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Abstract Novel (thio)urea–tertiary phosphines were developed for use
as bifunctional organocatalysts readily available from naturally occur-
ring molecules: saccharides and amino acids. The efficiency of the or-
ganocatalysts was demonstrated in the asymmetric Morita–Baylis–Hill-
man (MBH) reaction of aromatic aldehydes with acrylates. The MBH
products were obtained in good yields (up to 85%) and with high enan-
tioselectivities (up to 87% ee).

Key words organocatalysis, Morita–Baylis–Hillman reactions, phos-
phines, amino acids, asymmetric catalysis

Asymmetric catalysis with small organic molecules rep-
resents one of the fundamental pillars in asymmetric syn-
thetic processes.1,2 This rapidly evolving area has already
shown a high synthetic potential in many chemical reac-
tions, including enantioselective formation of single or
multiple carbon–carbon or carbon–heteroatom bonds in
single-step or cascade processes.2a,3 Among the various con-
cepts commonly used in asymmetric organocatalysis, hy-
drogen-bonding catalysis has emerged as a powerful ap-
proach. In particular, (thio)ureas,4 squaramides,5 and guani-
dinium ions6 have proved to be highly promising
organocatalysts. Since the pioneering work of Takemoto
and co-workers,7 which was inspired by the natural oxyan-
ion hole of enzymes, a combination of a hydrogen-bond do-
nor (thio)urea moiety and an amine as a Lewis base in a sin-
gle chiral scaffold has become a popular motif in the devel-
opment of organocatalysts. In contrast to well-developed
bifunctional (thio)ureas derived from cinchona alkaloids,
steroids, or peptides, little attention has been paid to the
synthesis of bifunctional (thio)ureas derived from saccha-
rides.8 In 2007, Kunz and co-workers (inspired by Jacobsen’s
catalysts9) reported efficient bifunctional urea–aldimine

organocatalysts derived from D-glucosamine for enantiose-
lective Strecker reactions.10 Other examples of bifunctional
sugar-derived organocatalysts (thiourea–primary or tertia-
ry amine) were reported by Ma and co-workers; in these
organocatalysts, the carbohydrate unit serves as a bulky
electron-withdrawing group to increase the acidity of the
thiourea.11 Later, Benaglia, Lay, and co-workers investigated
a new family of (thio)urea–amine organocatalysts for the
addition of acetylacetone to nitrostyrene.12 Several other
examples of bifunctional sugar-derived organocatalysts
(thiourea–amine type) have been reported, and their cata-
lytic activities have been investigated.11,13 Compared with
the extensive development carried out on bifunctional
thiourea–amine organocatalysts, the development of

Jan Veselý  obtained his Ph.D. in 2005 under the supervision of Prof. 
Tomáš Trnka (Charles University in Prague) and Dr. Miroslav Ledvina (In-
stitute of Organic Chemistry and Biochemistry IOCB, AS CR), working on 
the synthesis of linear and cyclic oligosaccharides. Then, he worked one 
year as a postdoc in the group of Stefan Oscarson, and one and a half 
years in the group of Armando Córdova (both at Arrhenius Laboratories, 
Stockholm University). After his return, he started an independent re-
search career at the Charles University in Prague, where he currently 
holds the position of an associate professor. His research interests are 
the stereoselective preparation of sugar-derived building blocks, as well 
as the development of new asymmetric methodologies based on or-
ganocatalysis and their application in total synthesis.
© Georg Thieme Verlag  Stuttgart · New York — Synlett 2015, 26, 2690–2696



2691

I. Gergelitsová et al. LetterSyn  lett

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f S

yd
ne

y.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.
thiourea–trivalent phosphine organocatalysts remains a
less-explored area, although phosphines belong to an im-
portant class of nucleophilic catalysts.14 Recently, several
bifunctional thiourea–phosphine organocatalysts derived
from natural amino acids,15 or synthetic compounds con-
taining binaphthyl or cyclohexane motifs16,17 have been de-
veloped and applied in a variety of enantioselective organic
reactions. However, only one type of bifunctional thiourea–
phosphine organocatalyst derived from saccharides and a
cyclohexane skeleton has been reported.18

There are no previous reports of bifunctional thiourea–
phosphine organocatalysts consisting of a saccharide unit
and an amino acid derived chiral phosphine, although it is
apparent that, like amino acids, carbohydrates are readily
available chiral scaffolds. In view of these facts, we designed
new types of bifunctional urea– and thiourea–phosphine
organocatalysts 6 and 5 (Scheme 1), and we explored their
efficiency in an enantioselective Morita–Baylis–Hillman
(MBH) reaction.19

In designing the bifunctional organocatalysts 5 and 6,
we chose D-glucose and a set of α-amino acids (glycine,
L-alanine, and L-valine) as readily available starting materi-
als (Scheme 1). As in previous reports,11 the chosen gluco-
pyranosyl unit serves as a bulky electron-withdrawing
group, affording increased (thio)urea acidity, and the cho-
sen phosphines display a remarkable combination of strong
nucleophilicity and stability to air. The phosphines 2, which
display various steric effects from the neighboring alkyl
moiety, were obtained from the corresponding α-amino ac-
ids by using N-tert-butoxycarbonyl or N-tosyl protective
groups.20,21 Isothiocyanates 3, suitable for the construction
of bifunctional thiourea–phosphine catalysts 5, were pre-
pared from D-glucose by using a reported procedure.22 The
thiourea–phosphine organocatalysts 5 were prepared by
simple condensation of the key building blocks 3 and 2, as
shown in Scheme 2.23

On the other hand, the synthesis of the urea–phosphine
catalysts 6 did not required isolation of the intermediate
isocyanates 4′, and was therefore accomplished in two
steps (formylation/condensation) from the corresponding
glycosylamines 4 (Scheme 3).24 Glycosylamines 4 were pre-
pared by catalytic hydrogenation22f of the corresponding
glycosyl azides 1.22c,d All the prepared bifunctional catalysts
were obtained in good to high yields (72–93%), and they ex-
hibit good air and bench stability under standard condi-
tions.

Scheme 3  Preparation of urea–phosphine organocatalysts 6

The catalytic activity of the prepared organocatalysts 5
and 6 was initially evaluated in the MBH reaction of the
model substrates 4-nitrobenzaldehyde (10a) and methyl
acrylate (11a) in tetrahydrofuran at 25 °C. At the outset, we
decided to compare the catalytic efficiency of 5 and 6 with
that of other previously reported organocatalysts 7–9 (Fig-
ure 1).7b,17,25

Scheme 1  Novel (thio)urea–phosphine organocatalysts 5 and 6
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Figure 1  Other organocatalysts used in the MBH reaction

The thiourea catalysts 5 were more reactive than the
urea catalysts 6 and they afforded product 12a with greater
enantioselectivity (Table 1, entries 1–7). Interestingly, the
best enantiocontrol of the MBH reaction was observed with
our thiourea–phosphine catalyst 5c. The asymmetric reac-
tion between 4-nitrobenzaldehyde (10a) and methyl acry-
late (11a) in tetrahydrofuran catalyzed by 5c afforded the
corresponding allylic alcohol 12a in 68% yield and 82% ee
(entry 3).

Table 1  Screening of Catalysts for the MBH Reactiona

When the diphenylphosphine moiety of the catalyst
was modified, catalysts 5a and 5b showed a higher reactivi-
ty but a lower enantioselectivity (Table 1, entries 1 and 2).
Interestingly, catalyst 5d with an electron-withdrawing O-

protecting group on the saccharide unit showed a lower re-
activity, probably due to interference of the acetoxy group
and the acidic thiourea group (entry 4). On the other hand,
the presence of a bulkier noninterfering benzyl protecting
group on the saccharide unit had only a limited effect on
the reactivity of catalyst 5e (entry 5). Note that changing
the O-protecting group on the saccharide unit of the cata-
lyst did not affect the stereochemical outcome of the reac-
tion. Catalysts 5a, 5b, and 9 showed similar efficiencies af-
ter 24 hours, including full conversion of the starting mate-
rials (entries 1, 2, and 10). In addition, Wu’s catalyst (9)
gave 12a with high enantioselectivity. Nevertheless, further
modification of the phosphine scaffold of 9 to tune the ste-
reocontrol of the reaction is more complicated than in the
case of our catalysts 5, in which a variety of natural or syn-
thetic amino acid scaffolds can be used.

Encouraged with these results, we examined the effect
of various solvents on the reaction catalyzed by 5c (Table
2).26 Screening of the reaction solvents revealed that the
MBH reaction proceeded well in various ethers (Table 2, en-
tries 2–4), and the best results with respect to efficiency
and enantioselectivity were obtained in tert-butyl methyl
ether (entry 2). In polar aprotic solvents, the model reaction
gave the allylic alcohol 12a in high yields but with lower
enantiocontrol (entries 7 and 8). In protic solvents, low
conversion and low yield of 12a, and no enantiocontrol,
were observed (entry 10).

Entry Catalyst Time (h) Yieldb (%) eec (%)

1 5a 24 83 12

2 5b 24 83 74

3 5c 24 68 82

4 5d 24 22 81

5 5e 24 65 80

6 6a 24 25 45

7 6b 24 12 5

8 7 72 13 6

9 8 24 0 –

10 9 24 80 80
a Reaction conditions: 5–9 (10 mol%), 10a (0.1 mmol), 11a (0.5 mmol), 
THF (1 mL), 25 °C.
b Isolated yield.
c Determined by HPLC using a chiral IC column.
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Table 2  A Survey of Solvents for the MBH Reaction of 4-Nitrobenzal-
dehyde (10a) with Methyl Acrylate (11a)a

Entry Solvent Yieldb (%) eec (%)

1 toluene 45 82

2 TBME 78 86

3 i-Pr2O 49 79

4 THF 68 82

5 CH2Cl2 52 70

6 CHCl3 59 75

7 DMF 81 76

8 DMSO 86 72

9 MeCN 68 61

10 MeOH 22 1
a Reaction conditions: organocatalyst 5c (10 mol%), 10a (0.1 mmol), 11a 
(0.5 mmol), solvent (1 mL), 25 °C, 24 h.
b Isolated yield.
c Determined by HPLC using a chiral IC column.
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Further optimization studies showed that the tempera-
ture, the catalyst loading, and the 11/10 ratio had little ef-
fect on the stereocontrol of the reaction, whereas the yield
of the reaction varied significantly with the temperature
and catalyst loading (Supporting Information, Table SI1, en-
tries 1–6). On the basis of these results, we found that the
optimal conditions for the MBH reaction were room tem-
perature, 10 mol% of catalyst 5c, and a 5:1 ratio of 11 and 10
in tert-butyl methyl ether (Table 2, entry 2).

Having established the optimal reaction conditions, we
examined the scope of the MBH reaction by employing a
variety of aldehydes with various steric and electronic
properties. As shown in Table 3, the reactions with aromat-
ic aldehydes 10 gave the corresponding alcohols 12 in mod-
erate to high yields and with good enantioselectivities. The
electronic properties and location of the substituents on
the aromatic moiety had obvious effects on the rate, effi-
ciency, and selectivity of the MBH reaction. Substrates with
electron-withdrawing groups, such as nitro, cyano, or tri-
fluoromethyl groups, gave the corresponding alcohols 12a–
e in good yields and with high enantioselectivities (Table 3,
entries 1–5). However, halogenated substrates (F, Cl, Br) re-
acted significantly more slowly, giving lower yields of allylic
alcohols 12g–i with moderate enantiomeric excesses (en-
tries 7–9). In addition, aromatic aldehydes bearing hetero-
cyclic rings were also found to be suitable substrates (en-
tries 11 and 12). When aliphatic aldehydes were employed,
the corresponding MBH alcohols were not obtained, even
after a prolonged reaction time, and decomposition of the
starting material was observed instead.

We also examined the MBH reaction of various acrylates
11, catalyzed by 5c (Table 3, entries 13–16). The alkyl group
of the ester moiety had a significant effect on the reaction
rate, but only a limited effect on the enantioselectivity of
the reaction. With bulkier ester moieties, such as tert-butyl,
the reaction rate decreased. The alcohol 13d was obtained
after a prolonged reaction time (2 days) in good yield (76%)
and with high enantioselectivity (85% ee; entry 16).

To confirm the influence of the aminophosphine seg-
ment of the catalyst in controlling the enantioselectivity
and efficiency of the reaction, we prepared catalyst 5c′, de-
rived from D-valine and D-glucose. The asymmetric reaction
between 4-nitrobenzaldehyde (10a) and methyl acrylate
(11a) in tert-butyl methyl ether catalyzed by 5c′ gave the
corresponding allylic alcohol ent-12a in 85% yield and with
–85% ee (Table 3, entry 17). This observation confirmed the
key role of the aminophosphine portion of the catalyst in
enantiocontrol of the reaction.

The absolute configuration of the MBH adducts was
confirmed by chemical correlation with data reported pre-
viously.25,27 The structure of the organocatalysts 5 and 6
was confirmed by a single-crystal X-ray diffraction analysis
of 6a (Figure 2).

Table 3  Substrate Scope of the MBH Reactiona

Entry Ar R Time (d) Product Yieldb (%) eec (%)

1 4-O2NC6H4 Me 1 12a 76 86

2 2-O2NC6H4 Me 2 12b 69 62

3 3-O2NC6H4 Me 1 12c 62 82

4 4-NCC6H4 Me 1 12d 77 84

5 4-F3CC6H4 Me 4 12e 70 82

6 Ph Me 7 12f 15 77

7 4-FC6H4 Me 4 12g 24 59

8 4-ClC6H4 Me 4 12h 24 69

9 4-BrC6H4 Me 4 12i 36 71

10 2-naphthyl Me 4 12j 29 67

11 3-pyridyl Me 4 12k 78 73

12 2-furyl Me 4 12l 24 73

13 4-O2NC6H4 Et 1 13a 70 85

14 4-O2NC6H4 Bu 1 13b 75 87

15 4-O2NC6H4 Bn 1 13c 83 80

16 4-O2NC6H4 t-Bu 2 13d 76 85

17d 4-O2NC6H4 Me 1 ent-12a 85 –85
a Reaction conditions: organocatalyst 5c (10 mol%), 10 (0.1 mmol), 11 (0.5 
mmol), t-BuOMe (1 mL), 25 °C.
b Isolated yield.
c Determined by HPLC analysis using a chiral column.
d The reaction was performed with organocatalyst 5c′ (10 mol%).

Ar
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H Ar

OH

OR

O

+ OR

O
5c (10 mol%)

TBME, 25 °C

10 11 12,13

Figure 2  View of molecule 6a with the atom-numbering scheme; dis-
placement ellipsoids are drawn at a 30% probability level
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In summary, we designed and prepared bifunctional
(thio)urea–tertiary phosphine organocatalysts, which were
readily available from naturally occurring biomolecules
such as D-glucose, glycine, L-alanine, and L-valine. The effi-
ciency of our organocatalysts in asymmetric MBH reactions
was compared with that of other catalysts used previously.
The L-valine-derived bifunctional thiourea–phosphine cata-
lyst was found to be highly efficient in the MBH reaction,
giving the MBH adducts with good to high yields (up to
85%) and high enantioselectivities (up to 87% ee).
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(d, J = 7.2 Hz, 2 H), 2.02–1.94 (m, 1 H), 0.85 (d, J = 1.1 Hz, 3 H),
0.84 (d, J = 1.2 Hz, 3 H). 13C{1H} NMR (151 MHz, CDCl3): δC =
157.0 (s), 138.7 (d, J = 12.5 Hz), 132.9 (d, J = 19.3 Hz), 132.8 (d,
J = 19.1 Hz), 128.7–128.4 (m), 87.1 (s), 82.7 (s), 82.0 (s), 79.4 (s),
75.8 (s), 70.9 (s), 60.7 (s), 60.4 (s), 60.2 (s), 59.1 (s), 52.9 (d,
J = 14.2 Hz), 32.2 (s), 32.05 (d, J = 7.8 Hz), 18.9 (s), 17.3 (s).
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organocatalyst 5c (5.5 mg, 0.01 mmol) in t-BuOMe (1 mL) at r.t.,
and the solution was stirred for 15 min. Aldehyde 10a (15.1 mg,
0.10 mmol) was added, and mixture was stirred at 25 °C for 1 d
(Table 3). The solvent was removed under reduced pressure, and
the residue was purified by flash column chromatography
[silica gel, hexane–EtOAc (4:1)] to give a yellow solid; yield:
18.1 mg (76%); [α]D

25 −57.3 (c 0.52, MeOH, 86% ee). 1H NMR
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(600 MHz, CDCl3): δH = 8.22 (d, J = 8.7 Hz, 2 H), 7.59 (d, J = 8.6
Hz, 2 H), 6.41 (s, 1 H), 5.89 (s, 1 H), 5.64 (d, J = 6.1 Hz, 1 H), 3.76
(s, 3 H), 3.34 (d, J = 6.3 Hz, 1 H). 13C{1H} NMR (151 MHz, CDCl3):
δC = 166.4, 148.5, 147.5, 140.9, 127.3, 123.6, 72.8, 52.2. MS (EI-

TOF): m/z = 237.1 [M]+•. HPLC (ChiralPak IC column, heptane–
i-PrOH (80:20), flow rate: 1.0 mL/min, λ = 220 nm): tR = 6.69
min (minor), 8.04 min (major).
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