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The palladium(0)-catalyzed Suzuki cross-coupling reaction of the bis(triflate) of 1,2,3,4-tetrahydro-9,10-
dihydroxyanthracen-1-one afforded various aryl-substituted 1,2,3,4-tetrahydroanthracen-1-ones. The
reactions proceeded with very good site-selectivity in favour of position 10, due to electronic reasons.

� 2010 Elsevier Ltd. All rights reserved.
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Figure 1. Tetralone and anthracenone natural products.
Functionalized 1,2,3,4-tetrahydroanthracen-1-ones are of con-
siderable pharmacological relevance and occur in various natural
products.1 Examples include the pigments atrochrysone and
torosachrysone, isolated from fungi as well as higher plants, which
represent key intermediates of the biosynthesis of polyketide-
derived pigments (Fig. 1).2 In fungi (genus Cortinarius), they serve
as biosynthetic precursors of a large number of anthraquinone
pigments.3 A variety of anthracenones have also been reported to
possess potent cytotoxic and anticancer activities.4–7 For example,
olivomycin A is a famous anthracenone and a member of the aure-
olic acid family of antitumor antibiotics. 4-Hydroxy-a-tetralones
act as inhibitors of PTP1B and are considered potential
drugs against obesity and type-2 diabetes. In addition, anthrace-
nones are potentially interesting because of their photochemical,
photonic, and electronic properties.

Because of potential applications in medicinal or materials
chemistry, the development of synthetic approaches to new
anthracenone derivatives is of current interest. In recent years,
site-selective palladium(0) catalyzed reactions of polyhalogenated
substrates have gained increasing importance.8 In this context,
Suzuki–Miyaura reactions of bis(triflates) have also been
developed.9 Herein, we report a new and convenient approach to
aryl-substituted 1,2,3,4-tetrahydroanthracen-1-ones by Suzuki–
Miyaura reactions of the bis(triflate) of 1,2,3,4-tetrahydro-9,10-
ll rights reserved.

nger).
dihydroxyanthracen-1-one. The reactions proceed with very good
site-selectivity which is controlled by electronic parameters. The
synthesis of the products reported herein has, to the best of our
knowledge, not been previously described. It can be anticipated
that they are not readily available by other methods.

1,2,3,4-Tetrahydro-9,10-dihydroxyanthracen-1-one (1) was
transformed into bis(triflate) 2 in 85% yield (Scheme 1).10

The Suzuki–Miyaura reaction of 2 with boronic acids 3a–f
(2.4 equiv) afforded the novel 1,2,3,4-tetrahydro-9,10-diarylan-
thracen-1-ones 4a–f in 70–90% yields (Scheme 2, Table 1). The best
yields were obtained when Pd(PPh3)4 (6 mol %) was used as the
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Table 2
Synthesis of 5a–g

3 5 Ar % (5)a

a a 4-(MeO)C6H4 75
b b 4-EtC6H4 74
c c 4-ClC6H4 70
d d 4-MeC6H4 87
h e 4-tBuC6H4 75
i f 3-CF3C6H4 73
j g 2,6-Me2C6H3 88

a Yields of isolated products.
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Scheme 1. Synthesis of 2. Reagents and conditions: (i) CH2Cl2, 1 (1.0 equiv), �78 �C,
pyridine (4.0 equiv), Tf2O (2.4 equiv), �78 �C ? 20 �C, 14 h.
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Scheme 4. Synthesis of 6a–f. Reagents and conditions: (i) 2 (1.0 equiv), 3a,c,d,h,i
(1.0 equiv), Pd(PPh3)4 (3 mol %), K3PO4 (3 equiv), 1,4-dioxane, 100 �C, 10 h; (ii)
3a,d,f,h (1.1 equiv), Pd(PPh3)4 (3 mol %), 120 �C, 10 h.

Table 3
Synthesis of 6a–f

3 6 Ar1 Ar2 % (6)a

a,h a 4-(MeO)C6H4 4-tBuC6H4 77
c,h b 4-ClC6H4 4-tBuC6H4 75
c,a c 4-ClC6H4 4-(MeO)C6H4 70
h,d d 4-tBuC6H4 4-MeC6H4 80
i,d e 3-CF3C6H4 4-MeC6H4 68
d,f f 4-MeC6H4 3-ClC6H4 70

a Yields of isolated products.

Table 1
Synthesis of 4a–f

3,4 Ar % (4)a

a 4-(MeO)C6H4 75
b 4-EtC6H4 80
c 4-ClC6H4 72
d 4-MeC6H4 85
e 4-FC6H4 70
f 3-ClC6H4 74
g 3,5-Me2C6H3 90

a Yields of isolated products.
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Scheme 2. Synthesis of 4a–f. Reagents and conditions: (i) 2 (1.0 equiv), 3a–f
(2.2 equiv), Pd(PPh3)4 (6 mol %), K3PO4 (3.0 equiv), 1,4-dioxane, 120 �C, 10 h.
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catalyst, when 2.4 equiv of the boronic acid was employed, and
when the reaction was carried out in 1,4-dioxane (120 �C, 10 h)
using K3PO4 as the base.11,12 No systematic trend was observed
for the relationship of yields and arylboronic acids employed.

The Suzuki reaction of 2 with arylboronic acids 3a–d,h–j
(1.0 equiv), in the presence of Pd(PPh3)4 (3 mol %), proceeded with
very good site-selectivity at position 10 and afforded the 10-aryl-
1,2,3,4-tetrahydro-9-trifluoromethyl-sulfonyloxy-anthracen-1-ones
5a–g in 70–88% yield (Scheme 3, Table 2).11,13 The products were
isolated in pure form after chromatography which was necessary
to remove a small amount of bis-coupled product detected in the
crude product mixture. During the optimization it proved to be
important to employ exactly 1.0 equiv of the arylboronic acid and
to carry out the reaction at 100 �C instead of 120 �C to avoid double
coupling.

The one-pot reaction of 2 with two different arylboronic acids,
which were sequentially added, afforded the 1,2,3,4-tetrahydro-
9,10-diarylanthracen-1-ones 6a–f, containing two different aryl
groups, in 70–80% yields (Scheme 4, Table 3).11,14 Following the
observations made during the optimization of the synthesis of
5a–g, the first step of the one-pot protocol was carried out at
100 �C and using exactly 1.0 equiv of the arylboronic acid.
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Scheme 3. Synthesis of 5a–g. Reagents and conditions: (i) 2 (1.0 equiv), 3a–d,h–j
(1.0 equiv), Pd(PPh3)4 (3 mol %), K3PO4 (2 equiv), 1,4-dioxane, 100 �C, 10 h.
The structures of all products were proved by 2D NMR experi-
ments (NOESY, HMBC). The structure of 5a was independently con-
firmed by X-ray crystal structure analysis (Fig. 2).15

Steric and electronic parameters can control the site-selectivity
of palladium(0) catalyzed cross-coupling reactions.16 The regiose-
Figure 2. Crystal structure of 5a.
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Scheme 5. Possible explanation for the site-selective reactions of 2.
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lective formation of products 5a–g and 6a–f can be explained by
the fact that position 10 is electronically more deficient than posi-
tion 9 (Scheme 5). In addition, chelation of the catalyst to the car-
bonyl group might play a role.

In conclusion, the site-selectivity of Suzuki–Miyaura reactions
of the bis(triflate) of 1,2,3,4-tetrahydro-9,10-dihydroxyanthracen-
1-one is controlled by electronic parameters. The first attack occurs
at the electronically more deficient position 10.
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