows: H2-1/H2-2/H2-3; H-5/H-6/H-7; H-9/H₂-11/H-12; H-14/H₂-15; H₃-4',H₃- $5'/H-3'/H_2-2'$. Protons attached to carbons were verified by the HMQC spectrum, and the structure of 1 was elucidated by HMBC analysis. The NMR signals of 1 resembled those of 6α hydroxynidorellol $(4)^8$ except for the low-field-shifted signal of H-6 and the signals for an isovaleryl group at $\delta_{\rm H}$ 0.98 (d, J = 6.5 Hz, H_3 -4'), 0.99 (d, J = 7.5 Hz, H_3 -5'), 2.13 (m, H-3'), 2.17 (d, J = 7.5 Hz, H-2'), 2.33 (d, J = 9.5 Hz, H-2'), and $\delta_{\rm C}$ 174.7 (C-1') attributed to a carbonyl group, 45.1 (C-2'), 26.3 (C-3'), and 22.9 (C-4' and C-5'). The molecular formula of $C_{25}H_{42}O_4$ for 1 was deduced by ^{13}C NMR and HRESIMS. In the HRESIMS, a $[M - isovaleryl]^+$ ion at m/z 321.2434 (calcd for C₂₀H₃₃O₃, 321.2424) was observed. HMBC correlations of C-1' with H-6 and H-3' confirmed the linkage of a 6-Oisovaleryl group. In the NOESY spectrum, correlations of H-6/ H-17, H-19, H-20 and H-7/H-5 indicated the configurations of the 6α -isovaleryloxy, 7β -hydroxy, and 8β -methyl substituents, and correlations of H-12/H-14 and H-16/Ha-15 were consistent with an E-type diene configuration. Therefore, 1 was proposed as 6α -O-isovalerylnidorellol.

(12S)-Blumdane (2), $[\alpha]_D$ +28.0 (*c* 0.1, MeOH), was determined to have a molecular formula of C₂₀H₃₄O₄ based on the ¹³C NMR data and the $[M + Na]^+$ ion peak at m/z 361.2359 (calcd for C₂₀H₃₄O₄Na, 361.2349) in the HRESIMS,

one oxygen atom more than 6α -hydroxynidorellol (4).⁸ The UV absorption at 223 nm (log ε 3.80) and the IR absorption bands at 3422 and 1653 cm⁻¹ revealed the presence of a hydroxy group and a diene system in the molecule. Comparison of the ¹H and ¹³C NMR spectra of 2 with those of 4 suggested that the main differences were from the side chain attached at C-9. The ¹H NMR spectrum of the side chain in **2** showed signals for an aliphatic methylene $[\delta_{\rm H} 1.57,$ ddd, J = 15.0, 10.2, 4.2 Hz, H-11a), 1.72 (d, J = 15.0, 3.0, 2.4 Hz, H-11b)], an oxygenated methine ($\delta_{\rm H}$ 4.22, br d, J = 10.2Hz, H-12), two sets of olefinic methylenes ($\delta_{\rm H}$ 5.07/5.34, H₂-15; 5.11/5.28, H₂-16), and an olefinic methine ($\delta_{\rm H}$ 6.37, dd, J = 17.4, 10.8 Hz, H-14). The corresponding proton-attached carbons exhibited signals at $\delta_{\rm C}$ 34.2 (t, C-11), 73.6 (d, C-12), 137.8 (d, C-14), 114.3 (t, C-15), and 114.1 (t, C-16). These signals and the signal at $\delta_{\rm C}$ 151.6 (s, C-13) were assigned as the 2-hydroxy-3-methylene-4-penten-1-yl moiety in 2, which was confirmed by COSY and HMBC experiments. The absolute configuration of OH-12 was determined by the modified Mosher's method.^{14,15} The (S)- and (R)-MTPA esters of 2 (2-SE and 2-RE) were prepared, respectively, and the differences in the chemical shifts ($\Delta \delta = \delta_{\rm S} - \delta_{\rm R}$) of 2-SE and 2-RE were calculated. Positive $\Delta\delta$ values were observed for H-14, H-15, and H-16, whereas negative $\Delta\delta$ values was observed for H₃-17. Based on the above results, a 12S configuration was deduced and the structure of 2 was established as shown.

(12R)-Epiblumdane (3), $[\alpha]_D$ +47.2 (*c* 0.1, MeOH), showed a similar UV spectrum and gave an identical sodiated molecular ion $[M + Na]^+$ at m/z 361.2354 (calcd for $C_{20}H_{34}O_4Na$, 361.2349) in the HRESIMS as 2. As seen in Tables 1 and 3, these two compounds exhibited similar 1D NMR data except that the signal at δ_H 4.57 (dd, J = 9.6, 3.6 Hz) for H-12 of 3 shifted to a lower field than the H-12 signal of 2. Compared to the signals of 2, the C-12 signal (δ_C 87.3, d) in 3 was observed at a low field and the C-11 (δ_C 34.2, t) and

в

Table 2. ¹H NMR Spectroscopic Data for Compounds 5-8 $(\delta \text{ in ppm and } J \text{ in Hz})^a$

position	5	6	7	8
1	1.09, t (7.0)/ 1.38, m	0.96 ^b / 1.39, m	0.92 ^b /1.36, m	0.89, m/ 1.32 ^b
2	1.40 ^b / 1.61, m	1.39, m/ 1.61, m	1.38, m/1.62, m	1.36 ^b / 1.61, m
3	1.32 ^b /1.36 ^b	1.27 ^b /1.33 ^b	1.25 ^b /1.32 ^b	1.22 ^b /1.36 ^b
5	1.42, d (11.5)	1.46, d (11.5)	1.41, d (11.0)	1.13, d (11.0)
6	5.26, dd (11.5, 10.0)	5.35, dd (11.5, 9.5)	5.26, dd (11.5, 9.5)	3.64, dd (10.5, 9.5)
7	3.43, d (9.5)	3.48, d (10.0)	3.41, d (10.0)	3.30 ^b
9	2.04, d (10.5)	2.06, d (10.0)	2.03, d (10.0)	2.00, d (10.5)
11	6.93, dd (16.0, 10.5)	6.93, dd (16.0, 10.5)	6.91, dd (15.5, 10.5)	6.91, dd (15.5, 10.5)
12	6.14, d (16.0)	6.15, d (16.0)	6.14, d (15.5)	6.13, d (15.5)
14	2.28, s	2.28, s	2.28, s	2.27, s
15	1.26, s	1.27, s	1.25, s	1.21, s
16	0.98, s	0.97, s	1.01, s	1.17, s
17	0.92, s	0.95, s	0.92, s	1.03, s
18	1.16, s	1.17, s	1.14, s	1.08, s
2′	5.72, s		2.18, d (7.5)/ 2.33, d (9.0)	
3′		6.12, dq (7.0, 1.5)	2.14, m	
4′	2.19, s	2.00, d (7.0)	0.98, d (6.5)	
5'	1.91, s	1.91, s	0.99, d (6.5)	
^a Compo	unds 5–8 wer	e measured in	methanol-d ₄ . ^b S	ignal partially

obscured.

C-13 ($\delta_{\rm C}$ 147.7, s) signals shifted to a higher field. From the above evidence, 3 was deduced to be an epimer of 2 with the

opposite configuration at C-12, and the structure of 3, (12R)-epiblumdane, was determined as shown.

 6α -O-(3-Methyl-2-butenoyl)-sterebin A (5), $[\alpha]_{\rm D}$ +42.0 (c 0.1, MeOH), was concluded to have a molecular formula of $C_{23}H_{36}O_{5}$, dependent on the ¹³C NMR data and the [M + Na]⁺ ion peak at m/z 415.2469 (calcd for C₂₃H₃₆O₅Na, 415.2455) in the HRESIMS. The UV absorption at 221 nm $(\log \varepsilon 4.12)$ and the IR absorption bands at 3444, 1719, and 1648 cm⁻¹ proposed the presence of hydroxy, carbonyl, and olefinic groups in the molecule. The ¹H NMR signals of 5 at $\delta_{\rm H}$ 2.28 (3H, s, H₃-14), 6.14 (1H, d, J = 16.0 Hz, H-12), and 6.93 (1H, dd, J = 16.0, 10.5 Hz, H-11) and the ¹³C NMR signals at $\delta_{\rm C}$ 146.0 (d, C-11), 136.9 (d, C-12), 200.9 (s, C-13), and 27.1 (q, C-14) were assigned for a *trans-\alpha_{,\beta}-unsaturated* methyl ketone group. Further, the ¹H NMR spectrum contained signals for four tertiary methyls at $\delta_{\rm H}$ 0.92 (H₃-17), 0.98 (H₃-16), 1.16 (H₃-18), and 1.26 (H₃-15) and two oxygenated methines at $\delta_{\rm H}$ 5.26 (dd, J = 10.0, 11.5 Hz, H-6) and 3.43 (d, J = 9.5 Hz, H-7). The coupling constants of the latter two oxymethine signals supported the presence of 1,2trans-diequatorial diol system in a cyclohexane ring for 5. The COSY, HMQC, and HMBC spectra indicated that 5 is a derivative of sterebin A (8), a bisnorditerpene.⁹ Moreover, the ^1H NMR signals at $\delta_{\rm H}$ 5.72 (s, H-2') and 1.91/2.19 (each s, H₃-5', 4') and the ¹³C NMR signals at $\delta_{\rm C}$ 168.0 (s, C-1'), 117.8 (d, C-2'), 158.5 (s, C-3'), and 20.4/27.5 (each q, C-4', 5') were assigned for a 3-methyl-2-butenoyl group. An HMBC experiment showed the correlation of H-6 to C-1', suggesting the linkage of the 3-methyl-2-butenoyl group at C(6)-O-. NOESY correlations of H-6/H₃-15, H₃-17, H₃-18 and H-7/H-5, H-9 were consistent with the configurations of 6α -

Table 3. ¹³C NMR Spectroscopic Data for Compounds 1–8 (δ in ppm)^{*a*}

	1	2	3	4	5	6	7	8
position	$\delta_{ m C}$, type	$\delta_{ m C}$, type	δ_{C} , type	δ_{C} , type	δ_{C} , type	$\delta_{ m C}$, type	δ_{C} , type	δ_{C} , type
1	41.3, CH ₂	40.8, CH ₂	41.1, CH ₂	41.4, CH ₂	42.2, CH ₂	42.1, CH ₂	42.1, CH ₂	42.3, CH ₂
2	19.0, CH ₂	19.1, CH ₂	19.1, CH ₂	19.2, CH ₂	19.0, CH ₂	19.0, CH ₂	19.0, CH ₂	19.2, CH ₂
3	44.8, CH ₂	44.9, CH ₂	45.0, CH ₂	45.0, CH ₂	44.7, CH ₂	44.7, CH ₂	44.6, CH ₂	44.8, CH ₂
4	34.3, C	34.9, C	34.8, C	34.7, C	34.5, C	34.5, C	34.4, C	34.9, C
5	57.9, CH	58.9, CH	58.8, CH	58.8, CH	57.9, CH	57.9, CH	57.6, CH	58.6, CH
6	74.4, CH	73.0, CH	73.0, CH	73.1, CH	73.2, CH	73.8, CH	74.1, CH	72.9, CH
7	84.1, CH	86.2, CH	86.1, CH	86.1, CH	83.8, CH	83.9, CH	83.8, CH	85.7, CH
8	77.7, C	76.6, C	77.7, C	77.5, C	76.5, C	76.6, C	76.5, C	76.3, C
9	61.1, CH	58.1, CH	56.3, CH	61.3, CH	64.8, CH	64.7, CH	64.8, CH	65.0, CH
10	40.4, C	40.2, C	40.2, C	40.1, C	39.3, C	39.3, C	39.3, C	39.0, C
11	24.8, CH ₂	34.2, CH ₂	29.2, CH ₂	24.8, CH ₂	146.0, CH	145.9, CH	145.9, CH	146.3, CH
12	137.8, CH	73.6, CH	87.3, CH	138.1, CH	136.9, CH	136.9, CH	136.9, CH	136.7, CH
13	133.0, C	151.6, C	147.7, C	132.9, C	200.9, C	200.8, C	200.8, C	200.9, C
14	143.0, CH	137.8, CH	137.7, CH	143.1, CH	27.1, CH ₃	27.1, CH ₃	27.1, CH ₃	27.1, CH ₃
15	110.1, CH ₂	114.3, CH ₂	115.0, CH ₂	110.0, CH ₂	19.3, CH ₃	19.3, CH ₃	19.3, CH ₃	19.3, CH ₃
16	12.0, CH ₃	114.1, CH ₂	116.4, CH ₂	12.0, CH ₃	36.6, CH ₃	36.6, CH ₃	36.6, CH ₃	37.0, CH ₃
17	19.2, CH ₃	20.1, CH ₃	19.7, CH ₃	19.2, CH ₃	22.5, CH ₃	22.6, CH ₃	22.5, CH ₃	22.5, CH ₃
18	36.7, CH ₃	36.9, CH ₃	37.0, CH ₃	37.0, CH ₃	17.7, CH ₃	17.7, CH ₃	17.6, CH ₃	17.8, CH ₃
19	22.5, CH ₃	22.5, CH ₃	22.4, CH ₃	22.5, CH ₃				
20	17.2, CH ₃	17.4, CH ₃	17.2, CH ₃	17.4, CH ₃				
1'	174.7, C				168.0, C	169.3, C	174.6, C	
2'	45.1, CH ₂				117.8, CH	129.8, C	45.1, CH ₂	
3'	26.3, CH				158.5, C	139.1, CH	26.4, CH	
4′	22.9, CH ₃				20.4, CH ₃	20.8, CH ₃	22.9, CH ₃	
5'	22.9, CH ₃				27.5, CH ₃	16.0, CH ₃	22.9, CH ₃	

^{*a*}Compounds 1–8 were measured in methanol- d_4 .

substituted, 7β -hydroxy, and 8β -methyl substituents as being the same as those of sterebin A. Correspondingly, the structure of **5** was established as shown.

Compounds 6 and 7 exhibited similar ¹H and ¹³C NMR spectra (Table 1) with signals stemming from a bisnorditerpene skeleton, corresponding to the framework of sterebin A (8).⁹ HRESIMS analyses suggested that 6 and 7 have the molecular formulas C23H36O5 and C23H38O5, respectively. In the ¹H NMR spectra of **6** and 7, the characteristic signals of sterebin A were observed, along with an angeloyl group $\delta_{\rm H}$ 6.12 (dq, H-3'), 2.00 (d, H₃-4'), and 1.91 (s, H₃-5')] in 6 and an isovaleryl group $[\delta_{\rm H} 2.17/2.33 \text{ (each d, H}_2-2'), 2.14 \text{ (m, H}_2-2')]$ 3'), and 0.98/0.99 (each d, H₃-4', 5')] in 7, which were confirmed by COSY, NOESY, HMQC, and HMBC experiments. HMBC correlations from H-6 to C-1' indicated the location of the angeloyl group in 6 and the isovaleryl group in 7 at C(6)-O-, respectively. Thus, the structures of 6 and 7 were determined as 6α -O-angeloylsterebin A and 6α -Oisovalerylsterebin A, respectively.

The isolated compounds were assessed for their inhibitory effects on TNF- α expression in LPS-stimulated RAW 264.7 murine macrophages. The ELISA results showed compounds **9**, **16**, and **23** at 40 μ M slightly suppressed the production of TNF- α . The inhibition rates of compounds **9**, **16**, and **23** are 15.5 \pm 0.7%, 24 \pm 2.2%, and 27.5 \pm 5.1%, respectively. The inhibitory effect of the isolated compounds on PD-L1 expression in LPS-activated MDSCs was also evaluated. The results showed that LPS strongly up-regulated PD-L1 expression, but the test compounds showed no or little effect on the expression of PD-L1 in granulocytic MDSCs (gMDSCs).

EXPERIMENTAL SECTION

General Experimental Procedures. The instruments for measuring optical rotations, recording UV, IR, NMR, ESIMS, and HRESIMS spectra, and HPLC used to isolate components are the same as reported previously.¹⁶ Silica gel (Merck, $63-200 \ \mu\text{m}$; Fuji Silysia, $40-70 \ \mu\text{m}$) and Sephadex LH-20 were used for column and gel filtration chromatography, respectively. Precoated silica gel TLC plates (Merck, F254) were used for analytical or preparative thin-layer chromatography, and spots were visualized by UV light (254 nm) or by spraying with 20% H₂SO₄ in EtOH followed by heating. Cosmosil SC₁₈-AR-II (10 × 250 mm; particle size: 5 μ m; Nacalai Tesque, Kyoto, Japan) and LiChrospher 60 RP-select B (10 × 250 mm; particle size: 5 μ m; Merck KGaA, Darmstadt, Germany) columns were used for semipreparative HPLC separation.

Plant Material. The whole plant of *B. aromatica* was collected in August 2017 in Hsinchu, Taiwan, and identified by Dr. Cheng-Jen Chou, retired Research Fellow, National Research Institute of Chinese Medicine, Taipei, Taiwan. A voucher specimen (NRICM-30-BA-01) is deposited in the Herbarium of National Research Institute of Chinese Medicine, Taipei, Taiwan.

Extraction and Isolation. The air-dried whole plant of *B. aromatica* (1.8 kg) was cut into segments, extracted three times with 30 L of EtOH at 50 °C, and concentrated to afford an EtOH extract (166.9 g). The EtOH extract was suspended in H₂O (0.5 L) and then extracted sequentially with *n*-hexane, EtOAc, and *n*-BuOH to give *n*-hexane, EtOAc, *n*-BuOH, and H₂O extracts, respectively. Due to similar TLC profiles of *n*-hexane and EtOAc extracts, these extracts were combined (as A-extract) for the following separation. A-extract (61 g) was separated by silica gel column chromatography (8.5 × 55 cm, 94.5 g) using a gradient eluent of EtOAc in *n*-hexane (10% \rightarrow 100%) to afford 20 fractions (Fr. 1–20). Fr. 6 (1.159 g) was chromatographed by semipreparative HPLC (C₁₈, eluent: 70% CH₃CN/H₂O, flow rate: 4 mL/min) to give 1 (37 mg). Compound **21** (40 mg) was obtained from Fr. 7 and Fr. 8 after recrystallization

from acetone. Fr. 12 (1.56 g) was chromatographed on a Sephadex LH-20 column $(3 \times 57 \text{ cm})$ eluting with EtOH to give 16 (93 mg). Fr. 15 (4.61 g) and Fr. 16 (2.34 g) were combined and then separated on a silica gel column (2.6 \times 20 cm) using 40% EtOAc/n-hexane as the mobile phase to give subfractions 15A-15C. Fr. 15B (3.93 g) was subjected to separation over a Sephadex LH-20 column (4.5 \times 50 cm), eluting with 5% EtOAc/MeOH, to give Fr. 15B2, which recrystallized from MeOH to afford 4 (340 mg). Fr.15C (1.06 g) was subjected to a Sephadex LH-20 column $(3 \times 54 \text{ cm})$ eluting with MeOH to give Fr. 15C1-15C4. Compound 22 (1.2 mg) was obtained from Fr. 15C3 by semipreparative HPLC (C₁₈, eluent: 30% CH₃CN/H₂O, flow rate: 4 mL/min). Fr. 15C2 (0.76 g) was chromatographed by semipreparative HPLC (C₁₈, elution program: 40%-60%-60%-90% CH₃CN/H₂O during 0-7-21-22 min, flow rate: 4 mL/min) to afford 4 (50 mg), 23 (22 mg), and Fr. 15C2m. Fr. 15C2m was further separated by preparative TLC (5% MeOH/ CHCl₃) to afford 2 (12 mg) and 3 (15 mg). Fr. 17 (6.4 g) was subjected to silica gel column chromatography $(2.6 \times 20 \text{ cm})$, eluting with 80% EtOAc/n-hexane, to give subfractions 17A-17D. Fr. 17B (1.96 g) was separated on a Sephadex LH-20 (5% EtOAc/methanol) and semipreparative HPLC column (C18, eluent: 65% MeOH/H2O, flow rate: 4.5 mL/min) to afforded 5 (4.0 mg), 6 (30 mg), and 7 (35 mg). Fr. 17D (889 mg) was separated on a Sephadex LH-20 (MeOH) and semipreparative HPLC column (C18, eluent: 50% CH3CN/H2O, flow rate: 4 mL/min) to give 8 (9.3 mg). The n-butanol extract (14.3 g) was separated by a Sephadex LH-20 column (7.2×65 cm) eluting with EtOH to give seven fractions (Fr. B1-B7). Compounds 18 (1.17 g) and 19 (204 mg) precipitated successively from Fr. B4 and were recrystallized further from MeOH. The filtrate of Fr. B4 was chromatographed by semipreparative HPLC (C₁₈, elution program: 25%-25%-90% CH₃CN/0.1% formic acid during 0-10-20 min, flow rate: 4 mL/min) to afford compounds 13 (15 mg), 17 (24 mg), and 20 (3.2 mg). Fr. B5 was subjected to semipreparative HPLC (RPselect B, eluent: 10% to 50% of CH₃CN/0.1% formic acid over 30 min, flow rate: 4 mL/min) to give 12 (2.4 mg) and 15 (80 mg). Fr. B6 (1.79 g) was chromatographed on a Sephadex LH-20 (MeOH) and semipreparative HPLC column (RP-select B, eluent: 20% CH₃CN/0.1% formic acid, flow rate: 4 mL/min) to afford compounds 9 (67 mg), 10 (20 mg), 11 (23 mg), and 14 (6.4 mg).

6α-O-lsovalerylnidorellol (1): $[α]^{26}_{D}$ +56.6 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 224 (3.44) nm; IR (neat) ν_{max} 3447, 2960, 2930, 1722, 1635, 1467, 1393, 1371, 1193, 1005 cm⁻¹; ¹H NMR (CD₃OD) see Table 1; ¹³C NMR (CD₃OD) see Table 3; HRESIMS m/z 321.2434 [M - C₅H₉O]⁺ (calcd for C₂₀H₃₃O₃, 321.2424). (125)-Blumdane (2): $[α]^{26}_{D}$ +28.0 (c 0.1, MeOH); UV (MeOH)

(125)-Blumdane (2): $[\alpha]^{26}_{D}$ +28.0 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 223 (3.80) nm; IR (neat) ν_{max} 3422, 2923, 1635, 1460, 1388, 1107, 1055, 1020 cm⁻¹; ¹H NMR (CD₃OD) see Table 1; ¹³C NMR (CD₃OD) see Table 3; ESIMS *m*/*z* 361 [M + Na]⁺; HRESIMS *m*/*z* 361.2359 [M + Na]⁺ (calcd for C₂₀H₃₄O₄Na, 361.2349).

Reaction of 2 with (R)-MTPA.^{14,15} (*R*)-MTPA (25 mg) and thionyl chloride (1 mL) were mixed and heated under reflux for 3 h. Then, excess thionyl chloride was removed, a solution of 2 (8 mg) in 4 mL of dry CH₂Cl₂, triethylamine (0.1 mL), and (dimethylamino)pyridine (10 mg) were added, and the solution was stirred at room temperature for 16 h. The reaction mixture was purified by preparative TLC (1% MeOH/CHCl₃) to yield the (*R*)-MTPA ester **2-RE**: ¹H NMR (CDCl₃, 600 MHz) δ 1.18 (3H, s, H₃-17), 5.00 (1H, d, *J* = 9.6 Hz, H-12), 5.08 (1H, d, *J* = 11.4 Hz, H-15a), 5.32 (1H, d, *J* = 18.0 Hz, H-15b), 5.13 (1H, s, H-16a), 5.28 (1H, s, H-16b), 6.32 (1H, dd, *J* = 10.8, 18.0 Hz, H-14). *Reaction of 2 with (S)-MTPA.*^{14,15} (*S*)-MTPA (25 mg) and thionyl

Reaction of 2 with (S)-MTPA.^{14,15} (S)-MTPA (25 mg) and thionyl chloride (1 mL) were mixed and heated under reflux for 3 h. Then, excess thionyl chloride was removed, a solution of 2 (8 mg) in 4 mL of dry CH₂Cl₂, triethylamine (0.1 mL), and (dimethylamino)pyridine (10 mg) were added, and the solution was stirred at room temperature for 16 h. The reaction mixture was purified by preparative TLC (1% MeOH/CHCl₃) to yield the (S)-MTPA ester **2-SE**: ¹H NMR (CDCl₃, 600 MHz) δ 1.16 (3H, s, H₃-17), 5.04 (1H, d, *J* = 9.6 Hz, H-12), 5.11 (1H, d, *J* = 12.0 Hz, H-15a), 5.33 (1H, d, *J*

= 18.0 Hz, H-15b), 5.15 (1H, s, H-16a), 5.30 (1H, s, H-16b), 6.33 (1H, dd, *J* = 11.4, 17.4 Hz, H-14).

(12*R*)-*Epiblumdane* (**3**): $[\alpha]^{26}_{D}$ +47.2 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 223 (3.44) nm; IR (neat) ν_{max} 3417, 2923, 1601, 1458, 1391, 1250, 1102 cm⁻¹; ¹H NMR (CD₃OD) see Table 1; ¹³C NMR (CD₃OD) see Table 3; ESIMS *m*/*z* 361 [M + Na]⁺; HRESIMS *m*/*z* 361.2354 [M + Na]⁺ (calcd for C₂₀H₃₄O₄Na, 361.2349).

6α-O-(3-Methyl-2-butenoyl)sterebin A (**5**): $[\alpha]^{26}{}_{\rm D}$ +42.0 (c 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 221 (4.12) nm; IR (neat) $\nu_{\rm max}$ 3444, 2930, 1719, 1648, 1388, 1233, 1151, 1077 cm⁻¹; ¹H NMR (CD₃OD) see Table 2; ¹³C NMR (CD₃OD) see Table 3; ESIMS *m*/*z* 415 [M + Na]⁺; HRESIMS *m*/*z* 415.2469 [M + Na]⁺ (calcd for C₂₃H₃₆O₅Na, 415.2455).

6α-O-lsovalerylsterebin A (7): $[α]^{26}_{D}$ +76.2 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 226 (4.10) nm; IR (neat) ν_{max} 3434, 2957, 2928, 1722, 1675, 1625, 1470, 1371, 1297, 1262, 1193, 1124, 1082, 1049, 1000 cm⁻¹; ¹H NMR (CD₃OD) see Table 2; ¹³C NMR (CD₃OD) see Table 3; ESIMS *m*/*z* 417 [M + Na]⁺; HRESIMS *m*/*z* 417.2627 [M + Na]⁺ (calcd for C₂₃H₃₈O₃Na, 417.2617).

Mice. Female BALB/c mice age 5–6 weeks were purchased from the National Laboratory Animal Breeding and Research Center in Taiwan. All animal studies and the experimental procedures were approved by the Institutional Animal Care and Use Committee of the National Research Institute of Chinese Medicine (IACUC106-355-1).

Isolation of gMDSCs. Mouse mammary carcinoma 4T1 cells were inoculated into the mammary fat-pad of test mice for 20 days, as described previously.¹⁷ To isolate granulocytic MDSCs, splenocytes of 4T1 tumor-bearing mice were collected. Ly-6G+ cells were isolated from the splenocytes with the Anti-Ly-6G MicroBead kit, following the manufacturer's instructions (Miltenyi Biotec).

Measurement of Cytokines. Altogether 5×10^5 RAW 264.7 murine macrophages were cultured in 12-well culture plates for 24 h. The cells were treated with or without the test compounds (20 or 40 μ M) in the presence or absence of LPS (1 μ g/mL). The production of TNF- α in the cell cultures was determined by using commercial ELISA kits (R&D Systems).

Flow Cytometry. Altogether 5×10^5 gMDSCs were cultured in 12-well culture plates with or without the test compounds (20 or 40 μ M) in the presence or absence of LPS (1 μ g/mL) for 24 h. The cells were harvested and washed twice with phosphate-buffered saline. The PD-L1 expression level of gMDSCs was determined by flow cytometry, as described previously.¹⁸ In brief, the gMDSCs were stained with APC-conjugated PD-L1 monoclonal antibodies for 20 min at 4 °C and then fixed in 1% paraformaldehyde. Cell analysis was performed by using a flow cytometer (BD Pharmingen).

Statistical Analysis. Data are presented as the mean \pm SD. Statistical analyses were performed with GraphPad Prism software. A one-way ANOVA analysis was used to compare the multiple data sets.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnat-prod.9b00674.

1D and 2D NMR spectra for compounds 1-8 (PDF)

AUTHOR INFORMATION

Corresponding Author

*Tel: +886-2-28201999, ext. 7101. Fax: +886-2-2826 4276. Email: lclin@nricm.edu.tw.

ORCID 🔍

Lie-Chwen Lin: 0000-0002-6426-9696

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by a research grant (MOST 106-2320-B-077-002-MY3) from the Ministry of Science and Technology, Taiwan.

REFERENCES

(1) Leu, W. P.; Peng, C. I. In *Flora of Taiwan*, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, 1998; Vol. *IV*, pp 870–875.

(2) Li, T. S. C. Taiwanese Native Medicinal Plants: Phytopharmacology and Therapeutic Values; Taylor & Francis: Boca Raton, FL, 2006; p 14.

(3) Lan, M. S.; Luo, C.; Tan, C. H.; Chen, L.; Wei, S.; Zhu, D. Y. Zhong Yao Cai 2012, 35, 229–231.

(4) Chu, W. M. Cancer Lett. 2013, 328, 222-225.

(5) Bradley, J. R. J. Pathol. 2008, 214, 149-160.

(6) Alsaab, H. O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S. K.; Iyer, A. K. *Front. Pharmacol.* **201**7, *8*, 561.

(7) Pardoll, D. M. Nat. Rev. Cancer 2012, 12, 252-264.

(8) Bohlmann, F.; Fritz, U. Phytochemistry 1978, 17, 1769-1772.

(9) Oshima, Y.; Saito, I. J.; Hikino, H. *Tetrahedron* **1986**, 42, 6443–6446

(10) Pauli, G. F.; Poetsch, F.; Nahrstedt, A. Phytochem. Anal. 1998, 9, 177-185.

(11) Lin, L. C.; Tsai, W. J.; Chou, C. J. Chin. Pharm. J. 1996, 48, 441-449.

(12) Zhao, C.; Ying, Z.; Tao, X.; Jiang, M.; Ying, X.; Yang, G. Nat. Prod. Res. 2018, 32, 1548–1553.

(13) Wu, Y.; Su, J.; Guo, R. X.; Ren, T. K.; Zhang, M.; Dong, M.; Sauriol, F.; Shi, Q.; Gu, Y.; Huo, C. *Chem. Nat. Compd.* **2014**, *50*, 603–605.

(14) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. **1991**, 113, 4092–4096.

(15) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.

(16) Chiou, C. T.; Shen, C. C.; Tsai, T. H.; Chen, Y. J.; Lin, L. C. J. Nat. Prod. 2016, 79, 2439-2445.

(17) Wei, W. C.; Lin, S. Y.; Lan, C. W.; Huang, Y. C.; Lin, C. Y.; Hsiao, P. W.; Chen, Y. R.; Yang, W. C.; Yang, N. S. *Sci. Rep.* **2016**, *6*, 36663.

(18) Wei, W. C.; Liu, C. P.; Yang, W. C.; Shyur, L. F.; Sheu, J. H.; Chen, S. S.; Yang, N. S. J. Leukocyte Biol. **2015**, *97*, 1071–1080.