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Copper-Catalyzed Decarboxylative Methylthiolation of Aromatic 
Carboxylate Salts with DMSO 
Liang Hu,ab Dadian Wang,a Xiang Chen,a Lin Yu,a Yongqi Yu,a Ze Tan*a and Gangguo Zhub

A novel copper-catalyzed decarboxylative methylthiolation of 
arenecarboxylate salts has been realized using DMSO as the 
methylthiolation source. Various potassium aryl carboxylates 
underwent decarboxylative methylthiolation under air to furnish 
the corresponding aryl methyl thioethers in moderate to excellent 
yields. The reaction tolerated a wide variety of functional groups. 
Notably, the synthesis of ethylthioethers was also successfully 
achieved directly from diethyl sulfoxide under similar reaction 
conditions.  
 

Aryl methyl thioethers are important structural constituents that 
are present in many biological and pharmaceutical molecules.1 In 
addition, they are versatile intermediates that can be converted 
into sulfoxides, sulfones (Scheme 1),2 thiols3 and arenes,4 and also 
find applications in C-C coupling5 and C-N coupling6 reactions. Apart 
from the reduction of sulfoxides,7 typical methods for the synthesis 
of aryl methyl thioethers involve the reaction of arylthiols with 
iodomethane or dimethyl carbonate8 and directed or heteroatom-
facilitated lithiation of aromatic C-H bonds and subsequent 
electrophilic substitution with dimethyl disulfide.9 Although 
transition-metal-catalyzed cross-coupling between aryl halides or 
aryl boronic acids with sulfenylating reagents such as thiols, sulfonyl 
chlorides or disulfides have been developed,10 methylthiolation 
using this strategy was limited. Thus, the development of a 
straightforward as well as general method for the preparation of 
aryl methyl sulfides from readily accessible starting materials is 
much more challenging and remains to be explored. Dimethyl 
sulfoxide (DMSO), a cheap and commercially available solvent, has 
been used as a methylthiolation source in organic synthesis.11 Along 
this line, Qing disclosed a CuF2-K2S2O8 mediated methylthiolation of 
2-phenylpyridine via pyridine directed C-H activation in 2010 (Eq. 
1).11a Later in 2011, Cheng developed methylthiolation of aryl 
halides by using DMSO as the MeS source in the presence of 

CuBr/ZnF2 and it is interesting to see that the presence of fluoride 
as a promoter was essential for the process.11b Subsequently, Gao 
described that heteroarenes can directly react with DMSO to 
construct heteroaryl methyl thioethers by using AgF as catalyst and 
Cu(OAc)2 as oxidant.11c 

 

 

 

 
 
 
 
 
 
 
 
 

 
Scheme 1 Aryl methyl sulfides, sulfoxides and sulfones of pharmaceutical 
and biological relevance. 

Recently, decarboxylation of carboxylic acids by loss of carbon 
dioxide (CO2) has emerged as a useful tool for carbon-carbon and 
carbon-heteroatom bond formations,12 because various benzoic 
acids are widely available, inexpensive and easy to store and handle. 
The key process of the coupling is that an aryl organometallic 
species can be generated in situ from aryl carboxylate salts by 
extrusion of CO2. Early works in this area by the groups of Gooßen13, 
Myers14, Su15 and others16 have shown that aryl carboxylates can 
undergo a variety of decarboxylative couplings to generate new C-C 
and C-X bonds. In these existing cases, Pd/Cu and Pd/Ag are the 
most common bimetallic catalytic systems employed for 
decarboxylative coupling reactions.15b,16c-d,17 Typically, they employ 
a Cu salt or Ag salt to decarboxylate the benzoic acid and a Pd 
catalyst to enable the cross-coupling. Despite these advances, there 
are limited examples of decarboxylative coupling to form C-S 
bonds.18 For example, Cai in 2014 reported a Pd-catalyzed 
decarboxylative coupling of ortho-nitrobenzoic acids with DMSO to 
form aryl methyl thioethers (Eq. 2). However, this protocol required 
more than a stoichiometric amount of CuI in addition to PdCl2 (10 %) 
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as promoter.11f Even though these Pd-catalyzed decarboxylative 
couplings are quite efficient, the use of an expensive noble metal 
catalyst such as Pd makes these reactions much less practical. 
Alternatively, the use of Cu only systems is appealing because 
copper is considerably cheaper. As a matter of fact, Copper 
catalyzed or mediated processes for decarboxylation have been 
gaining more and more attention as evidenced by the recent 
publications in this area.16b,16f-j,18c,19 For instance, Gooßen in 2012 
developed a decarboxylative etherification of aromatic carboxylic 
acids by using copper(II) and silver(II) salt as the catalyst.13c Later in 
2013, they reported a copper-catalyzed ortho alkoxylation of 
aromatic carboxylates with concomitant protodecarboxylation to 
form arylethers.13d In addition to C-O bond formation, copper 
catalyzed decarboxylative C-N bond formation between aryl 
carboxylic acids and amines or amides was also demonstrated by 
Mainolfi using copper(II)-phenanthroline catalyst system.16f Very 
recently, during the preparation of this manuscript, Hoover 
reported an elegant copper-catalyzed decarboxylative diphenyl 
thioether synthesis by using thiophenol as the thiolation reagent.18c 

Herein we reported that aryl methyl thioethers can be efficiently 
synthesized via Cu-catalyzed decarboxylative methylthiolation of 
aromatic carboxylate salts using DMSO as the methylthiolation 
source.  
 
 
 
 
 
 
 
 
 
 
Scheme 2 An overview of previous methylthiolation methods vs our 
approach with DMSO. 

Our investigations began during the course of attempting to 
synthesize Ar-CF3 via Cu-catalyzed decarboxylative 
trifluoromethylation between aryl carboxylic acids and Ruppert-
Prakash reagent (TMSCF3 as the CF3 source).20 Surprisingly, when 
we treated potassium 2-nitrobenzoate (1a) with 2.0 equiv. of 
TMSCF3 in the presence of 0.2 equiv. of CuBr, 0.3 equiv. of 1, 10-
phenanthroline and 4 Å molecular sieves (50 mg/0.3 mmol 1a) in 
DMSO under air at 150 oC for 24 h, the methythiolation product 3a 
was observed in 46% yield, together with the formation of 52% 
yield of nitrobenzene 3a’ (Table 1, entry 1). Encouraged by this 
result, we further investigated other conditions for this reaction. No 
reaction took place in the absence of additive TMSCF3 showing that 
an additive is essential for the reaction to proceed (Table 1, entry 2). 
Replacing TMSCF3 with other additives such as AgCO2CF3, AgF, 
Zn(OAc)2 or ZnF2, gave 3a either in comparable or lower yields 
(Table 1, entries 3-6). To our delight, the desired methylthiolation 
product 3a was isolated in 85% yield when 2 equiv. of Zn(OTf)2 was 
added to the reaction mixture (Table 1, entry 7). Examination of 
other copper salts proved CuBr to be the optimal one while coppers 
such as Cu2O, CuI, Cu(OAc)2 and CuBr2 all performed less efficiently 
(Table 1, entries 8-11). Subsequent evaluation of other ligands such 

as PPh3, bpy and L-proline afforded 3a in much lower yields (Table 1, 
entries 12-14). Running the reaction at temperatures higher or 
lower than 150 oC actually decreased the yield of 3a (Table 1, 
entries 15-16). Furthermore, decreasing the amounts of Zn(OTf)2 to 
1 equiv. gave inferior result, providing 3a in 47% yield (Table 1, 
entry 17). On the other hand, it was found that the yield of 3a was 
decreased to 23% if the reaction was performed under a N2 
atmosphere (Table 1, entry 18). In addition, no reaction took place 
in the absence of CuBr, implying that the copper catalyst is crucial 
for this reaction (Table 1, entry 20). It should be mentioned that no 
desired product 3a was obtained when 2-nitrobenzoic acid was 
used in combination with K2CO3 or Na2CO3 (Table 1, entry 21). Only 
protodecarboxylation product nitrobenzene 3a’ was observed. 
Without the molecular sieves, the yield of 3a also dropped 
drastically (Table 1, entry 22). Therefore, further substrate 
screening was carried out using 0.2 equiv. of CuBr, 0.3 equiv. of 1, 
10-phenanthroline and 2 equiv. of Zn(OTf)2 in DMSO in the 
presence of 4 Å molecular sieves at 150 oC under air for 24 h. 

Table 1. Screening of the reaction conditionsa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a Reaction conditions: 1a (0.3 mmol), 2 (2 ml), Cu salt (0.06 mmol), ligand (0.09 
mmol), additive (0.6 mmol), 4 Å MS (50 mg), under air for 24 h. b GC yield. c 
Isolated yield. d No additive was used under the reaction conditions. e 1.0 equiv. 
of Zn(OTf)2 was used. f Run at N2 atmosphere. g No ligand was used. h No Cu salt 
was used. i 2-nitrobenzoic acid was used instead of 1a. j No 4 Å MS was used. 

With the optimized conditions in hand, we next set out to 
explore the scope and limitation of our reaction and the results are 
summarized in Table 2. As shown in Table 2, a wide range of 
methylthiolation products could be synthesized via this protocol in 
yields ranging from 41 to 85%. Functional groups such as methyl, 
methoxy, fluoro, chloro, bromo, nitro as well as trifluoromethyl 
groups were well tolerated on the phenyl ring of the aryl 
carboxylates. Potassium 2-nitrobenzoates bearing substituents at 
the C4 or C5 positions all furnished the desired products in 
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moderate to good yields (Table 2, entries 3b-3l). From the table, we 
can see that the reaction slightly favors electron-rich substituents at 
the C4 position (3b-3c, 80-81% yields) and electron-withdrawing 
substituents at the C5 position (3k-3l, 72-75% yields). On the other 
hand, potassium 4-nitro-2-nitrobenzoate, which has two strong 
electron-withdrawing nitro groups on the phenyl ring, only gave the 
desired decarboxylative coupling product 3h in 41% yield and the 
reaction temperature has to be increased to 170 oC (Table 2, entry 
3h). Additionally, C3 substituted substrates could also participate in 
the methylthiolation, giving the desired products 3m and 3n in 61% 
and 54% yields (Table 2, entries 3m and 3n), respectively. The 
disubstituted potassium 4, 5-dimethoxylbenzoate was also 
applicable for this transformation, affording the methylthiolative 
product 3o in 83% yield (Table 2, entry 3o). Moreover, 
ethylthioethers also could be successfully obtained directly using 
diethyl sulfoxide as the solvent in 60-67% yields (Table 2, entries 3p-
3r). Unfortunately, besides potassium para-methoxy benzoate, the 
reaction of potassium benzoate also met with failure when they 
were subjected to our method, showing that electron density on 
the phenyl ring is critical for the reaction to be successful (Table 2, 
entry 3s). Subsequently, we explored other potassium benzoate 
derivatives with electron-withdrawing substituents in this reaction. 
Surprisingly, attempts to use potassium meta- and para-
nitrobenzoate as coupling partners failed under the standard 
conditions, indicating the position of the electron withdrawing 
group is important for the reaction to proceed (not shown in Table 
2, please see the SI). Pleasingly, the reactions of potassium 2-
methylsulfonyl benzoate and potassium 2-
(methoxycarbonyl)benzoate delivered the desired product 3t and 
3u in moderate yields at a slightly elevated temperature (Table 2, 
entries 3t and 3u), whereas  potassium 2-trifluoromethylbenzoate, 
potassium 2-cyanobenzoate, potassium 2-acetyl benzoate as well as 
potassium 2-fluorobenzoate all failed (not shown in Table 2, please 
see the SI), suggesting the possibility of replacing the nitro group 
with other electron-withdrawing groups. Furthermore, potassium 
heteroarene carboxylates such as benzofuran- and 
benzothiophene-derived carboxylates were also viable substrates, 
giving 3v and 3w in 54% and 51% yields, respectively (Table 2, 
entries 3v and 3w).  

In order to gain some information on the reaction mechanism, a 
series of control experiments were conducted under the optimized 
conditions. Because the fact that DMSO can decompose to yield 
methanethiol and dimethyl disulfide when heated has been 
reported,21,11d,11n we wondered whether our reaction goes through 
this process or not. When we conducted the reaction of 1a with 10 
equiv of dimethyl disulfide in DMF, the desired methylthioether 
product could be isolated in 77% yield, indicating that the disulfide 
may serve as an intermediate in the reaction (Scheme 3, Eq. 4). To 
further confirm that SMe- indeed migrates from DMSO, we carried 
out the reaction with DMSO-d6 as the solvent, and completely 
deuterated product 3a-d3 was observed by 1H NMR analysis 
(Scheme 3, Eq. 5). Moreover, when we added MeSSMe into the 
reaction mixture using DMSO-d6 as the solvent, both 3a and 3a-d3 
were obtained in a ratio of 2:1. The fact that 3a was the major 
product suggested that dimethyl disulfide may serve as an 
advanced intermediate in our reaction (Scheme 3, Eq. 6). On the 
other hand, the reaction of 1a with dimethyl disulfide went 

smoothly to afford the desired methylthioether product 3a in good 
yield in the absence of Zn(OTf)2 (Scheme 3, Eq. 7). In addition, when 
one equiv. of radical scavenger, TEMPO or BHT, was employed in 
the reaction mixture, the reaction could be performed without loss 
of the yield. This result suggested that the reaction may not involve 
a radical process. 

Table 2. Scope of copper-catalyzed decarboxylative methylthiolation of substituted 
aromatic carboxylate saltsa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a Reaction conditions: 1 (0.3 mmol), 2 (2 ml), CuBr (0.06 mmol), phen (0.09 mmol), 
Zn(OTf)2 (0.6 mmol), 4 Å MS (50 mg), under air for 24 h. b Isolated yield. c Run at 
170 oC for 48 h. d Diethyl sulfoxide (2 ml) was used instead of DMSO. e Run at 170 
oC for 36 h. 

A gram-scale reaction was carried out to demonstrate the 
scalability of this reaction. Employing potassium 2-nitrobenzoate as 
substrate, the desired the methythiolation product was obtained in 
86% yield under the standard conditions (Scheme 4). 
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Scheme 3 Control Experiments. 

 

 

 

Scheme 4 Gram-scale reaction. 

Based on the reported literatures21,11d,11n and the evidence above, 
a plausible mechanism for the copper catalyzed methylthiolation of 
aromatic carboxylate salts with DMSO is proposed and depicted in 
Scheme 5. First, a Cu(I) benzoate species A is formed from the 
catalyst and benzoate by anion exchange, which subsequently 
undergoes decarboxylation to form the aryl-Cu(I) species B. Next B 
will react with dimethyl disulfide which itself is generated in situ 
from DMSO to afford the copper complex C via oxidative addition. 
Finally reductive elimination of the Cu(III)-complex C furnishes the 
desired product 3 and Cu(I) enters back into the catalytic cycle. It 
has been reported that the addition of Zn salt can facilitate the 
formation of MeSSMe from DMSO under air (Scheme 5, bottom 
half).11d 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5 Plausible Mechanism. 

In summary, we have demonstrated a novel synthesis of aryl 
methyl thioethers via copper-catalyzed decarboxylative 
methylthiolation of arenecarboxylate salts using DMSO as the 
methylthiolation source. Simple copper salt CuBr was used as the 
catalyst and 1, 10-phenanthroline was utilized as ligand. In order to 
achieve good yields, it was found that the reaction was critically 
dependent on the addition of two equiv. of Zn(OTf)2 as additive and 
the reaction is run under air. The reaction tolerated a wide variety 
of functional groups and various aryl methyl thioethers were 
efficiently synthesized in 41-85% yield. Furthermore, the synthesis 
of ethylthioethers was also successfully achieved directly from 
diethyl sulfoxide under the reaction conditions. Further studies on 
the clarification of the reaction mechanism and applications to 
other substrates are underway and the results will be reported in 
due course. 
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A novel copper-catalyzed decarboxylative 

methylthiolation of arenecarboxylate salts has been 

realized using DMSO as the methylthiolation source. 

 R

+
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