Tetrahedron 68 (2012) 8704-8711

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

(*N*,*N*-Diisopropylcarbamoyloxy)-methyl *p*-tolyl sulfone: preparation and application for the syntheses of 1,2-diols

Lu Ma^{a,b}, Dongmei Zhao^b, Lin Chen^a, Xin Wang^a, Yue-Lei Chen^{a,*}, Jingkang Shen^{a,*}

^a Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China ^b Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, PR China

ARTICLE INFO

Article history: Received 10 June 2012 Received in revised form 20 July 2012 Accepted 10 August 2012 Available online 16 August 2012

Dedicated to Professor Qi-Zhuo Wang on the occasion of his 90th birthday

Keywords: Nucleophilic addition Aldehydes N,N-Diisopropylcarbamoyl Regioselective protection 1,2-Diols

1. Introduction

1,2-Diols are ubiquitous in natural products and bioactive structures. Regioselectively protected 1,2-diols are frequently encountered intermediates for organic synthesis.¹ For preparation of these structures, many useful methods starting from olefin or carbonyl structures have been devised.² These methods generally require laborious multistep conversion, often with compromised overall yield.

On the other side, O-carbamoyl protected alcohols proved their directing capability in stereoselective lithiation chemistry.³ Nevertheless, this chemistry has to be mediated by strong base such as BuLi, thus limited scope of substrates could be applied for this useful methodology. Besides, preparations of some O-carbamoyl protected alcohols often fail to give satisfying yields, largely due to the low reactivity and instability of carbamoyl chlorides. Efficient syntheses of O-carbamoyl protected alcohols with higher structure diversity are of particular interest.

Compared to carbamoyloxy substitution, sulfonyl or sulfinyl group is stronger activating factor for C–H bond upon metalation (deprotonation). It is reasonable to propose that *gem*-sulfonyl (or

0040-4020/\$ – see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.08.025

ABSTRACT

1-(N,N-Diisopropylcarbamoyloxy)-1-tosyl-methane (CbOCH₂Ts, Cb=<math>N,N-diisopropylcarbamoyl) was readily prepared from p-TolSH, paraformaldehyde and CbCl. With the dual activation of CbO- and Tssubstitutions, deprotonation of CbOCH₂Ts could be effected not only by n-BuLi, but also by Grignard reagents. Upon deprotonation, the title compound adds to various carbonyl structures. By choosing proper organometallic reagents for consecutive steps, the addition intermediate undergoes in situ conversions to efficiently yield regioselectively O-Cb protected and unprotected 1,2-diols.

© 2012 Elsevier Ltd. All rights reserved.

sulfinyl) carbamoyloxy bisubstitution will significantly increase the C–H acidity, thus broaden the scope of organometallic reagents used for *O*-carbamoyl directed metalation and the subsequent nucleophilic reactions. Structures containing *gem*-sulfonyl carbamoyloxy bisubstitutions were first prepared by Hoppe et al.⁴ However, their behavior upon metalation, and the following nucleophilic reactions of the resulting carbanion were not systematically investigated. Hereby, we propose carbamoyloxymethyl sulfone or sulfoxide (1) as a new building block. It is hoped that this type of structure could be metalated under milder conditions. While maintaining the usefulness of carbamoyloxy substitution in the subsequent nucleophilic reactions, the additional sulfone or sulfoxide will open possibilities for further transformations. Also, as a surrogate of carbamoyl chloride, building block (1) could be used to append carbamoyloxy group to complex structures.

Encouraged by early works from Hoppe et al.,⁴ we further envisioned a preliminary application of structure (1): metalated structure (1) will be added to carbonyl group, and the resulting oxy anion will abstract the *O*-carbamoyl protection with the driving force of subsequent elimination of the sulfonyl (or sulfinyl) group. The useful intermediate, *O*-carbamoyl protected α -hydroxyl aldehyde (4), should be readily reduced to 1,2-diol structures (5) with known methods (Scheme 1). In our lab, this proposal was realized by experiments with unexpected findings, which led to highly

^{*} Corresponding authors. Tel.: +86 21 50806600 5407; e-mail addresses: chenyl@mail.shcnc.ac.cn, chenyuelei@gmail.com (Y.-L. Chen).

efficient one-pot preparation of three types of 1,2-diols, including both possible regioselectively *O*-carbamoyl protected and unprotected 1,2-diols, from readily available starting materials. This work provides a new solution for the problems described in the beginning, and it will be elaborated in the following.

 $R = carbamoyI, R^1 = sulfonyI or sulfinyI$

Scheme 1. Proposed 1,2-diol synthesis from general structure (1).

2. Results and discussion

Various compounds of structure **1** were screened against the deprotonation step. It was found, for example, that when R^1 =sulfinyl, structure **1** is not particularly stable upon deprotonation, and did not give high yield of structure **3**. On the other hand, when R=2,2,4,4-tetramethyl-1,3-oxazolidine-3-carbonyl (Cby),⁵ structure **1** was identified as a difficult synthetic target, hence not further pursued. Eventually we discovered that TsCH₂OCb (**7**, Cb=*N*,*N*-diisopropylcarbamoyloxy) serves our purpose.

Similar to literature, compound **7** might be prepared by mixing lithiated MeOCb⁶ and TsF.^{4a,c,e} However lithiation of this simplest carbamate⁷ may not be the best method for our purpose. Benneche et al. prepared PhSCH₂OTMS from PhSCH₂OH and TMSCl.⁸ We found that *p*-TolSCH₂OH was readily formed from *p*-TolSH and paraformaldehyde, however the reaction between *p*-TolSCH₂OH and CbCl was rather sluggish. Bases play important role in this reaction, and they have to be carefully scrutinized to shift the reaction to compound **6**, but not decompose *p*-TolSCH₂OH back to thiol and formaldehyde. *N*,*N*-Dimethylaniline was recognized particularly good for this aim. Subsequent oxidation of sulfide with *m*-CPBA readily gave the sulfone **7** with good yield. Thus, we are able to prepare compound **7** in large scale from inexpensive starting materials, avoiding using *s*-BuLi (Scheme 2).

Scheme 2. Preparation of the starting material **7**. (a) (i) Neat, 110 $^{\circ}$ C, 0.5 h; (ii) *N*,*N*-dimethylaniline, CbCl, DCM, reflux, overnight, 76%; (b) *m*-CPBA, DCM, 0 $^{\circ}$ C, 0.5 h, 60%.

As expected, compound **7** was readily deprotonated with *n*-BuLi or Grignard reagents (preferably with *i*-PrMgCl). According to hydrogen/deuterium exchange experiments, NaHMDS and *t*-BuOK are capable to partially deprotonate compound **7**, too. To the best of our knowledge, this is the first time that *O*-carbamoyl protected alcohol is deprotontated with bases much weaker than BuLi. In the following works, both *n*-BuLi and *i*-PrMgCl were used to deprotonate compound **7**, and the results demonstrated their own advantages, respectively.

In realizing the plan in Scheme 1, preliminary experiments indicated that: with *n*-BuLi, the addition of deprotonated **7** to simple aldehydes generally gave slightly higher yield of structure **3** than with *i*-PrMgCl. To make the results comparable with previous reports,^{4a,b,c,e} we kept *n*-BuLi as base in this part. According to early experiments.^{4a,b,c,e} structure **3** (often bearing more substituents on C-2 than our compounds) should decompose to structure **4** in situ. However, it was found difficult to initiate the Cb migration and Ts elimination on our compounds of structure 3: protonated 3 can always be separated in good yields. After screening numbers of conditions, it was eventually discovered that sodium containing base, such as NaHMDS, NaH or NaOMe, is crucial for the desired migration and elimination from structure 3. We therefore reasoned that the early working examples are probably due to: (1) more substituents on C-2 of structure **3** facilitates migration and elimination for steric reasons and (2) Li metal used for preparing BuLi often contains variable amount of sodium,⁹ which might accelerate the O-Cb migration. As illustrated in Scheme 3, compound 7 was deprotonated with *n*-BuLi, and then mixed with benzaldehyde to give diastereomers 8a (53%) and 8b (45%) after separation. Compounds 8a,b (as a 1.2:1 diastereomeric mixture) were then treated with NaOMe (30% in methanol) to give an unstable aldehyde 9, which was reduced immediately by addition of NaBH₄ in situ. Unexpectedly again, compound 11 was separated as a major product (78%), along with 21% of desired product **12**. The conversion from compound **9** to **11** should proceed through structure **10**: the steric repulsion on C-2 of structure **10**, coupled with the alcoholysis condition of methanolated NaOMe, repels the Cb group¹⁰ from O-2 back to 0-1.¹¹ Of particular note is the stability of the 0-Cb protection: compound 13 was never observed under above reaction conditions (Scheme 3).

Scheme 3. Migration of Cb and elimination of Ts should give compound **12**, while the second migration of Cb leads to **11** as a major product instead. (a) *n*-BuLi, then PhCHO, THF, $-78 \degree$ C, 50 min , 53% for **8a**, 45% for **8b**; (b) NaOMe in MeOH, then NaBH₄, THF, $0 \degree$ C to rt, 2 h.

Next, we turned our attention to one-pot reactions using compound 7 as starting material for the syntheses of regioselectively protected and unprotected 1,2-diols, due to the following reasons: (1) In view of the reaction conditions in Scheme 3, it is not only intriguing, but also possible to combine all steps for the conversion from 7 to 11 into one pot. (2) At this stage, however, we were still not able to produce compound 12 (as a major product) from separated compound 8. It was felt that a one-pot reaction directly from compound 7 may yield compound 12 (or compounds of general structure **5**), analogously to the literature conditions.^{4a,b,c,e} (3) On the other hand, previous experiments also demonstrated reduction of gem-carbamoyloxy-tosyl structure with DIBAH¹² to carbinol.^{4e} After compound 8 (or compounds of general structure 3) being formed from compound 7, this reduction might also be carried out in situ to yield unprotected 1,2-diol. The ideas are combined and illustrated in Scheme 4.

Entry (route)

Scheme 4. One-pot syntheses of regioselectively O-protected and unprotected 1,2diols. Conditions for route A: (a) *n*-BuLi, then $R^1R^2C=0$, $-78 \circ C$, 50 min; (b) NaOMe in MeOH, NaBH₄, 0 °C to rt, 2 h. Conditions for route B: (c) n-BuLi, then R¹R²C=O, -78 °C, 50 min; (d) NaBH₄, 0 °C to rt, 2 h. Conditions for route C: (e) *i*-PrMgCl, then $R^{1}R^{2}C=0$, 0 °C, 2 h; (f) DIBAH, -78 °C to rt, overnight.

For route A in Scheme 4, it was straightforward to combine two operation steps in Scheme 3. Initial deprotonation (Scheme 4, step a) was done preferably with *n*-BuLi than *i*-PrMgCl due to higher vields, and the later migration/elimination/reduction/migration sequence (Scheme 4, step b) was carried out in situ by simultaneous addition of NaBH₄ and methanolic NaOMe to give structure 14. Sometimes structure 15 was isolated from this route as a minor product, too. Structure 16 was never observed from this route. For route B. the initial deprotonation (Scheme 4, step c) was done with n-BuLi as well. Treatment in situ with methanolic or absolute NaOMe along with NaBH₄ invariably gave structure **14** as a major product: changing the reducing reagent from NaBH₄ to LiBH₄ or several Selectrides seemed not affecting the reaction direction, too. We therefore used NaBH₄ as a base and a reducing reagent to create a strict aprotic condition, and structure 15 was then isolated as a major product, with excellent selectivity for most examples (Scheme 4, step d). Interestingly, to use this reduction condition for step d, the initial step c has to be done with *n*-BuLi. When *i*-PrMgCl was applied, the same NaBH₄ condition for step d failed to give either structure 15, or structure 14. We have not detected the formation of structure 16 from route B. For route C in Scheme 4, addition intermediate from step e with *n*-BuLi could not react with DIBAH in situ. However, when i-PrMgCl was used for deprotonation, DIBAH readily reduced the intermediate to desired product 16, without any detectable formation of structures 14 and 15.

It is obvious that the organometallic reagents used for every single step interfere with the subsequent conversions, and the reaction direction can therefore be tuned by matching reagents used for consecutive steps. Examples for Scheme 4 are showcased in Table 1.

As demonstrated in Table 1, route A (entries 1–10, Table 1) is compatible with common substituted benzaldehydes. The yields of desired products 11 and 14a-i are moderate to good, and not significantly altered by the substitutions on the phenyl ring. Pyridine carboxaldehydes¹³ gave complex products in the reaction sequence. The selectivities of route A to structure 14 are moderate to good. Minor product 15 was removed readily by chromatography, while structure 16 was never observed. However the purification of structure 14 was occasionally disturbed by the presence of benzyl alcohols from reduction of unreacted benzaldehydes. In such cases, stepwise alternative of route A is recommended. It is noteworthy that acetone gave the desired product as well with excellent selectivity. Although it is difficult to understand the selectivity pattern according to present data, products 11 and 14a-i with 1-OCb group remain useful for synthesis, particularly with wellestablished Cb directed lithiation chemistry.³

Similar to route A, route B (entries 11–19, Table 1) is compatible with common substituted benzaldehydes, but not with pyridine carboxaldehydes.¹³ Yields of structure **15** are consistently moderate to good, and selectivities to structure 15 are good to excellent. Structure

1 (A)	n-Pentyl	H	14a , 12%	15a , n.d. ^b 12 26%	16a , n.d. 13 n d
3 (A)		Н	14b, 59%	15b, 27%	16b , <i>n.d.</i>
4 (A)	CI	Н	14c , 80%	1 5c , 9%	16c , n.d.
5 (A)	~0 ²	Н	14d , 54%	15d , 16%	16d , <i>n.d.</i>
6 (A)		Н	14e , 56%	15e , 22%	16e , <i>n.d.</i>
7 (A)	F	Н	14f , 71%	15f , n.d.	16f , n.d.
8 (A)	F F	Н	14g , 57%	15g , n.d.	16g , n.d.
9 (A)	F ₃ C	Н	14h , 60%	15h , 11%	16h , <i>n.d.</i>
10 (A) 11 (B)	Me Ph	Me H	14i , 64% 11 , <i>n.d.</i>	15i , n.d. 12 , 49%	16i , n.d. 13 , n.d.
12 (B)		Н	14j , n.d.	15j , 57%	16j , n.d.
13 (B)		Н	14b , 6%	1 5b , 50%	16b ,n.d.
14 (B)	CI	Н	14c , n.d.	15c , 51%	16c , <i>n.d.</i>
15 (B)	Br	Н	14k , n.d.	15k , 68%	16k , n.d.
16 (B)		Н	14l , n.d.	15I , 68%	16l , n.d.
17 (B)	~0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Н	14d , 11%	15d, 49%	16d , n.d.
18 (B)	of the second se	Н	14e , n.d.	15e , 70%	16e , n.d.
19 (B)	F F	Н	14g , n.d.	15g , 49%	16g , n.d.
20 (C)	Ph	Н	11 , n.d.	12 , n.d.	13 , 57%
21 (C)	-0 ²	Н	14d , n.d.	15d, n.d.	16d, 62%
22 (C)	of the second se	Н	14e , n.d.	15e , n.d.	16e , 62%
23 (C)	F F	Н	14g , n.d.	15g , n.d.	16g , 61%
24 (C)	Ph	Ph	14m . n.d.	15m , <i>n.d.</i>	16m . 57%

^a Reaction routes are described in Scheme 4.

^b n.d.: not detected by NMR. After workup, the reaction mixture was inspected by proton NMR to identify the presence of substance in question. Flash chromatography was then used to determine the yield.

Table 1	
Examples	for one-pot syntheses described in Scheme 4

 $R^1R^2C=0$

 \mathbb{R}^1

но

 R^2 14

R

 \mathbb{R}^2

OCh

ChO

ОН

2 15

OH

16

14 was rarely (entries 14 and 18, Table 1), and structure **16** was never observed from this route. 2-O-Protected 1,2-diols **12**, **15b**–**e**, **15g**, and **15j**–**I** generally have to be prepared via multistep conversion according to established 1,2-diols synthesis and protective group chemistry. Moreover, installations of O-Cb protection on such secondary alcohols are often difficult. However, they could now be prepared in one pot, from readily available aldehydes and building block **7**.

Route C invariably gives moderate yields of the desired unprotected diols **13**, **16d–e**, **16g**, and **16m** (entries 21–24, Table 1) with excellent selectivity to structure **16**, even when very hindered diphenyl ketone was used (entry 24, Table 1). This route offers a quick access to many useful 1,2-diol target molecules.

3. Conclusion

In summary, we have proposed and efficiently synthesized a new building block **7**, which was found to be readily deprotonated with *n*-BuLi and Grignard reagents. Thanks to this finding, the following one-pot 1,2-diol syntheses became possible: By carefully choosing organometallic reagents for consecutive steps, from **7**, readily available carbonyl compounds, and inexpensive reagents, we developed highly telescoped one-pot syntheses for three types of 1,2-diols, including both possible regioselectively *O*-Cb protected and unprotected 1,2-diols, which generally require multistep synthesis according to known methods. Based on the importance of 1,2-diols and well-established carbamoyloxy-directed lithiation chemistry, it is possible for building block **7**, above described onepot syntheses of 1,2-diols, and various Cb-protected alcohol products to find more applications in organic synthesis. Further use of building block **7** is under active exploration in our group.

4. Experimental section

4.1. General

All solvents were dried and purified prior to use: Toluene was distilled from sodium, Et₂O and THF were distilled from potassium, and CH₂Cl₂ was distilled from CaH₂. All other commercially available reagents were used as received. Reactions at -78 °C were performed in a dry ice/acetone bath. All moisture sensitive reactions were performed under N₂ (ca. +1.1 bar) in heating-gun $(500-600 \degree C)/$ vacuum dried glassware sealed with rubber septa. Flash chromatography was performed on silica gel (300-400 mesh ASTM), and monitored by thin layer chromatography (TLC) on HSGF-254 $(10-40\,\mu m)$ TLC plates. NMR data were collected on a Varian Mercury-300 High Performance Digital FT-NMR, a Varian Mercury-400 High Performance Digital FT-NMR, or a Bruker Ultrashield 500 NMR. Spectra from solutions in CDCl₃ (δ_C =77.0 ppm) are calibrated relative to SiMe₄ ($\delta_{\rm H}$ =0.00 ppm). HRMS were carried out on a Thermo Finnigan MAT-95 spectrometer (for EI), or on a Waters, Q-Tof Ultima Global spectrometer (for ESI). Melting points were measured on an uncorrected SGW X-4 micro melting point apparatus. HPLC analysis was performed on a Gilson HPLC system (306 pump, UV/vis-156 Detector, 215 liquid handle) with an YMC-ODS column (4.6×50 mm, 5 µm). HPLC conditions: solvent A=H₂O containing 0.1% (v/v) TEA, solvent B=MeCN containing 0.1% (v/v) TEA; flow rate=2.5 mL/min; gradient (B%): 0-5 min (4%-95%); peaks were identified at 254 nm and 214 nm. An Elementar Vario EL Cube analyzer was used for elemental analysis.

4.2. Preparation of substrates and initial explorations described in Schemes 2 and 3

4.2.1. p-Tolyl-(N,N-diisopropylcarbamoyloxy)-methyl sulfide (**6**). p-TolSH (11.4 g, 0.10 mol, 1 equiv), paraformaldehyde (3.0 g, 0.10 mol, 1 equiv), and methanolic NaOMe (30%, 0.03 mL, 0.0017 equiv) were

mixed and heated at 110 °C for 30 min under nitrogen. The mixture was then cooled to rt to give crude *p*-TolSCH₂OH as a colorless oil, which was directly dissolved in DCM (150 mL), treated with CbCl (24.5 g, 150 mmol, 1.5 equiv) and N,N-dimethylaniline (13.3 g, 110 mmol, 1.1 equiv), and refluxed overnight. The resulting brown mixture was then cooled to rt, washed with 2 N ag HCl, satd ag NaHCO₃, and brine. The organic phase was then separated and concentrated to give an oil, which was purified with flash chromatography (on silica gel with 60-90 °C petroleum ether and EtOAc) to give product 6 (light yellow oil, 21.4 g, 80 mmol, 76%). Compound **6**: R_f 0.39 (ethyl acetate/60–90 °C petroleum ether, 1:20); HPLC t_R 3.8 min; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.35 (m, 2H, Ar), 7.13-7.11 (m, 2H, Ar), 5.44 (s, 2H, CH₂OCb), 4.01 (br s, 1H, Cb), 3.78 (br s, 1H, Cb), 2.33 (s, 3H, Ar-CH₃), 1.19 (d, *J*=5.8 Hz, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 154.4 (C=O), 137.2 (Ar_q), 131.5(Ar_q), 131.0 (2C, Ar), 129.7 (2C, Ar), 69.0 (SCH₂OCb), 46.5 (Cb), 45.5 (Cb), 21.3 (2C, Cb), 21.0 (Ar-CH₃), 20.6 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₃NO₂SNa⁺ 304.1347, found 304.1336.

4.2.2. (N,N-Diisopropylcarbamoyloxy)methyl p-tolyl sulfone (7). Compound 6 (20.0 g, 71.07 mmol, 1 equiv) was dissolved in DCM (300 mL). To this solution at 0 °C, a solution of *m*-CPBA (75%, 49.1 g, 213.21 mmol, 3 equiv) in DCM (200 mL) was added dropwise. Monitored by TLC, the resulting slurry was stirred for further 30 min at 0 °C, and then treated with satd aq Na₂S₂O₃ and satd aq NaHCO₃. The organic phase was separated and the aqueous phase was washed with DCM. Combined organic phases were washed with brine, concentrated, and purified with flash chromatography (on silica gel with 60-90 °C petroleum ether and EtOAc) to give product **7** (white solid, 13.4 g, 42.76 mmol, 60%). Compound **7**: *R*_f 0.43 (ethyl acetate/60–90 °C petroleum ether, 1:4); mp 68–69 °C; HPLC $t_{\rm R}$ 3.8 min; ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.77 (m, 2H, Ar), 7.37-7.32 (m, 2H, Ar), 5.19 (s, 2H, TsCH₂OCb), 3.92 (br s, 1H, Cb), 3.71 (br s, 1H, Cb), 2.44 (s, 3H, Ar-CH₃), 1.16 (d, J=6.4 Hz, 6H, Cb), 1.09 (d, J=6.4 Hz, 6H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 151.7 (C=O), 145.3 (Ar_a), 133.8 (Ar_a), 129.7 (2C, Ar), 129.0 (2C, Ar), 76.7 (TsCH₂OCb), 46.5 (Cb), 46.4 (Cb), 21.6 (Ar-CH₃), 21.0 (2C, Cb), 20.0 (2C, Cb); HRMS (ESI⁺) calcd for $C_{15}H_{23}NO_4SNa^+$ 336.1245, found 336.1250. Anal. Calcd for C15H23NO4S (313.13): C, 57.48; H, 7.40; N, 4.47; S, 10.23. Found: C, 57.54; H, 7.50; N, 4.46; S, 10.29.

4.2.3. 1-(N,N-Diisopropylcarbamoyloxy)-2-hydroxyl-2-phenylethyl *p-tolyl sulfones* (**8***a*,*b*). Compound **7** (300 mg, 0.96 mmol, 1 equiv) was dissolved in anhydrous Et₂O (9 mL), cooled to $-78 \degree$ C, and treated with *n*-BuLi (1.6 M in hexanes, 0.8 mL, 1.25 mmol, 1.3 equiv). The mixture was stirred at this temperature for 45 min, treated with benzaldehyde (112 mg, 1.06 mmol, 1.1 equiv), and again stirred at -78 °C for 1 h. TLC indicated the reaction has been completed. The resulting clear solution was guenched by satd aq NH₄Cl. The organic layer was separated, and the aqueous phase was washed with ether for several times. Combined organic phases were washed with brine, concentrated, and purified with flash chromatography (on silica gel with 60-90 °C petroleum ether and EtOAc) to give products 8a (colorless oil, 215 mg, 0.51 mmol, 53%) and **8b** (colorless oil, 180 mg, 0.43 mmol, 45%). Compound **8a**: R_f 0.29 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC $t_{\rm R}$ 3.8 min; ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.78 (m, 2H, Ar), 7.42–7.36 (m, 2H, Ar), 7.35–7.20 (m, 5H, Ar), 5.92 (d, J=1.4 Hz, 1H, CHOH), 5.76 (pseudo-s, 1H, CHOCb), 4.18-4.02 (m, 1H, Cb), 3.70 (d, J=1.4 Hz, 1H, OH), 3.46–3.31 (m, 1H, Cb), 2.41 (s, 3H, Ar–CH₃), 1.15 (d, J=6.9 Hz, 3H, Cb), 1.13 (d, J=6.9 Hz, 3H, Cb), 0.87 (d, J=6.9 Hz, 3H, Cb), 0.82 (d, J=6.9 Hz, 3H, Cb); 13 C NMR (100 MHz, CDCl₃) δ 150.2 (C=O), 145.2 (Ar_q), 137.5 (Ar_q), 132.5 (Ar_q), 129.2 (2C, Ar), 129.1 (2C, Ar), 127.8 (2C, Ar), 127.7 (Ar), 125.8 (2C, Ar), 86.1 (CHOCb), 69.6 (CHOH), 46.1 (Cb), 45.5 (Cb), 21.2 (CH₃), 20.5 (Cb), 20.3 (Cb), 19.3 (Cb), 19.2 (Cb); HRMS (ESI⁺) calcd for C₂₂H₂₉NO₅SNa⁺ 442.1664,

found 442.1663. Compound **8b**: R_f 0.19 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC t_R 3.8 min; ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.79 (m, 2H, Ar), 7.42–7.36 (m, 2H, Ar), 7.35–7.23 (m, 5H, Ar), 6.02 (d, *J*=8.9 Hz, 1H, CHOCb), 5.34 (dd, *J*=8.9, 2.4 Hz, 1H, CHOH), 3.92–3.79 (m, 1H, Cb), 3.62 (d, *J*=2.4 Hz, 1H, OH), 3.31–3.15 (m, 1H, Cb), 2.42 (s, 3H, Ar–CH₃), 0.96–0.77 (m, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 149.4 (C=O), 145.0 (Ar_q), 137.3 (Ar_q), 133.2 (Ar_q), 129.2 (2C, Ar), 128.9 (2C, Ar), 128.1 (Ar), 127.8 (2C, Ar), 127.2 (2C, Ar), 86.0 (CHOCb), 71.4 (CHOH), 46.1 (Cb), 45.0 (Cb), 21.2 (Ar–CH₃), 20.0 (Cb), 19.9 (Cb), 19.3 (2C, Cb); HRMS (ESI⁺) calcd for C₂₂H₂₉NO₅SNa⁺ 442.1664, found 442.1651.

4.2.4. 1-Phenyl-2-O-(N,N-diisopropylcarbamoyl)-1,2-ethanediol (11) and 1-O-(N,N-diisopropylcarbamoyl)-1-phenyl-1,2-ethanediol (12). Compounds 8a,b (as 1.2:1 diastereomeric mixture, 100 mg, 0.24 mmol, 1 equiv) were dissolved in dry THF (3 mL) and cooled to 0 °C. To this solution, NaBH₄ (72 mg, 1.92 mmol, 8 equiv) and methanolic NaOMe (30% w/v, 0.17 mL, 0.96 mmol, 4 equiv) were added. The resulting suspension were stirred at this temperature for 30 min, slowly warmed to rt, and stirred at rt for 2 h with frequent TLC inspection. Upon completion (indicated by TLC), the reaction was quenched with satd aq NH₄Cl. The organic layer was separated, and the aqueous phase was washed with ether for several times. Combined organic phases were washed with brine, concentrated, and purified with flash chromatography (on silica gel with 60–90 °C petroleum ether and EtOAc) to give products **11**¹⁴ (colorless oil, 49 mg, 0.18 mmol, 78%) and 12 (colorless oil, 13 mg, 0.05 mmol, 21%). Compound **11**: R_f 0.35 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC *t*_R 3.4 min; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.01 (m, 5H, Ph), 4.97 (dt, *J*=7.0, 3.5 Hz, 1H, CHOH), 4.26 (d, *J*=3.7 Hz, 1H, CH₂OCb), 4.28 (d, J=7.0 Hz, 1H, CH₂OCb), 4.02 (br s, 1H, Cb), 3.81 (d, *J*=3.5 Hz, 1H, OH), 3.77 (br s, 1H, Cb), 1.19 (br s, 12H, Cb); ¹³C NMR (125 MHz, CDCl₃) δ 156.4 (C=O), 140.6 (Ph_a), 128.4 (2C, Ph), 127.8 (Ph), 126.2 (2C, Ph), 73.5 (CHOH), 70.4 (CH₂OCb), 46.6 (Cb), 45.7 (Cb), 21.2 (2C, Cb), 20.5 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₃NO₃Na⁺ 288.1576, found 288.1587. Compound **12**: *R*_f 0.40 (ethyl acetate/ 60-90 °C petroleum ether, 1:3); HPLC t_R 3.2 min; ¹H NMR(400 MHz, CDCl₃) δ 7.44–7.27 (m, 5H, Ph), 5.84 (dd, *J*=7.8, 3.6 Hz, 1H, CHOCb), 4.07 (s, 1H, Cb), 3.92-3.80 (m, 3H, Cb, CH₂OH), 3.08 (br s, 1H, OH), 1.22 (m, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 155.4 (C=O), 137.3 (Pha), 128.1 (2C, Ph), 127.7 (Ph), 126.2 (2C, Ph), 77.9 (CHOCb), 66.9 (CH2OH), 46.3 (Cb), 45.2 (Cb), 21.0 (2C, Cb), 20.0 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₃NO₃Na⁺ 288.1576, found 288.1589.

4.3. General procedure for route A

Compound **7** (100 mg, 0.32 mmol, 1 equiv) was dissolved in dry THF (2 mL), and cooled to -78 °C. To this solution, *n*-BuLi (1.6 M in hexanes, 0.26 mL, 0.42 mmol, 1.3 equiv) was added. The yellow solution was stirred at -78 °C for 45 min, treated with corresponding carbonyl compound (neat, 0.35 mmol, 1.1 equiv), stirred at -78 °C for further 50 min, and treated with NaBH₄ (121 mg, 3.2 mmol, 10 equiv) and methanolic NaOMe (30% w/v, 0.34 mL, 1.92 mmol, 6 equiv). The resulting mixture was gradually warmed to rt and stirred at rt until completion (ca. 2 h, indicated by TLC). The reaction was quenched with satd aq NH₄Cl. The organic layer was separated, and the aqueous phase was washed with ether for several times. Combined organic phases were washed with brine, concentrated, and purified with flash chromatography (on silica gel with 60–90 °C petroleum ether and EtOAc) to give products **11** and **14a–i**.

4.4. General procedure for route B

Compound **7** (100 mg, 0.32 mmol, 1 equiv) was dissolved in dry THF (2 mL), and cooled to -78 °C. To this solution, *n*-BuLi (1.6 M in hexanes, 0.26 mL, 0.42 mmol, 1.3 equiv) was added. The yellow

solution was stirred at -78 °C for 45 min, treated with corresponding carbonyl compound (neat, 0.35 mmol, 1.1 equiv), stirred at -78 °C for further 50 min, and treated with NaBH₄ (121 mg, 3.2 mmol, 10 equiv). The resulting suspension was gradually warmed to rt and stirred at rt until completion (ca. 2 h) indicated by TLC. The reaction was quenched with satd aq NH₄Cl. The organic layer was separated, and the aqueous phase was washed with ether for several times. Combined organic phases were washed with brine, concentrated, and purified with flash chromatography (on silica gel with 60–90 °C petroleum ether and EtOAc) to give products **12**, **15b–e**, **15g**, and **15j–l**.

4.5. General procedure for route C

Compound **7** (100 mg, 0.32 mmol, 1 equiv) was dissolved in dry THF (2 mL), and cooled to 0 °C. To this solution, *i*-PrMgCl (2.0 M in THF, 0.22 mL, 0.44 mmol, 1.4 equiv) was added. The clear solution was stirred at 0 °C for 2 h, treated with corresponding carbonyl compound (neat, 0.38 mmol, 1.2 equiv), stirred at 0 °C for further 50 min, cooled to -78 °C, and treated with DIBAH (1.0 M in hexanes, 3.8 mL, 3.8 mmol, 12 equiv). The resulting mixture was gradually warmed to rt and stirred overnight. Upon completion (indicated by TLC), the reaction was quenched with satd aq NH₄Cl, and stirred with satd aq Rochelle salt. The organic layer was separated, and the aqueous phase was washed with ether for several times. Combined organic phases were washed with brine, concentrated, and purified with flash chromatography (on silica gel with 60–90 °C petroleum ether and EtOAc) to give products **13**, **16d–e**, **16g**, and **16m**.

4.6. Experiments described in Scheme 4 and Table 1

4.6.1. 1-O-(*N*,*N*-*Diisopropylcarbamoyl*)-1,2-*heptanediol* (**14a**). According to route A, from compound **7** (100 mg, 0.32 mmol), compound **14a** (colorless oil, 10 mg, 0.04 mmol, 12%) was obtained. Compound **14a**: R_f 0.29 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC t_R 3.8 min; ¹H NMR (400 MHz, CDCl₃) δ 4.83 (m, 1H, CHOH), 4.05 (br s, 1H, Cb),3.79 (br s, 1H, Cb), 3.74–3.62 (m, 2H, CH₂OCb), 3.18 (br s, 1H, OH), 1.70–1.48 (m, 2H, CH₂(CH₂)₃CH₃), 1.44–1.25 (m, 6H, CH₂(CH₂)₃CH₃), 1.22 (d, *J*=6.8 Hz, 12H, Cb), 0.88 (m, 3H, CH₂(CH₂)₃CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 156.7 (C=O), 77.2 (CHOH), 66.3 (CH₂OCb), 46.5 (Cb), 45.5 (Cb), 31.7 (CH₂), 31.1 (CH₂), 25.2 (CH₂), 22.5 (CH₂), 21.5 (2C, Cb), 20.6 (2C, Cb), 14.0 (CH₂(CH₂)₃CH₃); HRMS (ESI⁺) calcd for C₁₄H₂₉NO₃Na⁺ 282.2045, found 282.2050.

4.6.2. 1-Phenyl-2-O-(N,N-diisopropylcarbamoyl)-1,2-ethanediol (**11**) and 1-O-(N,N-diisopropylcarbamoyl)-1-phenyl-1,2-ethanediol (**12**). According to route A, from compound **7** (100 mg, 0.32 mmol), compounds **11** (colorless oil, 57 mg, 0.21 mmol, 67%) and **12** (colorless oil, 22 mg, 0.08 mmol, 26%) were obtained. Their NMR data are identical with the products obtained from compound **8**.

4.6.3. 1-(2,4-Dimethylphenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2ethanediol (**14b**) and 1-O-(N,N-diisopropylcarbamoyl)-1-(2,4dimethylphenyl)-1,2-ethanediol (**15b**). According to route A, fromcompound**7**(100 mg, 0.32 mmol), compounds**14b**(white solid,55 mg, 0.19 mmol, 59%) and**15b**(colorless oil, 25 mg, 0.09 mmol,27%) were obtained. Compound**14b** $: <math>R_f$ 0.43 (ethyl acetate/ 60–90 °C petroleum ether, 1:4); mp 109–110 °C; HPLC t_R 3.8 min; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J*=7.9 Hz, 1H, Ar), 7.04 (d, *J*=7.9 Hz, 1H, Ar), 6.96 (s, 1H, Ar), 5.22–5.11 (m, 1H, CHOH), 4.28–4.13 (m, 2H, CH₂OCb), 4.01 (br s, 1H, Cb), 3.82 (br s, 1H, Cb), 3.47 (s, 1H, OH), 2.34 (s, 3H, Ar-CH₃), 2.30 (s, 3H, Ar-CH₃), 1.35–1.15 (m, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 156.3 (C=O), 137.2 (Ar_q), 135.3 (Ar_q), 134.5 (Ar_q), 131.1 (Ar), 126.8 (Ar), 126.0 (Ar), 70.2 (CHOH), 69.3 (*C*H₂OCb), 46.4 (Cb), 45.6 (Cb), 21.2 (2C, Cb), 21.0 (Ar–CH₃), 20.5 (2C, Cb), 19.0 (Ar–CH₃); HRMS (ESI⁺) calcd for C₁₇H₂₇NO₃Na⁺ 316.1889, found 316.1889. Compound **15b**: R_f 0.48 (ethyl acetate/60–90 °C petroleum ether, 1:3); HPLC t_R 3.6 min; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J*=7.8 Hz, 1H, Ar), 7.02 (d, *J*=7.8 Hz, 1H, Ar), 6.99 (s, 1H, Ar), 6.03 (dd, *J*=8.1, 3.2 Hz, 1H, CHOCb), 4.05 (br s, 1H, Cb), 3.95–3.61 (m, 3H, Cb, CH₂OH), 3.17 (br s, 1H, OH), 2.38 (s, 3H, Ar–CH₃), 2.29 (s, 3H, Ar–CH₃), 1.42–1.04 (m, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 155.6 (C=O), 137.0 (Ar_q), 134.6 (Ar_q), 132.6 (Ar_q), 130.9 (Ar), 126.3 (Ar), 125.7 (Ar), 74.7 (CHOCb), 66.2 (CH₂OH), 46.1 (Cb), 45.3 (Cb), 21.1 (2C, Cb), 20.5 (Ar–CH₃), 20.0 (2C, Cb), 18.7 (Ar–CH₃); HRMS (ESI⁺) calcd for C₁₇H₂₇NO₃Na⁺ 316.1889, found 316.1886.

4.6.4. 1-(3-Chlorophenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2ethanediol (14c) and 1-O-(N,N-diisopropylcarbamoyl)-1-(3chlorophenyl)-1,2-ethanediol (15c). According to route A, from compound 7 (100 mg, 0.32 mmol), compounds 14c (colorless oil, 77 mg, 0.26 mmol, 80%) and 15c (colorless oil, 9 mg, 0.03 mmol, 9%) were obtained. Compound 14c: Rf 0.39 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC t_R 3.7 min; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.38 (m, 1H, Ar), 7.30–7.22 (m, 3H, Ar), 4.94 (dt, *J*=6.6, 3.1 Hz, 1H, CHOH), 4.35-4.20 (m, 3H, CH₂OCb, OH), 4.00 (br s, 1H, Cb), 3.74 (br s, 1H, Cb), 1.19 (s, 12H, Cb); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 156.4 (C=0), 142.9 (Ar_q), 134.3 (Ar_q), 129.6 (Ar), 127.8 (Ar), 126.4 (Ar), 124.3 (Ar), 72.8 (CHOH), 70.2 (CH₂OCb), 46.6 (Cb), 45.8 (Cb), 21.0 (2C, Cb), 20.4 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₂NO₃ClNa⁺ 322.1186, found 322.1187. Compound 15c: Rf 0.35 (ethyl acetate/ 60–90 °C petroleum ether, 1:3); HPLC t_R 3.5 min; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.20 (m, 4H, Ar), 5.78 (dd, *J*=7.4, 3.8 Hz, 1H, CHOCb), 4.05 (br s, 1H, Cb), 3.95-3.75 (m, 3H, Cb, CH₂OH), 2.85 (br s, 1H, OH), 1.23 (s, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 154.9 (C=0), 139.5 (Ar_a), 134.0 (Ar_a), 129.4 (Ar), 127.8 (Ar), 126.3 (Ar), 124.4 (Ar), 76.9 (CHOCb), 66.4 (CH₂OH), 46.3 (Cb), 45.2 (Cb), 21.1 (2C, Cb), 20.0 (2C, Cb); HRMS (ESI⁺) calcd for $C_{15}H_{22}NO_3CINa^+$ 322.1186, found 322.1179.

4.6.5. 1-(4-Methoxyphenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2ethanediol (14d) and 1-O-(N,N-diisopropylcarbamoyl)-1-(4methoxyphenyl)-1,2-ethanediol (15d). According to route A, from compound 7 (100 mg, 0.32 mmol), compounds 14d (colorless oil, 51 mg, 0.17 mmol, 54%) and 15d (colorless oil, 15 mg, 0.05 mmol, 16%) were obtained. Compound 14d: Rf 0.53 (ethyl acetate/ 60–90 °C petroleum ether, 1:2); HPLC t_R 3.3 min; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.28 (m, 2H, Ar), 6.97-6.81 (m, 2H, Ar), 4.92 (t, J=5.5 Hz, 1H, CHOH), 4.25 (d, J=0.6 Hz, 1H, CH₂OCb), 4.23 (s, 1H, CH₂OCb), 4.02 (br s, 1H, Cb), 3.80 (s, 3H, OCH₃), 3.78 (br s, 1H, Cb), 3.62 (br s, 1H, OH), 1.20 (m, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (Ar_q), 156.3 (C=O), 132.7 (Ar_q), 127.4 (2C, Ar), 113.8 (2C, Ar), 72.9 (CHOH), 70.3 (CH₂OCb), 55.2 (OCH3), 46.5 (Cb), 45.7 (Cb), 21.1 (2C, Cb), 20.5 (2C, Cb); HRMS (ESI⁺) calcd for C₁₆H₂₅NO₄Na⁺ 318.1681, found 318.1664. Compound **15d**: *R*_f 0.25 (ethyl acetate/60–90 °C petroleum ether, 1:3); HPLC $t_{\rm R}$ 3.2 min; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (m, 2H, Ar), 7.06–6.65 (m, 2H, Ar), 5.78 (dd, J=7.9, 3.6 Hz, 1H, CHOCb), 4.09 (br s, 1H, Cb), 3.92-3.86 (m, 1H, CH₂OH), 3.81-3.76 (m, 5H, Cb, CH₂OH, OCH₃), 3.02 (m, 1H, OH), 1.20 (m, 12H, Cb); ¹³C NMR (125 MHz, CDCl₃) δ 159.4 (Ar_a), 156.0 (C=0), 129.9 (Ar_a), 128.1 (2C, Ar), 114.0 (2C, Ar), 78.0 (CHOCb), 67.3 (CH₂OH), 55.2 (OCH₃), 46.8 (Cb), 45.5 (Cb), 21.6 (2C, Cb), 20.5 (2C, Cb); HRMS (ESI⁺) calcd for C₁₆H₂₅NO₄Na⁺ 318.1681, found 318.1685.

4.6.6. 1-(2,4-Dimethoxyphenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2-ethanediol (**14e**) and 1-O-(N,N-diisopropylcarbamoyl)-1-(2,4dimethoxyphenyl)-1,2-ethanediol (**15e**). According to route A, from compound **7** (100 mg, 0.32 mmol), compounds **14e** (colorless oil,

58 mg, 0.18 mmol, 56%) and 15e (colorless oil, 23 mg, 0.07 mmol, 22%) were obtained. Compound 14e: Rf 0.47 (ethyl acetate/ 60–90 °C petroleum ether, 1:2); HPLC t_R 3.4 min; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J*=8.4 Hz, 1H, Ar), 6.49 (dd, *J*=8.4, 2.4 Hz, 1H, Ar), 6.44 (d, J=2.4 Hz, 1H, Ar), 5.16-5.07 (m, 1H, CHOH), 4.30 (d, J=2.4 Hz, 1H, CH₂OCb), 4.29 (s, 1H, CH₂OCb), 4.13–3.91 (br s, 1H, Cb), 3.86-3.74 (m, 2H, Cb, OH), 3.82 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 1.19 (m, 12H, Cb), ¹³C NMR (100 MHz, CDCl₃) δ 160.3 (Ar_a), 157.3 (Ar_a), 156.5 (C=O), 128.1 (Ar), 121.0 (Ar_a), 104.0 (Ar), 98.3 (Ar), 69.2 (CHOH), 68.9 (CH₂OCb), 55.3 (2C, OCH₃), 46.4 (Cb), 45.6 (Cb), 21.1 (2C, Cb), 20.5 (2C, Cb); HRMS (ESI⁺) calcd for C₁₇H₂₇NO₅Na⁺ 348.1787, found 348.1775. Compound 15e: Rf 0.34 (ethyl acetate/ 60–90 °C petroleum ether, 1:2); HPLC t_R 3.3 min; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J=8.4 Hz, 1H, Ar), 6.49 (dd, J=8.4, 2.4 Hz, 1H, Ar), 6.45 (d, J=2.4 Hz, 1H, Ar), 6.15 (dd, J=6.6, 4.0 Hz, 1H, CHOCb), 4.15–4.00 (br s, 1H, Cb), 3.90–3.75 (m, 3H, Cb, CH₂OH), 3.81 (s, 3H, OCH₃), 3.80(s, 3H, OCH₃), 3.12 (br s, 1H, OH), 1.22 (m, 12H, Cb); ¹³C NMR (125 MHz, CDCl₃) δ 160.6 (Ar_a), 157.3 (Ar_a), 156.2 (C=O), 128.0 (Ar), 118.6 (Ar_q), 104.2 (Ar), 98.4 (Ar), 73.5 (CHOCb), 66.6 (CH₂OH), 55.4 (2C, OCH₃), 46.6 (Cb), 45.6 (Cb), 21.5 (2C, Cb), 20.5 (2C, Cb); HRMS (ESI⁺) calcd for C₁₇H₂₇NO₅Na⁺ 348.1787, found 348.1773.

4.6.7. 1-(4-*Fluorophenyl*)-2-O-(*N*,*N*-*diisopropylcarbamoyl*)-1,2*ethanediol* (**14f**). According to route A, from compound **7** (100 mg, 0.32 mmol), compound **14f** (colorless oil, 64 mg, 0.23 mmol, 71%) was obtained. Compound **14f**: R_f 0.36 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC t_R 3.4 min; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.32 (m, 2H, Ar), 7.09–6.97 (m, 2H, Ar), 4.98–4.92 (m, 1H, CHOH), 4.32–4.18 (m, 2H, CH₂OCb), 4.00 (br s, 2H, OH, Cb), 3.76 (br s, 1H, Cb), 1.19 (br s, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, *J*=245.5 Hz, Ar_q), 156.3 (C=O), 136.4 (d, *J*=2.9 Hz, Ar_q), 127.9 (Ar), 127.8 (Ar), 115.3 (Ar), 115.1 (Ar), 72.8 (CHOH), 70.3 (CH₂OCb), 46.6 (Cb), 45.7 (Cb), 21.2 (2C, Cb), 20.4 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₂NO₃FNa⁺ 306.1481, found 306.1485.

4.6.8. 1-(3,4-Difluorophenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2ethanediol (**14g**). According to route A, from compound **7** (100 mg, 0.32 mmol), compound **14g** (colorless oil, 55 mg, 0.18 mmol, 57%) was obtained. Compound **14g**: R_f 0.27 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC t_R 3.5 min; ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.20 (m, 1H, Ar), 7.19–7.06 (m, 2H, Ar), 4.93 (dt, *J*=6.5, 3.1 Hz, 1H, CHOH), 4.34–4.17 (m, 3H, CH₂OCb, OH), 4.00 (br s, 1H, Cb), 3.76 (br s, 1H, Cb), 1.18 (br s, 12H, Cb); ¹³C NMR (125 MHz, CDCl₃) δ 156.4 (C=O), 151.0 (dd, *J*=75.4, 12.7 Hz, Ar_q), 149.1 (dd, *J*=74.8, 12.7 Hz, Ar_q), 137.1–136.9 (m, Ar_q), 122.0 (dd, *J*=6.2, 3.6 Hz, Ar), 117.1 (d, *J*=17.3 Hz, Ar), 115.3 (d, *J*=17.9 Hz, Ar), 72.5 (CHOH), 70.2 (CH₂OCb), 46.7 (Cb), 45.8 (Cb), 21.1 (2C, Cb), 20.4 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₁NO₃F₂Na⁺ 324.1387, found 324.1368.

4.6.9. 1-(4-Trifluoromethylphenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2-ethanediol (14h) and 1-O-(N,N-diisopropylcarbamoyl)-1-(4trifluoromethylphenyl)-1,2-ethanediol (15h). According to route A, from compound 7 (100 mg, 0.32 mmol), compounds 14h (colorless oil, 64 mg, 0.19 mmol, 60%) and 15h (colorless oil, 12 mg, 0.04 mmol, 11%) were obtained. Compound **14h**: *R*_f 0.33 (ethyl acetate/60–90 °C petroleum ether, 1:4); mp 53–54 °C; HPLC $t_{\rm R}$ 3.8 min; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J*=8.2 Hz, 2H, Ar), 7.53 (d, J=8.2 Hz, 2H, Ar), 5.03 (dd, J=7.1, 2.5 Hz, 1H, CHOH), 4.37–4.24 (m, 3H, CH₂OCb, OH), 4.00 (br s, 1H, Cb), 3.74 (br s, 1H, Cb), 1.19 (br s, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 156.4 (C=O), 144.7 (Ar_q), 129.9 (q, J=32.5 Hz, CF₃), 126.4 (2C, Ar), 125.2 (m, 2C, Ar), 122.7 (Ar_a), 73.0 (CHOH), 70.2 (CH₂OCb), 46.6 (Cb), 45.8 (Cb), 21.0 (2C, Cb), 20.4 (2C, Cb); HRMS (ESI⁺) calcd for C₁₆H₂₂NO₃F₃Na⁺ 356.1449, found 356.1467. Compound 15h: R_f 0.30 (ethyl acetate:petroleum ether, 1:3); $t_{\rm R}$ 3.7 min; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J=8.1 Hz, 2H, Ar), 7.48 (d, *J*=8.1 Hz, 2H, Ar), 5.86 (dd, *J*=7.2, 3.8 Hz, 1H, CHOCb), 4.05 (br s, 1H, Cb), 3.96–3.79 (m, 3H, Cb, CH₂OH), 2.68 (br s, 1H, CH₂OH), 1.41–1.16 (m, 12H, Cb); ¹³C NMR (125 MHz, CDCl₃) δ 155.3 (C=O), 142.0 (Ar_q), 130.3 (q, *J*=32.6 Hz, CF₃), 127.0 (2C, Ar), 125.6 (m, 2C, Ar), 122.9 (Ar), 77.5 (CHOCb), 67.0 (CH₂OH), 46.9 (Cb), 45.8 (Cb), 21.6 (2C, Cb), 20.4 (2C, Cb); HRMS (ESI⁺) calcd for C₁₆H₂₂NO₃F₃Na⁺ 356.1449, found 356.1467.

4.6.10. 1-Methyl-2-O-(N,N-diisopropylcarbamoyl)-1,2-propanediol (**14i**). According to route A, from compound **7** (100 mg, 0.32 mmol), compound **14i** (colorless oil, 45 mg, 0.20 mmol, 64%) was obtained. Compound **14i**: R_f 0.23 (ethyl acetate/60–90 °C petroleum ether, 1:4); HPLC t_R 2.8 min; ¹H NMR (400 MHz, CDCl₃) δ 4.06 (br s, 1H, Cb), 4.02 (s, 2H, CH₂OCb), 3.83 (br s, 1H, Cb), 2.79 (br s, 1H, OH), 1.23 (d, *J*=6.8 Hz, 12H, Cb); ¹³C NMR (125 MHz, CDCl₃) δ 156.2 (C=O), 73.0 (C(CH₃)₂OH), 70.2 (CH₂OCb), 46.6 (Cb), 45.6 (Cb), 26.5 (2C, C(CH₃)₂OH), 21.5 (2C, Cb), 20.5 (2C, Cb); HRMS (EI⁺) calcd for C₁₁H₂₃NO₃ 217.1678, found 217.1679.

4.6.11. 1-O-(*N*,*N*-*Diisopropylcarbamoyl*)-1-*phenyl*-1,2-*ethanediol* (**12**). According to route B, from compound **7** (100 mg, 0.32 mmol), compound **12** (colorless oil, 42 mg, 0.16 mmol, 49%) was obtained. Its NMR data are identical with the products obtained from compound **8**.

4.6.12. 1-O-(*N*,*N*-Diisopropylcarbamoyl)-1-(*naphthalen-2-yl*)-1,2ethanediol (**15***j*). According to route B, from compound **7** (100 mg, 0.32 mmol), compound **15***j* (colorless oil, 58 mg, 0.18 mmol, 57%) was obtained. Compound **15***j*: R_f 0.40 (ethyl acetate/60–90 °C petroleum ether, 1:3); HPLC t_R 3.6 min; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J*=8.5 Hz, 1H, Ar), 7.90–7.79 (m, 2H, Ar), 7.63–7.45 (m, 4H, Ar), 6.64 (dd, *J*=7.2, 3.3 Hz, 1H, CHOCb), 4.16–3.83 (m, 4H, Cb, CH₂OH), 3.27 (br s, 1H, OH), 1.24 (m, 12H, Cb); ¹³C NMR (125 MHz, CDCl₃) δ 156.0 (C=O), 133.8 (Ar_q), 133.5 (Ar_q), 130.3 (Ar_q), 128.9 (Ar), 128.7 (Ar), 126.6 (Ar), 125.9 (Ar), 125.2 (Ar), 124.2 (Ar), 123.1 (Ar), 75.8 (CHOCb), 67.3 (CH₂OH), 46.7 (Cb), 46.0 (Cb), 21.4 (2C, Cb), 20.6 (2C, Cb); HRMS (ESI⁺) calcd for C₁₉H₂₅NO₃Na⁺ 338.1732, found 338.1732.

4.6.13. 1-(2,4-Dimethylphenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2ethanediol (**14b**) and 1-O-(N,N-diisopropylcarbamoyl)-1-(2,4dimethylphenyl)-1,2-ethanediol (**15b**). According to route B, from compound **7** (100 mg, 0.32 mmol), compounds **14b** (white solid, 6 mg, 0.02 mmol, 6%) and **15b** (colorless oil, 47 mg, 0.16 mmol, 50%) were obtained. Their NMR data are identical with the products obtained via route A.

4.6.14. 1-O-(N,N-Diisopropylcarbamoyl)-1-(3-chlorophenyl)-1,2ethanediol (**15c**). According to route B, from compound **7** (100 mg, 0.32 mmol), compound **15c** (colorless oil, 49 mg, 0.16 mmol, 51%) was obtained. Its NMR data are identical with the products obtained via route A.

4.6.15. 1-O-(*N*,*N*-Diisopropylcarbamoyl)-1-(4-bromophenyl)-1,2ethanediol (**15k**). According to route B, from compound **7** (100 mg, 0.32 mmol), compound **15k** (colorless oil, 75 mg, 0.22 mmol, 68%) was obtained. Compound **15k**: R_f 0.37 (ethyl acetate/60–90 °C petroleum ether, 1:3); HPLC t_R 3.6 min; ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.47 (m, 2H, Ar), 7.27–7.22 (m, 2H, Ar), 5.76 (dd, *J*=7.5, 3.8 Hz, 1H, CHOCb), 4.06 (br s, 1H, Cb), 3.94–3.72 (m, 3H, Cb, CH₂OH), 2.91 (br s, 1H, OH), 1.21 (m, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 155.0 (C=O), 136.5 (Ar_q), 131.2 (2C, Ar), 127.9 (2C, Ar), 121.6 (Ar_q), 77.0 (CHOCb), 66.4 (CH₂OH), 46.3 (Cb), 45.2 (Cb), 21.1 (2C, Cb), 20.0 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₂NO₃BrNa⁺ 366.0681, found 366.0689.

4.6.16. 1-O-(*N*,*N*-*Diisopropylcarbamoyl*)-1-(2-*methoxyphenyl*)-1,2*ethanediol* (**151**). According to route B, from compound **7** (100 mg, 0.32 mmol), compound **151** (white solid, 64 mg, 0.22 mmol, 68%) was obtained. Compound **151**: R_f 0.34 (ethyl acetate/60–90 °C petroleum ether, 1:3); mp 83–84 °C; HPLC t_R 3.3 min; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, *J*=7.5, 1.7 Hz, 1H, Ar), 7.28 (ddd, *J*=8.2, 7.5, 1.7 Hz, 1H, Ar), 6.96 (td, *J*=7.5, 1.0 Hz, 1H, Ar), 6.88 (dd, *J*=8.2, 1.0 Hz, 1H, Ar), 6.24 (dd, *J*=6.7, 3.7 Hz, 1H, CHOCb), 4.05 (br s, 1H, Cb), 3.96–3.76 (m, 3H, Cb, CH₂OH), 3.84 (s, 3H, OCH₃), 3.06 (dd, *J*=6.7, 5.1 Hz, 1H, OH), 1.23 (m, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 155.6 (C=O), 128.5 (Ar_q), 126.6 (2C, Ar), 125.6 (Ar_q), 120.0 (Ar), 110.0 (Ar), 73.0 (CHOCb), 66.0 (CH₂OH), 54.9 (OCH₃), 46.1 (Cb), 45.2 (Cb), 21.0 (2C, Cb), 20.0 (2C, Cb); HRMS (ESI⁺) calcd for C₁₆H₂₅NO₄Na⁺ 318.1681, found 318.1684.

4.6.17. 1-(4-Methoxyphenyl)-2-O-(N,N-diisopropylcarbamoyl)-1,2ethanediol (**14d**) and 1-O-(N,N-diisopropylcarbamoyl)-1-(4methoxyphenyl)-1,2-ethanediol (**15d**). According to route B, from compound **7** (100 mg, 0.32 mmol), compounds **14d** (colorless oil, 10 mg, 0.04 mmol, 11%) and **15d** (colorless oil, 46 mg, 0.16 mmol, 49%) were obtained. Their NMR data are identical with the products obtained via route A.

4.6.18. 1-O-(*N*,*N*-Diisopropylcarbamoyl)-1-(2,4-dimethoxyphenyl)-1,2-ethanediol (**15e**). According to route B, from compound **7** (100 mg, 0.32 mmol), compound **15e** (colorless oil, 73 mg, 0.22 mmol, 70%) was obtained. Its NMR data are identical with the products obtained via route A.

4.6.19. 1-O-(*N*,*N*-*Diisopropylcarbamoyl*)-1-(3,4-*difluorophenyl*)-1,2*ethanediol* (**15g**). According to route B, from compound **7** (200 mg, 0.64 mmol), product **15g** (colorless oil, 94 mg, 0.31 mmol, 49%) was obtained. Compound **15g**: R_f 0.29 (ethyl acetate/60–90 °C petroleum ether, 1:3); HPLC t_R 3.4 min; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.03 (m, 3H, Ar), 5.76 (dd, *J*=7.3, 4.0 Hz, 1H, CHOCb), 4.05 (br s, 1H, Cb); 3.94–3.75 (m, 3H, Cb, CH₂OH), 2.92 (br s, 1H, OH), 1.22 (br s, 12H, Cb); ¹³C NMR (100 MHz, CDCl₃) δ 154.7 (C=O), 150.9 (dd, *J*=26.9, 12.6 Hz, Ar_q), 148.4 (dd, *J*=26.9, 12.6 Hz, Ar_q), 134.7 (t, *J*=4.5 Hz, Ar_q), 122.4 (dd, *J*=6.3, 3.6 Hz, Ar), 116.9 (d, *J*=17.4 Hz, Ar), 115.3 (d, *J*=17.9 Hz, Ar), 76.2 (CHOCb), 66.1 (CH₂OH), 46.3 (Cb), 45.2 (Cb), 21.1 (2C, Cb), 19.9 (2C, Cb); HRMS (ESI⁺) calcd for C₁₅H₂₁NO₃F₂Na⁺ 324.1387, found 324.1375.

4.6.20. 1-Phenyl-1,2-ethanediol (13). According to route C, from compound 7 (100 mg, 0.32 mmol), compound 13 (white solid, 25 mg, 0.18 mmol, 57%) was obtained. Compound 13: ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.25 (m, 5H, Ph), 4.77 (dd, *J*=8.2, 3.5 Hz, 1H, CHOH), 3.73–3.58 (m, 2H, CH₂OH), 3.49 (br s, 1H, OH), 3.13 (br s, 1H, OH); ¹³C NMR (125 MHz, CDCl₃) δ 140.5 (Ph_q), 128.5 (2C, Ph), 128.0 (Ph), 126.1 (2C, Ph), 74.7 (CHOH), 68.0 (CH₂OH). NMR of data of compound 13 are consistent with the literature.¹⁵

4.6.21. 1-(4-*Methoxyphenyl*)-1,2-*ethanediol* (**16d**). According to route C, from compound **7** (100 mg, 0.32 mmol), compound **16d** (white solid, 33 mg, 0.20 mmol, 62%) was obtained. Compound **16d**: ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J*=8.7 Hz, 2H, Ar), 6.87 (d, *J*=8.7 Hz, 2H, Ar), 4.72 (dd, *J*=8.2, 3.5 Hz, 1H, CHOH), 3.79 (s, 3H, OCH₃), 3.68–3.58 (m, 2H, CH₂OH), 3.35 (br s, 1H, OH), 3.02 (br s, 1H, OH); ¹³C NMR (125 MHz, CDCl₃) δ 159.3 (Ar_q), 132.6 (Ar_q), 127.4 (2C, Ar), 113.9 (2C, Ar), 74.3 (CHOH), 68.0 (CH₂OH), 55.3 (OCH₃). NMR of data of compound **16d** are consistent with the literature.¹⁶

4.6.22. 1-(2,4-Dimethoxyphenyl)-1,2-ethanediol (**16e**). According to route C, from compound **7** (100 mg, 0.32 mmol), compound **16e** (white solid, 39 mg, 0.20 mmol, 62%) was obtained. Compound **16e**: R_f 0.17 (ethyl acetate/60–90 °C petroleum ether, 1:1); mp 112–113 °C; HPLC t_R 2.0 min; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J=8.3 Hz, 1H, Ar), 6.49 (dd, J=8.3, 2.3 Hz, 1H, Ar), 6.45 (d, J=2.3 Hz, 1H, Ar), 4.97 (dd, J=8.0, 3.5 Hz, 1H, CHOH), 3.81 (s, 3H, OCH₃), 3.80

(s, 3H, OCH₃), 3.78–3.64 (m, 2H, CH₂OH), 2.98 (br s, 1H, OH), 2.38 (br s, 1H, OH); ¹³C NMR (125 MHz, CDCl₃) δ 160.5 (Ar_q), 157.6 (Ar_q), 128.0 (Ar), 120.9 (Ar_q), 104.2 (Ar), 98.6 (Ar), 71.0 (CHOH), 66.6 (CH₂OH), 55.4 (CH₃), 55.3 (CH₃); HRMS (EI⁺) calcd for C₁₀H₁₄O₄ 198.0892, found 198.0887.

4.6.23. 1-(3,4-Difluorophenyl)-1,2-ethanediol (**16**g). According to route C, from compound **7** (100 mg, 0.32 mmol), compound **16**g (colorless oil, 34 mg, 0.20 mmol, 62%) was obtained. Compound **16**g: R_f 0.21 (ethyl acetate/60–90 °C petroleum ether, 1:1); HPLC t_R 2.1 min; ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.10 (m, 2H, Ar), 7.07 (m, 1H, Ar), 4.78 (dd, *J*=8.1, 3.1 Hz, 1H, CHOH), 3.78–3.54 (m, 2H, CH₂OH), 3.21 (br s, 1H, OH), 2.65 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 150.8 (dd, *J*=38.9, 24.0 Hz, Ar_q), 148.2 (dd, *J*=75.8, 42.9 Hz, Ar_q), 138.3–135.2 (m, Ar_q), 121.5 (dd, *J*=6.3, 3.6 Hz, Ar), 116.8 (d, *J*=17.3 Hz, Ar), 114.6 (d, *J*=17.8 Hz, Ar), 73.0 (CHOH), 67.3 (CH₂OH); HRMS (EI⁺) calcd for C₈H₈F₂O₂ 174.0492, found 174.0494.

4.6.24. 1,1-Diphenyl-1,2-ethanediol (**16m**). According to route C, from compound **7** (100 mg, 0.32 mmol), compound **16m** (white solid, 39 mg, 0.18 mmol, 57%) was obtained. Compound **16m**: ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.40 (m, 4H, Ph), 7.37–7.30 (m, 4H, Ph), 7.28–7.24 (m, 2H, Ph), 4.13 (d, *J*=6.4 Hz, 2H, *CH*₂OH), 3.27 (s, 1H, CHOH), 2.03 (t, *J*=6.4 Hz, 1H, CH₂OH); ¹³C NMR (125 MHz, CDCl₃) δ 143.8 (2C, Ph_q), 128.4 (4C, Ph), 127.5 (2C, Ph), 126.4 (4C, Ph), 78.6 (CHOH), 69.4 (CH₂OH). NMR of data of compound **16m** are consistent with the literature.¹⁷

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81102306).

Supplementary data

Copies of the ¹H NMR and ¹³C NMR spectra of new intermediates and products are provided. Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/ 10.1016/j.tet.2012.08.025.

References and notes

 For examples of recently reported 1,2-diol synthesis methodologies: (a) Trost, B. M.; Malhotra, S.; Koschker, P.; Ellerbrock, P. J. Am. Chem. Soc. 2011, 134, 2075–2084; (b) Seayad, J.; Seayad, A. M.; Chai, C. L. L. Org. Lett. 2010, 12, 1412–1415; (c) Park, C. P.; Lee, J. H.; Yoo, K. S.; Jung, K. W. Org. Lett. **2010**, *12*, 2450–2452; (d) Griffith, J. C.; Jones, K. M.; Picon, S.; Rawling, M. J.; Kariuki, B. M.; Campbell, M.; Tomkinson, N. C. O. *J. Am. Chem. Soc.* **2010**, *132*, 14409–14411; (e) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. *J. Am. Chem. Soc.* **2011**, *133*, 13320–13322.

- For a survey of established 1,2-diol synthesis and protection methodology, see, for example: (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547; (b) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; John Wiley & Sons: Hoboken, NJ, 2007; (c) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd ed.; John Wiley & Sons: New York, NY, 1999, pp 961–1196; (d) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons: New York, NY, 1999, pp 17–245.
- For reviews, see for example: (a) Organolithiums in Enantioselective Synthesis; Hodgson, G. M., Ed.Topics in Organometallic Chemistry; Springer: Berlin/Heidelberg, Germany, 2003; (b) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. 1997, 36, 2822–2316; (c) Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552–560; (d) Hoppe, D. Synthesis 2009, 43–55; For recent applications of carbamoyloxy directed stereoselective lithiation, see for example: (e) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2011, 50, 3760–3763; (f) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 17096–17098; (g) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778–782.
- (a) Reggelin, M.; Tebben, P.; Hoppe, D. Tetrahedron Lett. **1989**, 30, 2915–2918;
 (b) Tebben, P.; Reggelin, M.; Hoppe, D. Tetrahedron Lett. **1989**, 30, 2919–2922;
 (c) Hoppe, D.; Tebben, P.; Reggelin, M.; Bolte, M. Synthesis **1997**, 183–190; (d) Hoppe, D.; Kraemer, T.; Schwark, J.-R.; Zschage, O. Pure Appl. Chem. **1990**, 62, 1999–2006; (e) Chen, Y-L.; Hoppe, D. J. Org. Chem. **2009**, 74, 4188–4194; (f) Chen, Y.-L.; Hoppe, D. Tetrahedron: Asymmetry **2009**, 20, 1561–1567.
- 5. Hintze, F.; Hoppe, D. Synthesis 1992, 12, 1216-1218.
- 6. Cravey, M. J.; Kohn, H. J. Am. Chem. Soc. 1980, 102, 3928-3939.
- (a) Boche, G.; Bosold, F.; Lohrenz, J. C. W.; Opel, A.; Zulauf, P. Chem. Ber. 1993, 126, 1873–1885; (b) Özlügedik, M.; Kristensen, J.; Wibbeling, B.; Fröhlich, R.; Hoppe, D. Eur. J. Org. Chem. 2002, 414–427.
- 8. Gundersen, L.-L.; Benneche, T. Acta Chem. Scand. 1991, 45, 975–977.
- Aside from accelerating the reaction between lithium metal and n-butyl halides, sodium impurity in lithium plays certain role in other reactions, too. See for example: Walborsky, H. M.; Banks, R. B. Bull. Soc. Chim. Belg. 1980, 89, 849–868.
- The migration of OCb protection is unexpected since it is known to be quite stable under such conditions: see for example Chen, Y. L.; Frohlich, R.; Hoppe, D. *Tetrahedron: Asymmetry* 2009, 20, 1144–1149.
- Undesired O-acyl migrations are frequently encountered problem in organic synthesis, while some of them could be useful. See for example: (a) Vares, L; Rein, T. J. Org. Chem. 2002, 67, 7226–7237; (b) Kraehenbuehl, K.; Picasso, S.; Vogel, P. Helv. Chim. Acta 1998, 81, 1439–1479; (c) Martin, J. B. J. Am. Chem. Soc. 1953, 75, 5483–5486.
- 12. We have not used LAH condition due to functional group tolerance issue and workup difficulties in larger reactions.
- 13. Ma, L.; Chen, Y. -L., unpublished results in this lab.
- 14. Kapeller, D.; Barth, R.; Mereiter, K.; Hammerschmidt, F. J. Am. Chem. Soc. 2007, 129, 914–923.
- Plietker, B.; Niggemann, M.; Pollrich, A. Org. Biomol. Chem. 2004, 2, 1116–1124.
 Nicolaou, K. C.; Snyder, S. A.; Longbottom, D. A.; Nalbandian, A. Z.; Huang, X. Chem.—Eur. J. 2004, 10, 5581–5606.
- 17. Ortiz, J.; Guijarro, A.; Yus, M. Eur. J. Org. Chem. 1999, 3005-3012.