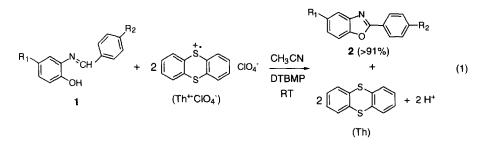


PII: S0040-4039(96)02070-9

2-Arylbenzoxazoles from Phenolic Schiff's Bases by Thianthrene Cation Radical

Koon Ha Park,^{a*} Kun Jun,^{ab} Seung Rim Shin,^b and Sea Wha Oh^b


^aDepartment of Chemistry, Chungnam National University Taejon 305-764, Korea

^b Korea Research Institute of Chemical Technology P.O. Box 107, Yusung, Taejon, 305-606, Korea

Abstract: 2-Arylbenzoxazoles 2 have been made in 91-97% yields from phenolic Schiff's bases 1 by thianthrene cation radical perchlorate (Th⁺·ClO₄⁻) in the presence of 2,6-di-*tert*-butyl-4-methylpyridine. Copyright © 1996 Published by Elsevier Science Ltd

In spite of the various preparative methods of 2-arylbenzoxazoles 2,¹ oxidative intramolecular cyclization of phenolic Schiff's base 1 by chemical oxidation seems to be a general method. Thus, moderate to good yields (24-89%) have been reported in the reaction of 1 with oxidants such as barium manganate,² lead tetraacetate,³ nickel peroxide,⁴ and copper(I) chloride in the presence of dioxygen⁵ as shown in Table 1.

We report herein that thianthrene cation radical perchlorate $(Th^+ ClO_4^-)$ can convert 1 to 2 in excellent yields as shown in eq 1.

The yields% and mp's of the products 2 obtained in eq 1 are compared with those of reported values in Table 1 which shows clearly the drastic improvement in yields (>91%) under much milder reaction conditions.⁶ Particularly noteworthy in our reactions is an intramolecular participation of the phenolic OH in the cyclization, a first example in Th⁺⁺ chemistry, instead of the expected intermolecular cyclization and nucleophilic substitution.⁷ *i.e.* generally 1,3-oxazole and 5-(hydroxyaryl)thianthreniumyl perchlorate are reported to be formed in the reaction of Th⁺⁺ with either 2,6-di-*tert*-butyl-4-R- or 2,6-disubstituted phenols in nitrile solvents respectively.

1		2 (Yield%)		mp	
R ₁	R ₂	observed	reported	observed	reported
Н	Н	97.0	89-70 ^b	100-101	102 ^b , 102-103 ^c
Н	OMe	95.0	85-24 ^d	99-100	100-101°, 102-104
Н	NO ₂	91.3	80-41 ^f	266-268	267-268 ^f , 266 ^g
t-Butyl	Н	93.0	-	81-82	81.5-82 ^h
t-Butyl	NO ₂	95.2	-	190-192 ⁱ	-

Table 1. Comparisons of Yield%^a and mp of **2** Obtained from the Reaction of **1** and Th⁺·ClO₄⁻ with Those of Reported Values

^a The yield was quantitatively determined. ^bref. 3 and 5. ^cref. 4. ^dref. 1(a) and 8. ^cref. 7. ^fref. 8. ^gref. 2. ^href. 9.

ⁱThis benzoxazole is a new compound.

In conclusion, oxidative intramolecular cyclization of 1 to 2 was achieved in a quantitative yield by Th^+ in mild conditions. Further investigations are now in progress to clarify the mechanistic insights.

Acknowledgment: Financial support from the Organic Chemistry Research Center sponsored by Korea Science Engineering and Foundation (1995) and the Basic Science Research Program, Ministry of Education (1995) is gratefully acknowledged.

REFERENCES AND NOTES

- (a) Perry, R. J.; Wilson, B. D.; Miller, R. J. J. Org. Chem. 1992, 57, 2883-2887. (b) Kondo, T.; Yang, S.; Huh, K. -T.; Kobayashi, M.; Kotachi, S.; Watanabe, Y. Chem. Lett. 1991, 1275-1278. (c) E.-Sheikh, M. I.; Marks, A.; Biehl, E. R. J. Org. Chem. 1981, 46, 3256-3259.
- 2. Srivastava, R. G.; Venkataramani, P. S. Syn. Commun. 1988, 18, 1537-1544.
- 3. Stephens, F. F.; Bower, J. D. J. Chem. Soc. 1949, 2971-2972.
- 4. Nakagawa, K.; Onoue, H.; Sugita, J. Chem. Pharm. Bull. 1964, 12, 1135-1138.
- 5. Speier, G. J. Mol. Catal. 1987, 41, 253-260.
- 6. Our reactions were completed within 5 min at room temperature. However, each of other oxidants is reported to require higher temperature (usually >100°C) and much longer reaction times (> 1 hr).
- 7. Shin, S. -R.; Shine, H. J. J. Org. Chem. 1992, 57, 2706-1710.
- 8. Lacán, M.; Rogić, V.; Tabaković, I.; Galijaš, D.; Solomun, T. Electrochim. Acta 1983, 28, 199-207.
- 9. Duennenberger, M.; Maeder, E.; Siegrist, A. E.; Liechti, P. Ger. 1,201,953 (CA 1966, 64, 5099).

(Received in Japan 29 July 1996; revised 14 October 1996; accepted 21 October 1996)