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Abstract: Stable crystalline organic ammonium tribromides (OATB), like Me4NBr3, 
Et4NBr3, Bu4NBr3, cetyltrimethylammonium tribromide, PyHBr3, can be readily 
synthesised from the reaction of the corresponding bromides with V205 and aqueous 
H202. Typically, TBATB, Bu4NBr3, brominates a variety of organic substrates rather 
easily under mild conditions. An activated aromatic ring is selectively brominated in the 
presence of  an olefinic double bond. © 1998 Elsevier Science Ltd. All rights reserved. 
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Bromination, especially of aromatic substrates, is usually carried out by elemental bromine, l but organic 

ammonium tribromides (OATB) including pyridine hydrobromide perbromide (PyHBra) are preferable owing to 

hazards associated with bromine. The other advantages of OATB are that they are crystalline, easy to handle and 

maintain the desired stoichiometry. Several tribromides have been reported i.e, tetramethylammonium tribromide 

(TMATB), 2 phenyltrimethylammonium tribromide (PTATB), 3 cetyltrimethylammonium tribromide 

(CetTMATB), tetrabutylammonium trihromide (TBATB), 4 1,8-diazabicyclo[5,4,0]-tetrabutylammonium 

tribromide (DBUI-IBr3) 5 and pyridine hydrobromide perbromide (PyHBr3). 6 However, their preparations 

invariably involve elemental bromine and in some cases I-lBr as well. This again causes an environmental 

concern. On the other hand, there is an obvious demand for brominated organic substrates due to their 

importance both as synthetic intermediates and as potent antitumor, antifungal, antibacterial, antineoplastic and 

antiviral compounds. 7 It would be extremely useful to develop an environmentally benign alternative synthetic 

protocol for the synthesis of OATB. A new synthesis of OATB is reported in this communication with TBATB 

as a typical example. In the course of our investigation of the reactivity of peroxovanadium systems, s the 
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oxidation of  bromide leading to tribromide was noticed. Vanadium bromoperoxidase (VBrPO) related 

biomimetic oxidations of  bromide have also been studied in solution by others. 9 Consequently, it has become 

clear that a peroxovanadium(V) intermediate is capable of the catalytic oxidation of bromide. Based on this, our 

strategy was to isolate the ultimate oxidation product of  bromide employing organic quaternary ammonium 

cations so that the organic ammonium tribromides (OATB) could be synthesised in an environmentally 

acceptable way. Thus, in a typical reaction 2.75 mmol of  V205 was dissolved in 44.1 mmol of  30% 1-1202, with 

stirring at c a  5°C To the clear red solution 11 mmol of tetrabutyl ammonium bromide, dissolved in 7 mL of 

water, was added and the reaction was stirred at ambient temperature. The reaction took place readily and the 

solution became yellow with concurrent precipitation of yellow or orange yellow tetrabutylammonium tribromide 

(TBATB), Bu4NBF3. The product was isolated after 15-20 min, washed with water 2 or 3 times and dried in air 

or by pressing between the folds of a filter paper. The isolated yield ~° was 68%, m.p. 75°C (Lit 4 76°C). TBATB 

can be recrystallised from acetonitrile. The compound showed an intense electronic absorption at 267 nm typical 

of tribromide (Br3).~l Importantly, the same methodology worked very well for TMATB, tetraethylammonium 

tribromide (TEATB), PTATB, CetTMATB and PyHBr3 which were synthesised in very high isolated yields from 

the corresponding organic ammonium bromides and pyridinium hydrobromide, respectively, The involvement of 

peroxovanadate(V) as the active oxidant has been ascertained from the observance of  the peroxovanadium 

charge-transfer (CT) band at 430 nm (e=300) in aqueous V2Os-H202 solution. 

Bu4NBr V2Os, H202 Bu4NBr a (TBATB) 

As a typical example, the efficacy of TBATB obtained by the new protocol was ascertained. The results 

of room temperature bromination of aromatics including polycyclic hydrocarbons 1-5, sensitive substrates such 

as imidazole 6, allyl alcohol 7, alkenes 8-10 and ketone 11 are summarised in Table 1. Thus, TBATB 

brominates activated aromatics such as aniline 1 very smoothly to give bromoaniline in H20-DMF. Both p- 

bromo- and 2,4,6-tribromo aniline may be selectively synthesised depending on the molar ratio of  the reagent 

that is used. Polycyclic aromatics such as anthracene 3 and phenanthrene 4 can be brominated in acetic acid. 

Here again, 9-bromo and 9,10-dihromo anthracene can be prepared selectively by setting the molar ratio between 

the substrate: TBATB at (1:1) or (1:2), respectively. Unreactive rings like benzene 5 were brominated to afford 

the corresponding bromide in good yield by treating the substrate with Ag2SO4 in H2SO4.~2 TBATB is also 

capable of  brominating heteroaromatics sensitive to usual bromination, for instance, imidazole 6 in CH2C12: 

MeOH (1:1) mixture was brominated to 2,4,5-trihromoimidazole in a high yield (68%). Treatment of  allyl 

alcohol 7 with the reagent in CH2C12 afforded 2,3-dihromopropanol in 72% yield. Also TBATB allows easy 

double bond bromination 8-10 under mild reaction conditions. The reaction of acetophenone 11 with the 

reagent produced bromomethyl phenyl ketone. 
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Table 1. Brominat ion  of  Aromat ic  and Some  Other Substrates with  T B A T B  

Substrate(Entry)  Solvent /Time in rain. a Substrate Product(s) b 
:TBATB 

% yield ~ 

Aniline (1) 50% Aq DNIF/15 1:1 p-bromoaniline 60 
Aniline (1) 50% Aq DMF/15 1:3 2,4,6-tribromoaniline 65 
Phenol (2) CH2C1JMeOH(I: I),CaCO3/60 1:3 2,4,6-tribromophenol 60 
Anthracene (3) Acetic acid/30 1:1 9-bromoanthracene 70 
Anthracene (3) Acetic acid/30 1:2 9,10-dibromoanthracene 55 
Phenanthrene (4) Acetic acid/30 1:1 9-bromophenanthrene 46 
Benzene (5) conc.H2SO4, Ag2SO4/30 1:1 bromobenzene 40 
Imidazole (6) CH2CI2/MeOH(I:I),CaCO3/60 1:3 2,4,5-tribromoimidazole 68 
AUyl alcohol (7) CH2C12/60 1:2 2,3-dibromopropanol 72 
Styrene (8) CH2CIJ 60 1:2 vic-dibromostyrene 62 
Chalcone (9) CHCI3/180 1:2 Threo-dibromochalcone 65 
Cinnamic acid (10) CHCIJ 120 1:2 2,3-dibromo-3-phenyl 60 

propanoic acid 
bromomethyl phenyl ketone Acetophenone (11) 50% Aq DMF/30 1:1 46 

"Reactions were monitored by TLC, GC. b Products were characterised by comparision with authentic pure 

samples. ~Isolated yields are reported. 

Heretofore unprecedented is the selective bromination of an activated aromatic ring in the presence of an 

olefinic double bond by TBATB. For example substrate 12, an important synthetic precursor for naturally 

occuring flavonoids (c.f. Vitexin), 13 on being reacted with an equimolar amount of TBATB gave 12a 14 as the 

exclusive product, while a similar reaction when conducted with 12:TBATB at a molar ratio of 1:3 yielded 12b 14 

TBATB (1 eq.) M e O ~ O B n  
0-5 °C, 5 min (70%) Br" T l] 

OMe O 12a 

(Scheme 1). 

M e O ~ O B n  

TBATB(3eq.) MeO I. I[ C~'"l "---~ OBn ~ " ~  
B r ~ B r  

rt, 135 min (55%) OMe O 12b 

Scheme-1 

TBATB (1 eq) B ~  
D 

(65%) 
O O 

9 

Bromination of  organic substrates: The substrate (10 mmol) and TBATB (10, 20 or 30 mmol as indicated in 

Table 1) in 25 mL of the specified organic solvents, and 20 mmol of CaCOs for phenol and imidazole, were 

vigorously stirred for the specified period of time. The reaction mixture was filtered in vacuo, the filtrate was 
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diluted with 100-120 mL of water to completely precipitate the product. The product was then filtered in  v a c u o  

and washed with water. For the liquid product the aqueous layer was extracted with ether and the separated 

ether layer was washed with water, dried over anhydrous NazSO4 and finally evaporated under reduced pressure. 

For benzene, a mixture of the substrate (10 mmol), Ag2SO4 (15 mmol) and 25 mL of conc. H2SO4 was 

stirred at room temperature for ca.  10 min followed by the addition of TBATB (12 mmol). The reaction mixture 

was stirred for 30 rain and then poured into 150 g of crushed ice. The precipitated AgBr was separated by 

suction filtration. The filtrate and the precipitate were separately extracted with ether and washed several times 

with water until they were free from acid. The combined ether extract was evaporated under reduced pressure. 

In conclusion, we have found an environmentally favourable procedure for peroxovanadium(V)-mediated 

biomimetic oxidation of bromide leading to the synthesis of organic ammonium tribromides (OATB). 

Synthesised in this way the crystalline tribromides are stable, and no Br2 and HBr was used. Using OATB 

bromination proceeded smoothly with a variety of substrates which afforded the corresponding bromoorganics in 

good yields. Furthermore, selective bromination of an activated aromatic ring in the presence of an olefinic 

double bond is possible with such a reagent. 
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