

CHEMISTRY A European Journal

Accepted Article Title: A Versatile Self-Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants Authors: Jing Dong, Hongjin Lv, Xiangrong Sun, Yin Wang, Yuanman Ni, Bo Zou, Nan Zhang, Anxiang Yin, Yingnan Chi, and Changwen Hu This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article. To be cited as: Chem. Eur. J. 10.1002/chem.201804523 Link to VoR: http://dx.doi.org/10.1002/chem.201804523

Supported by ACES

A Versatile Self-Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants

Jing Dong, Hongjin Lv, Xiangrong Sun, Yin Wang, Yuanman Ni, Bo Zou, Nan Zhang, Anxiang Yin, Yingnan Chi,* and Changwen Hu*

Abstract: A decontaminating composite, Mg₃Al-LDH-Nb₆, has been successfully prepared by immobilizing Lindqvist [H₃Nb₆O₁₉]⁵⁻ (Nb₆) into Mg₃Al-based layered double hydroxide (Mg₃Al-LDH). To our knowledge, this represents the first successful approach to immobilize polyoxoniobate. As a versatile catalyst, Mg₃Al-LDH-Nb₆ can effectively catalyze the degradation of both vesicant and nerve agent simulants via multiple pathways under mild conditions. Specifically, the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), converts to the corresponding nontoxic 2-chloroethyl ethyl sulfoxide (CEESO) by selective oxidation; while the tabun (G-type nerve agent) simulant, diethyl cyanophosphonate (DECP), and the VX (V-type nerve agent) simulant, O,S-diethyl methylphosphonothioate (OSDEMP), are detoxified through hydrolysis and perhydrolysis, respectively. A possible mechanism was proposed according to control experiments and spectroscopic studies. The Mg₃Al-LDH-Nb₆ composite exhibits remarkable robustness and can be readily reused for up to ten cycles with negligible loss of its catalytic activity. More importantly, a protective "self-detoxifying" material is easily constructed by integrating Mg₃Al-LDH-Nb₆ onto textiles, which combines the flexible and permeable properties of textiles with the catalytic activity of polyoxoniobate and it removes 94% CEES in 1 h using nearly stoichiometric dilute H₂O₂ (3%) as oxidant with 96% selectivity.

Introduction

Effective decontamination of chemical warfare agents (CWAs) is a vital scientific and humankind issue due to their unanticipated use in past wars and recent terrorist attacks.^[1] Among all kinds of CWAs, nerve agents and vesicants are considered as the most nefarious and dangerous ones. Nerve agents, including Soman, Sarin, Tabun and VX, are organophosphorous compounds, which can be destructed by cleavage of the P-X bonds.^[2] While vesicants such as sulfur mustard (also known as "King of the Battle Gases") is usually detoxified *via* selective oxidation approach.^[3] Although homogeneous catalysts show excellent activities due to highly

Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate))

accessible catalytic active sites, from the practical point of view, the materials that can catalytically decompose CWAs with high robustness and excellent recyclability are more desirable. For example, a self-detoxifying material can be used to produce personal protective equipment by integrating into suits, gloves and boots.

Recently, several kinds of decontamination materials including metal-organic frameworks (MOFs),^[4] metal oxides,^[5] and supported polyoxometalates (POMs)^[6] have been developed and investigated. A series of MOFs containing Lewis acidic Zr⁴⁺ centers have been proven to be effective for the hydrolysis of nerve agents and/or their simulants. Metal oxides and supported POMs also exhibit satisfactory activities in the oxidative decontamination of sulfur mustard simulants. However, most previously reported catalytic materials can only decontaminate CWAs *via* single detoxification pathway (e.g. hydrolysis or oxidation), that causes limitations to the complicated scenarios containing multiple types of CWAs. Therefore, it is essential to develop a versatile and cost-effective material for the effective decontamination of various CWAs simultaneously.

As a special subclass of POMs, polyoxoniobates (PONbs) are a kind of potential versatile catalysts to accelerate the decontamination of CWAs. Hill and Nyman have reported that $K_{12}[Ti_2O_2][XNb_{12}O_{40}]$ (X=Si or Ge)^[7] and $[Nb_6O_{19}]^{8-}$ [8] can catalyze the basic hydrolysis of nerve agent and their simulant in liquid and gas phase. Recently, we first found that a doubleanion complex, $H_{13}[(CH_3)_4N]_{12}[PNb_{12}O_{40}(V^VO)_2(V^{IV}_4O_{12})_2]$, are capable of activating H₂O₂, which can simultaneously catalyze the hydrolysis of nerve agent simulant and the selective oxidation of sulfur mustard simulant in homogeneous system.^[9] However, the poor reusability restricts its practical application. Normally, immobilization is a preferred method to realize the heterogeneity of POMs as it provides dispersed and accessible active sites.^[10] To our knowledge, the immobilization of PONbs is unexplored yet. The possible reasons include: (1) PONbs are highly basic and the immobilization methods based on acidic POMs are unsuitable for PONbs; (2) PONbs have higher charge-density (e.g. [Nb₆O₁₉]: 0.32, [SiNb₁₂O₄₀]: 0.30) and how to balance the negative charge is a challenge;^[11] (3) The precursors of PONbs (e.g. K7HNb6O19 or Nb2O5·nH2O) have limited solubility in water and organic solvents.

Herein we report a novel approach to fabricate a decontaminating material, Mg_3AI -LDH-Nb₆, by integrating active Lindqvist $[H_3Nb_6O_{19}]^{5-}$ (Nb₆) into Mg_3AI -based layered double hydroxide (Mg_3AI -LDH-NO₃). The use of Mg_3AI -LDH as the host are based on the following considerations: (1) LDHs usually have good interlayer anion-exchange capability, (2) the charge density and acid/base property of LDH can be easily tuned by varying elemental compositions and molar ratios,^[12] (3) the special interlayer structure of LDH allows the high exposure of

[[]a] J. Dong, Prof. H. J. Lv, X. R. Sun, Dr. Y. Wang, Dr. Y. M. Ni, Dr. B. Zou, N. Zhang, Prof. A. X. Yin, Prof. Y. N. Chi, Prof. C. W. Hu Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing, 100081 (P.R. China) E-mail: chiyingnan7887@bit.edu.cn cwhu@bit.edu.cn

catalytic active sites of Nb₆, (4) the basicity of Mg₃Al-LDH-NO₃ not only is compatible with the working pH region of Nb₆ but also might provide additional catalytic activity. Interestingly, the obtained Mg₃Al-LDH-Nb₆ composite exhibits versatile catalytic capability for detoxification of different CWA simulants: selective oxidation for sulfur mustard (vesicant agent) simulant, basic hydrolysis for Tabun (G-type nerve agent) simulant. More importantly, such composite exhibits great potential for the preparation of portable, permeable, and economical self-detoxifying material by integrating them onto soft textiles.

Results and Discussion

Synthesis and Characterization of Mg₃Al-LDH-Nb₆

The preparation of Mg₃Al-LDH-Nb₆ composite is illustrated in Figure 1. The Mg₃Al-LDH-NO₃ was first prepared by the coprecipitation of Mg(NO₃)₂ and Al(NO₃)₃ solution with NaOH under N₂ atmosphere. After aging at 80 °C for 12 h, the precipitate was washed with deionized water and re-dispersed in deionized water to form a slurry. Hydrothermal treatment of TMA-Nb₆ and Mg₃Al-LDH-NO₃ slurry at 100 °C for 24 h produces Mg₃Al-LDH-Nb₆. PXRD pattern of the Mg₃Al-LDH-Nb₆ (Figure 2a and S1) reveals the characteristic diffraction peak of the (003) lattice plane for LDH splits into two peaks with a new peak emerging at lower angle region compared with that of Mg₃Al-LDH-NO₃, demonstrating that Nb₆ is partially intercalated into the host layers. According to the basal spacing of d(003) (11.1 Å), the calculated gallery height of 0.63 nm reveals that Nb₆ cluster is inserted with its C_2 axis nearly parallel to the LDH layers. Furthermore, the (110) diffraction peak ($2\theta = 60.9^{\circ}$) is unshifted, indicating that the structure of the LDH is retained after the intercalation of Nb₆.^[13] Based on the inductively coupled plasma atomic emission spectroscopy (ICP-AES) and CHN elemental analyses (Table S1), we concluded that around 58% of NO3⁻ was exchanged by Nb6. The FT-IR absorption bands of Mg₃Al-LDH-Nb₆ at 865, 720 and 541 cm⁻¹ are attributed to the vibrations of Nb=Ot and Nb-Ob (t, terminal; b, bridging), respectively (Figure 2b). The characteristic peak of residual NO3is observed at 1383 cm⁻¹, which is consistent with the result of PXRD.

Figure 1. The synthesis process of $\mathsf{Mg}_3\mathsf{AI-LDH-Nb}_6$ by a hydrothermal ion-exchange method.

Control experiments indicate that the loading amounts of Nb₆ can be regulated by tuning the amount of TMA-Nb₆ used in the hydrothermal reactions (Table 1) and a maximum loading amount of 28 wt% (corresponding to NO₃⁻ exchanging rate of 58%) can be reached. In addition, K₇HNb₆O₁₉ was also used as Nb source under otherwise identical conditions, but the PXRD (Figure S2) suggests that [HNb₆O₁₉]⁷⁻ could not be incorporated into Mg₃Al-LDH. Such difference might be attributed to the higher charge-density of [HNb₆O₁₉]⁷⁻ (0.28) compared to [H₃Nb₆O₁₉]⁵⁻ (0.20). Furthermore, we also found that the *in situ* formed Mg₃Al-LDH-NO₃ slurry and the hydrothermal treatment are necessary to the synthesis of Mg₃Al-LDH-Nb₆. No target product was obtained when using dried Mg₃Al-LDH-NO₃ or performing the ion-exchange at ambient temperature.

Figure 2. (a) The XRD patterns of $Mg_3AI-LDH-Nb_6$ and $Mg_3AI-LDH-NO_3$; (b) FT-IR spectra of $Mg_3AI-LDH-NO_3$, $Mg_3AI-LDH-Nb_6$, and TMA-Nb_6.

SEM and TEM images show that the as-prepared Mg₃Al-LDH-Nb₆ (Figure 3a-3c) exhibits typical nanosheet morphology of LDH with the sizes of 200 to 400 nm. Energy dispersive X-ray spectroscopy (EDS) (Figure S5) and elemental mapping measurements (Figure 3d) reveal that the composite contains

10.1002/chem.201804523

WILEY-VCH

Mg, Al, Nb, O and N elements, and Nb is evenly dispersed in the LDH layers. Figure S6 shows the BET measurements on the composite and the host. The N₂ adsorption-desorption isotherms of Mg₃Al-LDH-Nb₆ exhibit the type IV isotherm pattern with a clear hysteresis loop, indicating the presence of mesopores. It is worth mentioning that the surface area of Mg₃Al-LDH-Nb₆ (176.09 m²/g) is three times higher than that of Mg₃Al-LDH-NO₃ (56.02 m²/g) (Table S2) and such increased surface area could facilitate the diffusion of substrates to the catalytic active centers and thus improve the decontamination efficiency.

Figure 3. (a) and (b) SEM images of Mg_3AI -LDH-Nb₆; (c) TEM image of Mg_3AI -LDH-Nb₆; (d) EDS elemental mapping of Mg_3AI -LDH-Nb₆.

Oxidative Decontamination of CEES

Given the fact that Nb₆ can activate H₂O₂ in homogeneous system^[6e] and selective oxidation is the most promising pathway for sulfur mustard degradation,^[14] the catalytic activity of Mg₃Al-LDH-Nb6 was first evaluated in the oxidative decontamination of CEES, a sulfur mustard simulant (Figure 4a). In a typical reaction, CEES (0.5 mmol), 1,3-dichlorobenzene (internal standard, 0.25 mmol) and Mg₃Al-LDH-Nb₆ (0.003 mmol) were dispersed in acetonitrile (4 mL). After 2 min of stirring at room temperature, 3 % aqueous H2O2 (0.525 mmol) was added to initiate the reaction. Figure 4b shows that 95% of CEES is converted in 2 h and the half-life (50% conversion of CEES) is about 15 min. In the oxidative degradation of sulfur mustard, the selectivity is a very important factor to consider as the nontoxic sulfoxide is more preferred than the highly toxic sulfone. In our experiment, the selectivity for CEESO exceeds 96%, which is much higher than most of the reported catalytic materials, such as saponite^[15] (Sele.: 73%, oxidant: 30% aq. H₂O₂), nanosized metal oxidates $^{[16]}$ (Sele.: 71%, oxidant: 30% aq. $H_2O_2),$ and materials^[5b] porous (Sele. 82%, oxidant: tert-butyl hydroperoxide). In addition, our catalytic system is more environmentally benign due to the use of nearly stoichiometric, diluted H_2O_2 (3%) as oxidant.

Figure 4. (a) Catalytic decontamination of CEES; (b) Concentration timecourse plots for CEES oxidative transformation using $Mg_3AI-LDH-Nb_6$; (c) Recycle test for CEES decontamination using $Mg_3AI-LDH-Nb_6$. Reaction conditions: CEES (0.5 mmol), $Mg_3AI-LDH-Nb_6$ (0.003 mmol) and 1,3dichlorobenzene (internal standard, 0.25 mmol), 3% aqueous H_2O_2 (0.525 mmol) and acetonitrile (4 mL) at room temperature.

To evaluate the role of Nb₆ and Mg₃Al-LDH to the degradation reaction, a series of control experiments were conducted. No appreciable conversion of CEES was observed in the absence of catalyst (Table 1, entry 7). Under otherwise identical conditions, Mg₃Al-LDH-NO₃ only catalyzes 12% conversion of CEES (Table 1, entry 1), while the precursor TMA-Nb₆ in homogeneous system decontaminates 100% CEES within 15 min (Table 1, entry 2). The activity of Mg₃Al-LDH-Nb₆ with different loading amounts was also investigated (Table 1, entry 3-6). The conversion of CEES increases with the loading amount of Nb₆. Above analyses suggest that the intercalated Nb₆ clusters work as main catalytic active sites. The Mg₃Al-LDH-Nb₆-28% was used in the following decontamination reactions.

Table 1. Decontamination of CEES using different catalysts. ^[a]						
Entry	Catalyst	Time (h)	Conv. (%)	Selec. (%)		
1	Mg ₃ Al-LDH-NO ₃	2	12	99		
2	TMA-Nb6 ^[b]	0.25	100	98		

3	Mg ₃ AI-LDH-Nb ₆ -13%	2	31	99
4	Mg ₃ Al-LDH-Nb ₆ -20%	2	68	97
5	Mg ₃ Al-LDH-Nb ₆ -25%	2	81	96
6	Mg ₃ Al-LDH-Nb ₆ -28%	2	95	97
7	Blank	2	0	0

[a] Reaction conditions: CEES (0.5 mmol), catalyst (0.003 mmol) and 1,3-dichlorobenzene (internal standard, 0.25 mmol), 3% aqueous H_2O_2 (0.525 mmol) and acetonitrile (4 mL) at room temperature; [b] TMA-Nb_6 catalyzes CEES decontamination in homogeneous system.

According to previous investigations, radical process might be involved in the oxidation reaction using H_2O_2 as oxidant. To understand the mechanism, radical scavengers, such as pbenzoquinone (for $\bullet O_2^{-}/\bullet O_2H$), *tert*-butyl alcohol and diphenylamine (for •OH),^[17] were chosen and used in the CEES oxidation reaction. As shown in Figure 5a, after adding scavengers the conversion of CEES remains unchanged and so we can rule out any radical species responsible for the selective oxidation of CEES. As POMs tend to form peroxo-metal species in the presence of H_2O_2 ,^[18] we proposed a possible non-radical reaction mechanism. As shown in Figure 5c, the intercalated hexaniobates may interact with H_2O_2 to form active peroxo species (side-on peroxo or end-on hydroperoxo), which subsequently oxidize the accessible CEES. Such speculation is supported by Raman spectra of H₂O₂-treated TMA-Nb₆ solution, where a peak at 867 cm⁻¹ attributed to the O-O stretch is observed (Figure 5b), proving the existence of active peroxo species.

Figure 5. (a) Decontamination of CEES catalyzed by Mg₃Al-LDH-Nb₆ without adding radical scavengers (red); with adding diphenylamine (blue), *p*-benzoquinone (pink), and *t*-butanol (green) as radical scavengers; (b) Raman spectra of TMA-Nb₆ before and after adding 3% aqueous H₂O₂; (c) Possible reaction mechanism of CEES decontamination.

WILEY-VCH

To verify the heterogeneity of Mg₃Al-LDH-Nb₆ composite, leaching test was performed. The catalyst was filtered off when the conversion reached about 30%. The solution was kept running under the same conditions for another 1.5 h, but negligible conversion of CEES was observed (Figure S12). Moreover, ICP-AES (detection limit ca. 1 ppm) reveals that no detectable niobium exists in the filtrate. The above results confirm that Mg₃Al-LDH is an effective and stable host for Nb₆ cluster. In addition, we also evaluated the recyclability and stability of such Mg₃Al-LDH-Nb₆ composite. The activity of Mg₃Al-LDH-Nb₆ shows negligible decrease after ten cycles (Figure 4c) and also no obvious change is observed from the PXRD patterns and IR spectra before and after the recycle experiment (Figure S13 and S14). The stability of our Mg₃Al-LDH-Nb₆ composite outperforms that of the reported organicinorganic hybrids.^[19] More importantly, during each recycle the selectivity maintains above 95%. The robustness and recyclability of Mg₃Al-LDH-Nb₆ composite makes it a promising catalytic material for effective decontamination of sulfur mustard.

Hydrolytic decontamination of DECP

Given the catalytic performance of hexaniobate in basic hydrolysis of nerve agents,^[8] we examine the activity of the Mg₃Al-LDH-Nb₆ towards hydrolysis of the tabun simulant, DECP (Figure 6a). Using Mg₃Al-LDH-Nb₆ as catalyst, 97% of DECP is converted into the nontoxic product, diethyl hydrogen phosphate (DEHP), in 30 min with a half-life of ~5 min in the absence of extra organic base such as N-ethylmorpholine that is commonly used in MOF-catalyzed decontaminating system^[4] (Figure 6b). In contrast, the blank test shows only 20% DECP decontamination in 30 min. Furthermore, the control experiments support that both Nb₆ and Mg₃Al-LDH do catalyze the basic hydrolysis reaction: conversions are 100% and 40%, respectively and this displays that Mg₃Al-LDH not only acts as a good supporter but also provides additional catalytic activity (Figure 6c).

Figure 6. (a) Catalytic hydrolysis of DECP; (b) Concentration time-course plots for DECP transformation with Mg₃Al-LDH-Nb₆ and without catalyst; (c) DECP decontamination using different catalysts. Reaction conditions: DECP (20 µL), catalyst (0.003 mmol), nitrobenzene (internal standard, 3.25×10^{-2} mmol), H₂O (100 µL), DMF (1200 µL) at room temperature for 30 min.

Perhydrolytic decontamination of OSDEMP

In addition, we also evaluated the activity of Mg₃Al-LDH-Nb₆ composite towards detoxifying V-type nerve agent, O-ethyl-S-[2-(diisopropylamino)ethyl]-methylphosphono-thioate (VX), that is more potent than Sarin with lethal dose of 0.0096 mg/m³. Hydrolysis of VX under basic conditions leads to the cleavage of both P-S and P-O bonds: the product of P-S cleavage is the nontoxic EMPA (ethyl methylphosphonic acid) while P-O cleavage yields the toxic EA-2192.[20] In contrast, the perhydrolysis of VX in the presence of H₂O₂ is a more attractive route due to the exclusive cleavage of P-S bond and fast reaction rate.^[21] The low toxic simulant, OSDEMP, was used to investigate the activity of Mg₃Al-LDH-Nb₆ (Figure 7a) and the extent of decontamination is monitored by ³¹P NMR. Under mild conditions, the Mg₃Al-LDH-Nb₆ composite removes 90% of OSDEMP within 5 h while the blank control experiment only yields a conversion of 15%. More importantly, only the product of P-S cleavage, nontoxic EMPA (δ = 26.5 ppm), is detected (Figure 7b). Generally, the perhydrolysis proceeds in strong alkali solution, where the in situ generated peroxy anions (OOH)

react with VX.^[21] As both the Mg₃AI-LDH and the intercalated Nb₆ are basic, one might speculate that the activity of Mg₃Al-LDH-Nb₆ comes from its alkalinity. To better understand the catalytic process, a control experiment using 2 equivalents NaOH as homogeneous catalyst was performed under otherwise identical conditions. Surprisingly, only 33% of OSDEMP was converted (Figure 7b and S15) which is much lower than that of Mg₃Al-LDH-Nb₆-catalyzed system (90%), indicating that alkalinity is not the main factor to accelerate the perhydrolysis reaction. In other control experiments (Figure S16), the host itself, Mg₃AI-LDH-NO₃, converts only 42% of OSDEMP in 5 h, while TMA-Nb₆ in homogeneous system decomposes 100% of OSDEMP in 30 min. Therefore, we speculate that the intercalated Nb₆ plays a key role in the perhydrolysis process and the interactions between Nb₆ and H₂O₂ are responsible for its catalytic performance. To our knowledge, the reported Mg₃Al-LDH-Nb₆ represents the first material that can simutaneously decontaminate vesicant, G-type nerve agent, and V-type nerve agent.

10.1002/chem.201804523

WILEY-VCH

Figure 7. (a) Two pathways of OSDEMP degradation; (b) ³¹P spectra of OSDEMP decontamination using Mg₃Al-LDH-Nb₆ (red) and NaOH (blue), and without catalyst (black) after 5 h. Reaction conditions: OSDEMP (5 µL), D₂O (500 µL), acetonitrile (200 µL), catalyst (0.008 mmol for Mg₃Al-LDH-Nb₆ and 0.016 mmol for NaOH) and 30% aqueous H₂O₂ (700 µL) at room temperature.

Decontaminaiton of CEES by the Mg_Al-LDH-Nb_based Material

10.1002/chem.201804523

WILEY-VCH

Furthermore, we have investigated the potential practical application of such Mg₃Al-LDH-Nb₆ composite in fabricating protective materials. Recently, several MOF-based selfdetoxifying materials towards CWAs have been reported.^[22] Given the excellent activity, high robustness and recyclability of our Mg₃Al-LDH-Nb₆ composite, we initiatively construct a selfcleaning clothing by incorporating Mg₃Al-LDH-Nb₆ onto carbon cloth (CC) substrate. Typically, a so-called "catalyst ink" was first prepared by dispersing freshly-prepared Mg₃Al-LDH-Nb₆ into the DMF solution of polyvinylidene fluoride. Then, a piece of carbon cloth was soaked in the "catalyst ink" under ultrasonic conditions to obtain the carbon cloth-supported Mg₃Al-LDH-Nb₆ (Mg₃Al-LDH-Nb₆-CC) (Figure 8a). The SEM images and optical photographs demonstrate that Mg₃Al-LDH-Nb₆ is well-dispersed on the carbon cloth (Figure 8b-c and S7): the integrated composite maintains the typical plate-like morphology of Mg₃Al-LDH-Nb₆ without obvious aggregation and the flexibility of the textile (Figure 8d). It is noted that such supporting substrate can also be extended to other textiles; the purpose of using carbon cloth is to

Figure 8. (a) Procedure for preparing Mg₃Al-LDH-Nb₆-CC; (b) and (c) SEM images of the carbon cloth fibers; (d) Optical photograph of Mg₃Al-LDH-Nb₆-CC under twisted state; (e) PXRD patterns of Mg₃Al-LDH-Nb₆-CC, Mg₃Al-LDH-Nb₆ and CC.

obtain high-quality SEM images. Furthermore, XRD patterns confirm that the structure of Mg₃Al-LDH-Nb₆ keeps unchanged (Figure 8e). When a solution containing CEES and H₂O₂ was absorbed by such cloth (Figure 9a), without further treatment 94% CEES was decontaminated in 1 h and the selectivity for CEESO reaches 96% (Figure 9b). After the first catalytic run, we recycled the "self-cleaning clothing" by simply washing with H₂O and acetonitrile, and reused for the next run. Even after three catalytic runs, the activity and selectivity is still comparable to that of the first run (Figure 9c), indicating the high robustness of such Mg₃Al-LDH-Nb₆-CC composite.

Figure 9. (a) Decontamination of CEES on $Mg_3AI-LDH-Nb_6-CC$; (b) Concentration time-course plots for the CEES oxidative transformation on $Mg_3AI-LDH-Nb_6-CC$; (e) Recycle test for CEES decontamination on $Mg_3AI-LDH-Nb_6-CC$.

Conclusions

In summary, the active hexaniobate cluster has been successfully intercalated into Mg₃Al-LDH to form an immobilized Mg₃Al-LDH-Nb₆. As a versatile catalyst, Mg₃Al-LDH-Nb₆ can effectively decontaminate three CWA simulants through the optimal pathway of each: selectively oxidizing sulfur mustard simulant (CEES), hydrolyzing a G-type nerve agent simulant (DECP), and perhydrolyzing a V-type nerve agent simulant (OSDEMP). As an all-inorganic material, such Mg₃Al-LDH-Nb₆ composite exhibits excellent stability and recyclability for continuous catalytic runs. Importantly, a self-detoxifying cloth is fabricated by integrating Mg₃Al-LDH-Nb₆ onto textiles that can remove 94% of CEES without stirring in 1 h in the presence of nearly stoichiometric 3% H_2O_2 . The reported Mg₃Al-LDH-Nb₆ composite catalyst not only represents a novel and effective

decontaminating material but also offers a new opportunity in making portable, permeable, and economical protective selfdetoxifying clothing (e.g. protective suits, gloves, and boots, etc.) against chemical warfare agents.

Experimental Section

Materials and Methods

All reagents and other starting materials were obtained commercially and used as received. $K_7HNb_6O_{19}^{[23]}$ and $[(CH_3)_4N]_5[H_3Nb_6O_{19}]$ (TMA-Nb₆)^[24] were prepared using the literature methods. 2-chloroethyl ethyl sulfide (CEES) was purchased from Aladdin Industrial Corporation. Diethvl cyanophosphonate (DECP) and О, S-diethylmethyl phosphonothioate (OSDEMP) were purchased from Alfa Aesar (China) Chemicals Co., Ltd.. Caution: the simulants of CWAs (CEES, DECP, OSDEMP) are highly toxic and must be handled only by trained personnel using applicable safety procedures in a closed system or in a hood under good ventilation. Powder X-ray diffraction (PXRD) data on samples were recorded on a Bruker instrument equipped with graphitemonochromatized Cu K α radiation ($\lambda = 0.154$ nm; scan speed = 5° min⁻¹; 20 = 5-70°) at room temperature. IR spectra were collected (as KBrpressed pellets) on a Nicolet 170SXFT-IR spectrophotometer in the range 400-4000 cm⁻¹. The X-ray photoelectron spectrum (XPS) analysis was conducted on an ESCALAB 250 spectrometer using an Al K α radiation as the X-ray source (1486.7 eV) with a pass energy of 30 eV and the pressure inside the analyzer was maintained at 10-9 Torr. Elemental analyses (C, H and N) were conducted on an ElementarVario EL cube Elmer CHN elemental analyzer; Mg, Al and Nb were determined by a ThermoiCAP 6000 atomic emission spectrometer. TGA of the sample was performed using a Shimadzu DTG-60AH thermal analyzer under air with a heating rate of 10 °C min-1. The morphology and microstructure of the samples were observed by scanning electron microscopy (SEM, JEOLS-4800) and transmission electron microscopy (TEM, JEOL JEM-2010). The Brunauer-Emmett-Teller (BET) specific surface areas were performed at 77 K in a Belsorp-max surface area detecting instrument. The GC analyses were performed on Shimadzu GC-2014C with a FID detector equipped an HP-5 ms capillary column. ³¹P NMR spectra were determined on a Bruker 400 MHz instrument in D_2O_2 , and all the chemical shifts were referenced to aqueous H_3PO_4 solution (85%). Raman spectra were obtained on SNFT-SRLab1000 equipped with an excitation wavelength of 785 nm.

Synthesis of Mg₃AI-LDH-Nb₆ Composite

A 10 mL solution containing 6 mmol of Mg(NO₃)₂ and 2 mmol of Al(NO₃)₃, and an aqueous solution of NaOH (0.2 M) were simultaneously dropped into a 250 mL three-necked flask with vigorous stirring under N₂ at room temperature. The relatively adding rate of two solutions was adjusted to keep the final pH value of the mixture to ~10. After aging at 80 °C for 12 h, the precipitate was washed with water for 3 times and redispersed in 8 mL water preparing Mg₃Al-LDH-NO₃ slurry. Then, 2 mL Mg₃Al-LDH-NO₃ slurry and 8 mL TMA-Nb₆ aqueous solution (containing 0.1 g TMA-Nb₆ for Mg₃Al-LDH-Nb₆-13%; 0.4 g TMA-Nb₆ for Mg₃Al-LDH-Nb6-20%; 0.8 g TMA-Nb6 for Mg3Al-LDH-Nb6-25% and 1.0 g TMA-Nb6 for Mg₃Al-LDH-Nb₆-28%) were mixed and stirred for 20 min under N₂ at room temperature. Then the mixture was transferred to a Teflon-lined stainless steel autoclave (23 mL), kept in an oven at 100 °C for 24 h and left to cool down to room temperature. A white solid of Mg₃Al-LDH-Nb₆ composite was obtained after washing with water for 3 times and drying at 80 °C for 12 h under vacuum.

Synthesis of Mg₃AI-LDH-Nb₆-CC

60 mg wet Mg₃Al-LDH-Nb₆ sample was dispersed in 2 mL DMF under ultrasonic conditions for 10 min in a vial. 1 mL polyvinylidene fluoride (PVDF) solution (20 mg) was then added to the suspension. The combined Mg₃Al-LDH-Nb₆/PVDF suspension was sonicated for additional 10 min, resulting in a catalyst "ink". A piece of carbon cloth (CC) was immersed in the catalyst "ink" under ultrasonic conditions for 10 min and then dried under vacuum at 70 °C for 12 h.

Catalytic oxidation of 2-chloroethyl ethyl sulfide (CEES) with $Mg_3Al\-LDH-Nb_6$

The selective oxidation (decontamination) of CEES using different catalysts were performed as follows. Catalyst (0.003 mmol) was dispersed in acetonitrile (4 mL) and to this solution CEES (0.5 mmol) and 1,3-dichlorobenzene (internal standard, 0.25 mmol) were added. After stirring for 2 minutes at room temperature, 3% aqueous H_2O_2 (0.525 mmol) was added dropwise. The reaction was monitored by gas chromatography at various time intervals and the products were qualitatively analyzed by GC-MS.

Catalytic hydrolysis of diethyl cyanophosphonate (DECP) with $Mg_{3}Al\text{-LDH-Nb}_{6}$

The hydrolysis of DECP with various catalysts were performed as follows. Catalyst (0.003 mmol) was added to the mixture of H₂O (100 μ L) and DMF (1200 μ L), followed by addition of DECP (0.12 mmol) and nitrobenzene (internal standard, 3.25×10⁻² mmol). The reaction was monitored by gas chromatography at various time intervals.

Catalytic Perhydrolysis of O,S-diethyl methylphosphonothioate (OSDEMP) with Mg_3Al-LDH-Nb_6

The perhydrolysis of OSDEMP using different catalysts were conducted as follows. Catalyst (0.008 mmol) was dispersed in the mixture of D₂O (500 µL) and acetonitrile (200 µL). After stirring for 2 min at room temperature, OSDEMP (5 µL) and 30% aqueous H₂O₂ (700 µL) was added to initiate the reaction. The mixture was monitored by ³¹P NMR at various time intervals.

Catalytic Decontamination of CEES with Mg₃Al-LDH-Nb₆-CC

The degradation of CEES using Mg₃Al-LDH-Nb₆-CC were conducted as follows. CEES (0.1 mmol), 1,3-dichlorobenzene (internal standard, 0.05 mmol) and 3% aqueous H₂O₂ (0.105 mmol) were mixed in acetonitrile (400 μ L) to produce a "toxic solution". The above prepared "toxic solution" was absorbed by the cloth (Figure 9a) and the degradation experiment was performed under ambient conditions without other treatment. To detect the products, at various time intervals, the cloth was washed with acetonitrile (500 μ L) and the extract was monitored by gas chromatography. The catalytic data in Figure 9b are from four parallel experiments.

Acknowledgements ((optional))

This work was financially supported by the National Natural Science Foundation of China (21671019, 21871026, 21771020), 973 Program (2014CB932103) and the Thousand Young Talents Program of China.

Keywords: chemical warfare agents • self-detoxifying material • heterogeneous catalysis • decontamination • polyoxoniobates

- a) Y. C. Yang, J. A. Baker, J. R. Ward, *Chem. Rev.* **1992**, *92*, 1729-1743; b) K. Kim, O. G. Tsay, D. A. Atwood, D. G. Churchill, *Chem. Rev.* **2012**, *111*, 5345-5403; c) B. M. Smith, *Chem. Soc. Rev.* **2008**, *37*, 470-478.
- [2] S. S. Mondal, H. Holdt, Angew. Chem. Int. Ed. 2016, 55, 42-44.
- [3] A. J. Howarth, C. T. Buru, Y. Liu, A. M. Ploskonka, K. J. Hartlieb, M. McEntee, J. J. Mahle, J. H. Buchanan, E. M. Durke, S. S. Al-Juaid, J. F. Stoddart, J. B. DeCoste, J. T. Hupp, O. K. Farha, *Chem. Eur. J.* 2017, 23, 214-218.
- [4] a) Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Moon, J. T. Hupp, O. K. Farha, Coord. Chem. Rev. 2017, 346, 101-111; b) K. Vellingiri, L. Philip, K. Kim, Coord. Chem. Rev. 2017, 353, 159-179; c) N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, R. Q. Snurr. Chem. Soc. Rev. 2017. 46. 3357-3385; d) S. Moon. Y. Liu, J. T. Hupp, O. K. Farha, Angew. Chem. Int. Ed. 2015, 54, 6795-6799; e) T. Islamoglu, M. A. Ortuño, E. Proussaloglou, A. J. Howarth, N. A. Vermeulen, A. Atilgan, A. M. Asiri, C. J. Cramer, O. K. Farha, Angew. Chem. Int. Ed. 2018, 57, 1949-1953; f) J. E. Mondloch, M. J. Katz, W. C. Isley III, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, O. K. Farha, Nature Mater. 2014, 14, 512-516; g) M. J. Katz, S. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp, O. K. Farha, Chem. Sci. 2015, 6, 2286-2291; h) R. Gil-San-Millan, E. López-Maya, M. Hall, N. M. Padial, G. W. Peterson, J. B. DeCoste, L. M. Rodríguez-Albelo, J. E. Oltra, E. Barea, J. A. Navarro, ACS Appl. Mater. Interfaces 2017, 9, 23967-23973; i) E. López-Maya, C. Montoro, L. M. Rodríguez-Albelo, S. D. A. Cervantes, A. A. Lozano-Pérez, J. L. Cenís, E. Barea, J. A. Navarro, Angew. Chem. Int. Ed. 2015, 54, 6790-6794.
- a) S. R. Livingston, C. C. Landry, *J. Am. Chem. Soc.* 2008, *130*, 13214-13215; b) C. R. Ringenbach, S. R. Livingston, D. Kumar, C. C. Landry, *Chem. Mater.* 2005, *17*, 5580-5586; c) A. A. Vernekar, T. Das, G. Mugesh, *Angew. Chem. Int. Ed.* 2016, *55*, 1412-1416; d) K. Khulbe, P. Roy, A. Radhakrishnan, G. Mugesh, *chemcatchem* 2018, doi: 10.1002/cctc.201801220.
- [6] a) N. M. Okun, T. M. Anderson, C. L. Hill, J. Mol. *Catal. A: Chem.* 2003, 197, 283-290; b) R. D. Gall, C. L. Hill, J. E. Walker, *Chem. Mater.* 1996, 8, 2523-2527; c) R. D. Gall, C. L. Hill, J. E. Walker, *J. Catal.* 1996, 159, 473-478; d) N. M. Okun, T. M. Anderson, C. L. Hill, *J. Arn. Chem. Soc.* 2003, 125, 3194-3195; e) X. Q. Li, J. Dong, H. F. Liu, X. R. Sun, Y. N. Chi, C. W. Hu, *J. Hazard. Mater.* 2018, 344, 994-999; f) K. P. Sullivan, W. A. Neiwert, H. Zeng, A. K. Mehta, Q. Yin, D. A. Hillesheim, S. Vivek, P. Yin, D. L. Collins-Wildman, E. R. Weeks, T. Liu, C. L. Hill, *Chem. Commun.* 2017, 53, 11480-11483; g) Y. J. Hou, H. Y. An, Y. M. Zhang, T. Hu, W. Yang, S. Z. Chang, *ACS Catal.* 2018, 8, 6062-6069.
- W. Guo, H. Lv, K. P. Sullivan, W. O. Gordon, A. Balboa, G. W. Wagner, D. G. Musaev, J. Bacsa, C. L. Hill, *Angew. Chem. Int. Ed.* 2016, *55*, 7403-7407.
- a) M. K. Kinnan, W. R. Creasy, L. B. Fullmer, H. L. Schreuder-Gibson, M. Nyman, *Eur. J. Inorg. Chem.* 2014, 2361-2367; b) A. L. Kaledin, D. M. Driscoll, D. Troya, D. L. Collins-Wildman, C. L. Hill, J. R. Morris, D. G. Musaev, *Chem. Sci.* 2018, *9*, 2147-2158.
- [9] J. Dong, J. F. Hu, Y. N. Chi, Z. G. Lin, B. Zou, S. Yang, C. L. Hill, C. W. Hu, Angew. Chem. Int. Ed. 2017, 56, 4473-4477.
- [10] Y. Zhou, G. J. Chen, Z. Y. Long, J. Wang, RSC Adv. 2014, 4, 42092-42113.

- [11] a) M. Nyman, *Dalton Trans.* 2011, *40*, 8049-8058; b) H. L. Wu, Z. M. Zhang, Y. G. Li, X. L. Wang, E. B. Wang, *CrystEngComm* 2015, *17*, 6261-6268.
- [12] a) Q. Wang, D. O'Hare, *Chem. Rev.* 2012, *112*, 4124-4155; b) G. L.
 Fan, F. Li, D. G. Evans, X. Duan, *Chem. Soc. Rev.* 2014, *43*, 7040-7066; c) S. Omwoma, W. Chen, R. Tsunashima, Y. F. Song, *Coord. Chem. Rev.* 2014, *258-259*, 58-71.
- [13] a) P. Liu, H. Wang, Z. C. Feng, P. L. Ying, C. Li, J. Catal. 2008, 256, 345-348; b) P. Liu, C. H. Wang, C. Li, J. Catal. 2009, 262, 159-168; c)
 S. Zhao, J. H. Xu, M. Wei, Y. F. Song, Green Chem. 2011, 13, 384-389; d) Y. Chen, Z. X. Yao, H. N. Miras, Y. F. Song, Chem. Eur. J. 2015, 21, 10812-10820; e) T. F. Li, Z. L. Wang, W. Chen, H. N. Miras, Y. F. Song, Chem. Eur. J. 2017, 23, 1069-1077; f) X. Zhang, Y. Y. Tang, N. L. Qiao, Y. Li, S. Q. Qu, Z. P. Hao, Appl. Catal. B: Environ. 2015, 176-177, 130-138.
- [14] Y. Liu, S. Moon, J. T. Hupp, O. K. Farha, ACS nano 2015, 9, 12358-12364.
- [15] F. Carniato, C. Bisio, R. Psaro, L. Marchse, M. Cuidotti, Angew. Chem. Int. Ed. 2014, 53, 10095-10098.
- [16] C. Bisio, F. Carniato, C. Palumbo, S. L. Safronyuk, M. F. Starodub, A. M. Katsev, L. Marchese, M. Cuidotti, *Catal. Today* 2016, 277, 192-199.
- [17] a) L. L. Zhang, Y. L. Nie, C. Hu, J. H. Qu, *Appl. Catal. B: Environ.* 2012, 125, 418-424; b) J. K. Li, X. Q. Huang, S. Yang, H. W. Ma, Y. N. Chi, C. W. Hu, *Inorg. Chem.* 2015, *54*, 1454-1461.
- [18] a) N. Mizuno, K. Kamata, *Coord. Chem. Rev.* 2011, 255, 2358-2370; b)
 L. Y. Fan, Y. Y. Hong, J. Cao, C. W. Hu, *RSC Adv.* 2016, *6*, 56656-56660.
- [19] a) Y. Liu, A. J. Howarth, J. T. Hupp, O. K. Farha, *Angew. Chem. Int. Ed.* **2015**, *54*, 9001-9005; b) Y. Liu, C. T. Buru, A. J. Howarth, J. J. Mahle, J. H. Buchanan, J. B. DeCoste, J. T. Hupp, O. K. Farha, *J. Mater. Chem. A* **2016**, *4*, 13809-13813.
- [20] a) S. Moon, G. W. Wagner, J. E. Mondloch, G. W. Peterson, J. B. DeCoste, J. T. Hupp, O. K. Farha, *Inorg. Chem.* 2015, *54*, 10829-10833; b) P. K. Gutch, A. Mazumder, G. Raviraju, *RSC Adv.* 2016, *6*, 2295-2301; c) Y. Yang, L. L. Szafraniec, W. T. Beaudry, D. K. Rohrbaugh, *J. Am. Chem. Soc.* 1990, *112*, 6621-6627; d) G. W. Wagner, L. R. Procell, R. J. O'Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, K. J. Klabunde, *J. Am. Chem. Soc.* 2001, *123*, 1636-1644; e) G. W. Wagner, G. W. Peterson, J. J. Mahle, *Ind. Eng. Chem. Res.* 2012, *51*, 3598-3603; f) T. J. Bandosz, M. Laskoski, J. Mahle, G. Mogilevsky, G. W. Peterson, J. A. Rossin, G. W. Wagner, *J. Phys. Chem. C* 2012, *116*, 11506-11614.
- [21] a) Y. Yang, L. L. Szafraniec, W. T. Beaudry, J. Org. Chem. 1993, 58, 6964-6965; b) G. W. Wagner, Y. Yang, Ind. Eng. Chem. Res. 2002, 41, 1925-1928; c) G. W. Wagner, Environ. Sci. Technol. 2015, 49, 3755-3760.
- [22] a) J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson, G. N. Parsons, *Angew. Chem. Int. Ed.* 2016, *55*, 13224-13228; b) D. T. Lee, J. Zhao, C. J. Oldham, G. W. Peterson, G. N. Parsons, *ACS Appl. Mater. Interfaces* 2017, *9*, 44847-44855; c) D. A. Giannakoudakis, Y. Hu, M. Florent, T. J. Bandosz, *Nanoscale Horiz*. 2017, *2*, 356-364; d) A. X. Lu, M. McEntee, M. A. Browe, M. G. Hall, J. B. DeCoste, G. W. Peterson, *ACS Appl. Mater. Interfaces* 2017, *9*, 13632-13636.
- [23] C. M. Flynn, G. D. Stucky, *Inorg. Chem.* **1969**, *8*, 332-334.
- [24] L. B. Fullmer, R. H. Mansergh, L. N. Zakharov, D. A. Keszler, M. Nyman, *Gryst. Growth. Des.* **2015**, *15*, 3885-3592.

WILEY-VCH

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

FULL PAPER

A novel decontaminating material, Mg₃Al-LDH-Nb₆, was prepared by immobilizing hexaniobate into layered double hydroxide. As a versatile catalyst, Mg₃Al-LDH-Nb₆, effectively degrades a sulfur mustard simulant by selective oxidation, a G-type and a Vtype nerve agent simulants by hydrolysis and perhydrolysis, respectively. Furthermore, such catalyst can be integrated onto textiles to construct a portable and permeable self-detoxifying clothing.

Jing Dong, Hongjin Lv, Xiangrong Sun, Yin Wang, Yuanman Ni, Bo Zou, Nan Zhang, Anxiang Yin, Yingnan Chi,* and Changwen Hu*Author(s), Corresponding Author(s)*

Page No. – Page No.

A Versatile Self-Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants

Layout 2:

FULL PAPER

((Insert TOC Graphic here; max. width: 11.5 cm; max. height: 2.5 cm))

Author(s), Corresponding Author(s)*

Page No. – Page No. Title

Text for Table of Contents

Accepted Manuscript