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The in situ generated nickel hydride complex, 
[Ni(Mes2NHC)HCp], and its cationic analogue, 
[Ni(Mes2NHC)(NCMe)Cp](PF6), are efficient and 
chemoselective pre-catalysts for the hydrosilylation of both 10 

aldimines and ketimines under mild conditions. 

During the last decade, the development of catalytic reactions 
based on inexpensive earth-abundant transition metals has 
become an important area of research as the natural reserves of 
precious metals decline and their prices increase tremendously. In 15 

particular, considerable attention has been devoted to the use of 
metals such as iron,1,2 zinc,3 titanium4 or copper5,6 for the 
reduction of carbonyl derivatives via hydrosilylation. In contrast, 
nickel, which is another attractive surrogate for precious metals in 
terms of its abundance and low cost, has been much less studied 20 

in this area.7 Therefore, the interest of some of us in the reactivity 
of half-sandwich N-heterocyclic carbene (NHC) nickel 
complexes,8-10 coupled with the complementary research of other 
co-authors on iron-catalyzed hydrosilylation,11 notably with 
analogous half-sandwich NHC-iron complexes,12 led us all to 25 

demonstrate recently that the nickel hydride complex, 
[Ni(Mes2NHC)HCp] 1 (Mes2NHC = 1,3-dimesitylimidazol-2-
ylidene, Cp = cyclopentadienyl) – generated in situ by reaction of 
[Ni(Mes2NHC)ClCp] 2 and NaHBEt3 – is an efficient catalyst for 
the hydrosilylation of both aldehydes and ketones at room 30 

temperature.13,14 
 Transition-metal catalyzed hydrosilylation of aldimines and 
ketimines is also an interesting target due to the significance and 
omnipresence of the resulting amines in the field of natural 
products, pharmaceutical and agronomical compounds.15 35 

Compared to both the noble16-18 and most of the first-row 
metals,19-24 nickel has again been very rarely employed for this 
reduction reaction. We are indeed aware of only one example, 
where 1:1 complexes formed in situ from [Ni(OAc)2] and O,N,S-
pincer type ligands were shown to reduce a small array of imines 40 

via hydrosilylation.25,26 This scarcity, coupled with the recent 
finding that, in addition of being an efficient pre-catalyst for the 
hydrosilylation of carbonyl derivatives12a,b,d (as its nickel 
analogues13,14), the cationic half-sandwich iron-NHC complex 
[Fe(Mes2NHC)(CO)2Cp]I was also an efficient pre-catalyst for 45 

the hydrosilylation of both aldimines and ketimines,12c prompted 
us to investigate the catalytic activity of [Ni(Mes2NHC)ClCp] 226 
and its cationic derivative [Ni(Mes2NHC)(NCMe)Cp](PF6) 310a in  

 
Scheme 1 Selected cyclopentadienyl NHC-nickel(II) pre-catalysts. 50 

these reactions (Scheme 1). 
 Initial studies focused on the hydrosilylation of N-benzylidene-
4-methoxyaniline 4 with one equivalent of Ph2SiH2 in THF in the 
presence of catalytic amounts of complexes 2 and 3 under various 
conditions, in order to optimize the reaction parameters (Table 1). 55 

In the sole presence of the neutral complex 2 (5 mol%), 70 °C 
were required to observe 50% conversion of the aldimine 4 to the 
corresponding amine 5 after 24 h of reaction and a basic quench 
(entries 1 and 2). Addition of 10 mol% of KPF6 as a chloride 
scavenger led to full conversion under otherwise unchanged  60 

Table 1 Optimization for the reduction of aldimines with 2 and 3a 

 
Entry Pre-catalyst 

(mol%) 
Additive 
(mol%) 

Temp. 
(°C) 

Time 
(h) 

Conversion (%)b 

1 2 (5) - 25 18 0 
2 2 (5) - 70 24 50 
3 2 (5) KPF6 (10) 70 24 > 98 
4 3 (5) - 70 24 > 98 
5 2 (1) KPF6 (2) 70 24 40 
6 3 (1) - 70 24 > 98 
7 3 (1) - 50 24 > 98 
8 3 (1) - 25 17 10 
9 2 (1) NaHBEt3 (2) 25 17 > 98 

10 - NaHBEt3 (2) 25 17 0 
11 2 (1) NaHBEt3 (2) 25 8 90 
12 2 (0.5) NaHBEt3 (1) 25 24 90 

a Typical procedure: activation of 2 with the additive in THF (4 mL) at 
RT for 5 min or dissolution of 3 in THF (4 mL) at RT was followed by 
the addition of 4 (1 mmol) and Ph2SiH2 (1 mmol), and the reaction 
mixture was stirred at 25, 50 or 70 °C for 8 to 24 h. b Conversions 65 

determined by 1H NMR spectroscopy after methanolysis: 2M NaOH (2 
mL), MeOH (2 mL), RT, 2 h. 
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conditions (entry 3). This promising result led us to use the well-
defined cationic complex 3 (5 mol%), and complete reduction 
was also observed (entry 4). Reducing the catalytic loading to 1 
mol% of 3 also permitted the reaction to reach full conversion 
(entry 6), which contrasts with the result obtained with 1 mol% of 5 

the in situ generated cationic complex from 2 and KPF6 (40% 
conversion, entry 5).27 Interestingly, the temperature can be 
decreased to 50 °C without loss of catalytic activity (entry 7). 
However, further lowering of the reaction temperature to 25 °C 
led to a dramatic drop in activity, as only 10% conversion was 10 

detected after 17 h (entry 8). Nevertheless as stated above, we 
have shown in a previous contribution that the nickel hydride 
complex 1 generated by reaction of 2 equiv. of NaHBEt3 with the 
neutral complex 2 was a particularly active catalyst for 
hydrosilylation of both aldehydes and ketones at room 15 

temperature.13 Using 1 mol% of this in situ generated hydride 
species allowed to observe a full conversion when performing the 
reaction at 25 °C for 17 h (entry 9). Decreasing either the reaction 
time to 8 h or else the catalytic loading to 0.5 mol% allowed us to 
obtain 90% conversion (entries 11 and 12). Various other silanes 20 

and solvents were also screened (see the Supporting Information), 
but the combination of Ph2SiH2 and THF was found to be 
optimal. 
 With these optimized conditions in hand (1 equiv. of Ph2SiH2, 
1 mol% of 2, 2 mol% of NaHBEt3, THF, 25 °C, 17 h or 1 equiv. 25 

of Ph2SiH2, 1 mol% of 3, no additive, THF, 50 °C, 24 h), we then 
explored the scope of the hydrosilylation of aldimines (Table 2). 
Electronic effects at the para-position of the benzylidene or 
aniline moiety were generally minor (entries 1-3, 5-6, and 10-20). 
Thus, aldimines bearing an electron-donating group gave the 30 

corresponding amines with good to excellent conversions (entries 
1-3, 5-6, and 10-12). Interestingly, no dehalogenation occurred 
with a chloro-substituted aldimine irrespective of the catalytic 
system used, 2-NaHBEt3 or 3-no additive (entries 13 and 14), and 
the corresponding amine was isolated in good yield (80%, entry 35 

13). However, with bromo- and iodo-substituted aldimines, low 
conversions were obtained, probably due to a rapid catalyst 
deactivation, as previously observed for the hydrosilylation of 
aldehydes and ketones (entries 4 and 7).13 Strikingly, functional 
carbonyl groups such as esters and amides were not affected 40 

under these catalytic conditions irrespective of the catalytic 
system used, 2-NaHBEt3 or 3-no additive (entries 15-16 and 19-
20), and the corresponding secondary amines were isolated in 
good yields (76 and 72%, entries 15 and 20). Moreover, although 
5% of the fully reduced compound was detected in the crude 45 

reaction mixture, the cyano functional group was also well 
tolerated and the N-(4-cyanobenzyl)-p-toluidine resulting from 
the selective reduction of the 4-cyanobenzylidene derivative was 
isolated in 74% yield (entry 17). In contrast, only moderate 
conversion was observed for the hydrosilylation of the 4-50 

methoxy-N-(4-nitrobenzilidene)aniline under forcing conditions, 
and a mixture of products resulting from the reduction of the nitro 
group was observed (entries 21 and 22). 
 Substitution in ortho-position of the aniline moiety seems to 
have an inhibiting effect, most probably for steric reasons, as 55 

shown by the moderate conversion observed for the reduction of 
benzylidene-o-methylaniline, even at 50 °C (entries 8 and 9). 
Substitution at the meta-position of the benzylidene moiety seems  

Table 2 Scope of the reduction of adimines with 2-NaHBEt3 and 3a 

 
Entry Substrate  Pre-

cat. 
Conv. 
(%)b 

Yield 
(%)c 

1 
2 
3 
4  

R = Me 
R = Me 
R = OMe 
R = Br 

2 
3 
2 
2 

> 98 
> 98 
> 98 
20 

83 
- 

90 
- 

5 
6 
7 
8 
9  

R = p-OMe 
R = p-OMe 
R = p-I 
R = o-Me 
R = o-Me 

2 
3 
2 
2 
2 

> 98 
> 98 
27 
28 
48d 

89 
- 
- 
- 

39 

10 
11 
12 
13 
14 
15 
16 
17 
18 

 

R = p-OMe 
R = p-OMe 
R = p-NMe2 
R = p-Cl 
R = p-Cl 
R = p-CO2Me 
R = p-CO2Me 
R = p-CN 
R = 3,4,5-OMe 

2 
3 
2 
2 
3 
2 
3 
2 
2 

> 98 
> 98 
77 

> 98 
71 
95 

> 98 
94e 
93 

84 
- 

57 
80 
- 

76 
83 
74 
81 

19 
20 
21 
22 

 

R = NHAc 
R = NHAc 
R = NO2 
R = NO2 

2 
2 
2 
2 

70 
90d 
0 

40f 

- 
72 
- 
- 

23 
24 

 

 2 
2 

20 
80f 

- 
57 

25 
26 

 

 
2 
2 

43 
70f 

- 
61 

27 
28 
29 

 

 
2 
2 
2 

20 
60f 
87f,g 

- 
- 

70 

30 

 

 

2 > 98 85 

a Typical procedure: activation of 2 (1 mol%) with NaHBEt2 (2 mol%) in 60 

THF (4 mL) at RT for 5 min or dissolution of 3 (1 mol%) in THF (4 mL) 
at RT was followed by the addition of aldimine (1 mmol) and Ph2SiH2 (1 
mmol), and the reaction mixture was stirred at 25 °C for 17 h (2) or at 50 
°C for 24 h (3). b Conversions determined by 1H NMR spectroscopy after 
methanolysis: 2M NaOH (2 mL), MeOH (2 mL), RT, 2 h. c Isolated 65 

yields. d 50 °C. e 5% reduction of both the aldimine and the cyano group 
was also observed. f 70 °C. g 2 (5 mol%), NaHBEt3 (10 mol%). 

 
in contrast to have no notable effect (entry 18). 
 This reduction can also be conducted with heteroaromatic 70 

aldimines such as 5-methylfur-2-yl-, pyridin-2-yl- and N- 
methylpyrrol-2-yl-4-methoxyaniline, but at higher temperature 

R
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R
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(50 °C or 70 °C), and the corresponding amines were isolated in 
moderate yields (57-70%, entries 23-29). Finally, 4-methyl-N-
(ferrocenylmethylidene)aniline was totally reduced and led to the 
corresponding amine in good yield (85%, entry 30). 
 Given the high activity of both catalytic systems for aldimines, 5 

we then investigated their potential for the hydrosilylation of 
ketimines, with N-[1-phenylethylidene]-4-methoxyaniline 6 as 
the model substrate (Table 3). To obtain similar activities, 
slightly harsher conditions had to be used, by either performing 
the reaction at higher temperature (with 2-NaHBEt3, entries 5-9) 10 

or with higher pre-catalyst and Ph2SiH2 loadings (with 3, entries 
3 and 4). Thus, to observe full conversion of 6 to the 
corresponding amine 7 after a methanolysis step, 50 °C for 17 h 
were required in the presence of 1 mol% of 2 and 2 mol% of 
NaHBEt3 (entry 7), and 2 equiv. of Ph2SiH2 were required in the 15 

presence of 5 mol% of 3 (entry 4). Notably, in the case of 2-
NaHBEt3, when the reaction was performed at a lower 
temperature or with a lower catalyst loading, the conversion 
significantly decreased (entries 6 and 9). 

Table 3 Optimization for the reduction of ketimines with 2 and 3a 20 

 
Entry Pre-catalyst 

(mol%) 
Additive 
(mol%) 

Temp. 
(°C) 

Time 
(h) 

Conversion (%)b 

1 2 (5) - 70 24 10 
2 2 (5) KPF6 (10) 70 24 60 
3 3 (5) - 50 17 70 
4c 3 (5) - 50 24 > 98 
5 2 (5) NaHBEt3 (10) 50 17 > 98 
6 2 (5) NaHBEt3 (10) 25 17 50 
7 2 (1) NaHBEt3 (2) 50 17 > 98 
8 2 (1) NaHBEt3 (2) 50 3 80 
9 2 (0.5) NaHBEt3 (1) 50 17 65 

a Typical procedure: activation of 2 with the additive in THF (4 mL) at 
RT for 5 min or dissolution of 3 in THF (4 mL) at RT was followed by 
the addition of 6 (1 mmol) and Ph2SiH2 (1 mmol), and the reaction 
mixture was stirred at 25, 50 or 70 °C for 3 to 24 h. b Conversions 
determined by 1H NMR spectroscopy after methanolysis: 2M NaOH (2 25 

mL), MeOH (2 mL), RT, 2 h. c Reaction run with 2 equiv. of Ph2SiH2. 

 
 With these optimized conditions in hand (1 equiv. of Ph2SiH2, 
1 mol% of 2, 2 mol% of NaHBEt3, THF, 50 °C, 17 h or 2 equiv. 
of Ph2SiH2, 5 mol% of 3, no additive, THF, 50 °C, 24 h), the 30 

scope of the hydrosilylation of ketimines was then explored. With 
several ketimines derived from (substituted) acetophenones and 
(4-substituted) anilines, the corresponding amines were obtained 
with high conversions and good isolated yields (Table 4, entries 
1-10). Notably, full conversion and good isolated yield were 35 

obtained with N-(2-methylphenyl)ethylidene-aniline (entry 1), 
which demonstrates that steric hindrance at the phenylethylidene 
moiety does not inhibit the reaction. Similarly, good conversion 
was obtained for the reduction of naphtylethylidene toluidine 
(entry 14). As observed with aldimines, in the presence of a 40 

strong electron withdrawing group such as a trifluoromethyl 
group, the reaction was more difficult to carry out and harsher 
conditions (5 mol% of 2, 10 mol% of NaHBEt3, 70 °C, 17 h) 
were necessary to reach 85% conversion and 69% isolated yield  

Table 4 Scope of the reduction of ketimines with 2-NaHBEt3 and 3a 45 

 
Entry Substrate  Pre-cat. Conv. 

(%)b 
Yield 
(%)c 

1 

 

 2 > 98 77 

2 
3 

 

 2 
3 

> 98 
> 98 

78 
- 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

  

R = H 
R = Me 
R = OMe 
R = OMe 
R = Cl 
R = F 
R = F 
R = CF3 

R = CF3 
R = CF3 

2 
2 
2 
3 
2 
2 
3 
2 
2 
2 

79 
86 

> 98 
> 98 
90 
90 

> 98 
30 
52d 
85d,e 

63 
73 
84 
- 

77 
75 
80 
- 
- 

69 

14 

 

 2 90 59 

15 
16 
17 

 

 2 
2 
2 

20 
48d 
80d,e 

- 
- 

66 

a Typical procedure: activation of 2 (1 mol%) with NaHBEt2 (2 mol%) in 
THF (4 mL) at RT for 5 min or dissolution of 3 (5 mol%) in THF (4 mL) 
at RT was followed by the addition of aldimine (1 mmol) and Ph2SiH2 (1 
mmol (2) or 2 mmol (3)), and the reaction mixture was stirred at 50 °C for 
17 h (2) or 24 h (3). b Conversions determined by 1H NMR spectroscopy 50 

after methanolysis: 2M NaOH (2 mL), MeOH (2 mL), RT, 2 h. c Isolated 
yields. d 70 °C. e 2 (5 mol%), NaHBEt3 (10 mol%). 

 
(entries 11-13). Finally, the ferrocenyl imine derivative could also 
be reduced to the corresponding amine with 80% conversion and 55 

66% isolated yield by using the latter conditions (entry 17). 
 We demonstrated in our previous contribution which targeted 
the hydrosilylation of carbonyl derivatives,13 that the nickel 
hydride complex 1 resulting from the reaction of 2 and NaHBEt3 
is most probably the true pre-catalyst with this catalytic system. 60 

Simultaneously, Royo et al. demonstrated that an analogous Cp-
NHC tethered nickel hydride complex generated in situ by the 
reaction of the corresponding alkoxide complex with PhSiH3 was 
most probably the active species in a very similar hydrosilylation 
process.14 We thus wondered if such hydride species was also 65 

generated with the catalytic system composed of the sole cationic 
complex 3 and Ph2SiH2.28 
 For that purpose, we reacted 3 with 0.5 or 1 equivalent of 
Ph2SiH2 in THF-d8 at RT and 50 °C, and monitored the reactions 
by 1H NMR spectroscopy. In all cases, we observed, after 5 min  70 

N
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(2) 2M NaOH, MeOH / 25 °C

6

OMe

HN

7

OMe

R

N

(1) 2 (1 mol%), NaHBEt3 (2 mol%) / THF / 50 °C
      or
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Scheme 2 Generation of the nickel hydride complex 1 from the neutral 
and cationic complexes 2 and 3. 

of reaction, the formation of a small amount (generally less than 
10% with respect to the remaining amount of 3) of a nickel 5 

hydride species, which we unambiguously identified as being 1 
by comparison with the 1H NMR spectrum of a pure sample in 
THF-d8. Concomitantly, new signals started to appear in the 
aromatic area (probably resulting from the oligomerization and/or 
polymerization of Ph2SiH2), as well as a singlet at 1.94 ppm, 10 

which we attribute to free CH3CN. The rest of the reaction 
mixture mostly consisted in non-reacted 3 and Ph2SiH2 (see the 
Supporting Information). It is noteworthy that in all cases we also 
observed the immediate and steady evolution of a gas, which we 
think is H2, as observed by Zargarian et al. in the reactions of 15 

analogous nickel complexes of the type [Ni(PR3)Me(1-Me-
indenyl)] with PhSiH3.29 Finally, after a reaction time varying 
from 20 min for the reactions conducted at 50 °C to 6-22 h for the 
reactions conducted at RT (with 0.5 or 1 equiv. of Ph2SiH2), all 
Ph2SiH2 was consumed, and the reaction medium consisted in a 20 

complicated mixture of products with small remaining amounts 
of complexes 1 and 3. In contrast, the neutral complex 2 gave 
strictly no reaction with Ph2SiH2 (0.5 equiv.) in THF-d8 at RT, 
even after 6 h, and required 70°C to produce traces amount of 1. 
 These results may explain the total absence of reduction of the 25 

aldimine 4 when the reaction was performed in the sole presence 
of 5 mol% of 2 at RT (Table 1, entry 1), as well as the moderate 
conversion observed in the sole presence of 5 mol% of 2 at 70°C 
(Table 1, entry 2) and the slightly harder conditions (50°C) 
required with 3 to observe full reduction (Table 1, entries 7 and 30 

8); only small amounts of 2 or 3 are converted to 1 by reaction 
with Ph2SiH2,30 whereas all 2 is converted to 1 by reaction with 2 
equiv. of NaHBEt3 (Scheme 2). Additionally, although another 
true pre-catalyst (or active species) cannot be ruled out in the 
absence of NaHBEt3, these results tend to confirm the necessity 35 

to generate the nickel hydride complex 1 to observe a catalytic 
activity.13 

 In summary, using the nickel hydride complex 1, generated in 
situ from the neutral complex 2 and 2 equiv. of NaHBEt3, or the 
cationic complex 3, an efficient and chemoselective 40 

hydrosilylation of both aldimines and ketimines was carried out 
at RT or 50 °C, leading the corresponding amines with moderate 
to good yields. 
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The in situ generated nickel hydride 
complex, [Ni(Mes2NHC)HCp], and its 
cationic analogue, 
[Ni(Mes2NHC)(NCMe)Cp](PF6), are efficient 
and chemoselective pre-catalysts for the 
hydrosilylation of imines under mild 
conditions. 
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