SYNLETT

1049

A New, Modulated, Oxidative Ring Cleavage of α -Nitrocycloalkanones by Oxone[®]: Synthesis of α, ω -Dicarboxylic Acids and α, ω -Dicarboxylic Acid Monomethyl Esters

Roberto Ballini,^{*a} Massimo Curini,^{*b} Francesco Epifano,^b Maria Carla Marcotullio,^b Ornelio Rosati^b

^aDipartimento di Scienze Chimiche dell'Università, Via S. Agostino n.1, 62032 Camerino (MC) - Italy

Fax. +39-737-637345; e-mail ballini@camserv.unicam.it

^bIstituto di Chimica Organica, Facoltà di Farmacia, Università di Perugia, Via del Liceo, 06123 Perugia - Italy

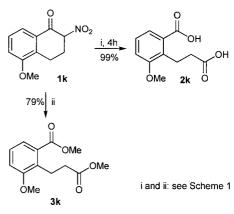
Fax +39-75-5855116; e-mail: curini@unipg.it

Dedicated to the memory of Prof. Paolo Ceccherelli

Received 11 May 1998

Abstract: By the appropriate choice of the reaction conditions Oxone[®] produces the ring cleavage of α -nitrocycloalkanones affording good yields of α , ω -dicarboxylic acids and α , ω -dicarboxylic acid monomethyl esters, respectively, regardless the ring size and/or the presence of an alkyl group as substituent.

 α -Nitrocycloalkanones are an important class of compounds commercially available and/or easily accessible from the corresponding ketones or olefins by several nitrating processes.¹⁻⁵


The C-C bond between the carbonyl group and the nitro substituted atom of cyclic α -nitro ketones undergoes cleavage by internal⁶ or external nucleophiles,^{1,7-16} the former gives macrocyclic compounds by the ring enlargement, and the latter gives α , ω -disubstituted molecules.

During our studies on the oxidative cleavage^{11,13,16} of the title compounds we discovered that treatment of α -nitrocycloalkanones with aqueous 30% hydrogen peroxide¹¹ produces α, ω -dicarboxylic acids, while potassium persulfate oxidation,¹⁶ in methanol and in the presence of sulfuric acid at 80 °C, provides α, ω -dicarboxylic acid dimethyl esters. In the last years commercially available Oxone[®] (potassium hydrogen persulfate) has found extensive synthetic application in organic chemistry. Among these particularly are the preparation of dioxiranes,¹⁷ the oxidation of sulphides to sulphoxides and sulphones,¹⁸ of selenides to selenones,¹⁹ of alkenes to epoxides.²⁰ Besides, Oxone[®] has been successfully used to perform Bayer-Villiger oxidation of ketones,²¹ and carbonyl regeneration from thioketals.²² Recently we found that Oxone[®] can be employed to oxidize nitrocompounds to carbonyl derivatives,²³ and oxime to *gem*-chloronitrocompounds.²⁴

Now we found that, by the appropriate choice of the reaction conditions $Oxone^{(B)}$ can be conveniently used for a new oxidative cleavage of cyclic α -nitro ketones **1** (Scheme 1) affording high yields of α, ω -dicarboxylic acids²⁵ **2**, and/or α, ω -dicarboxylic acid monomethyl esters²⁶ **3**, alternatively. Thus, reaction of **1**, in a solution of 0.5 M Na₂HPO₄ and 1 N NaOH, with 2.5 moles of Oxone^(B) affords high yields (78-99%) of

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

i: a) MeOH, 0.5 M Na₂HPO₄, 1 M NaOH, 70 °C; b) Oxone[®], H₂O, r. t.; ii: a) MeOH, KOH, 65 °C; b) 0.5 M Na₂HPO₄, 1 M NaOH, Oxone[®], H₂O, r. t.

Scheme 2

Table 1. α , ω -Dicarboxylic Acids and α , ω -Dicarboxylic Acids
Monomethyl Esters Prepared

Entry	R	n	Yield ^a % of 2 (Reaction times, h)	Yield ^a % of 3
а	н	1	93 (1)	89
b	C(CH ₃) ₃	1	99 (4)	99
c	CH ₃	1	88 (4)	90
d	н	7	87 (4)	82
e	Ph	1	78 (4)	92
f	н	2	94 (4)	91
g	н	6	99 (4)	93
h	н	5	98 (4)	84
i	н	10	98 (4)	84
i	Н	3	99 (4)	86

^aAll the products were characterized by analytical and spectroscopic data

(entry **3b,c,e,l**) which are hard to obtain by the regioselective monomethyl esterification of the corresponding dicarboxylic acids.

In conclusion our procedure represents an important method for an high efficient synthesis of both α, ω -dicarboxylic acids and α, ω -dicarboxylic acid monomethyl esters, from the easily available α -nitrocycloalkanones, by the appropriate modulation of the reaction conditions. Moreover, this method appears as a further evidence of the high versatility of cyclic nitro ketones and extends their application in organic synthesis.

Acknowledgements. The support for this investigation by Italian MURST and Italian C.N.R. is gratefully acknowledged.

- Fisher, R. H.; Weitz, H. M. Synthesis 1980, 261. (1)
- Ballini, R.; Sorrenti, P. Org. Prep. Proc. Int. 1984, 16, 289. (2)
- (3) Dampawan, P.; Zajac, W. W. Synthesis 1983, 545.
- Rathore, R.; Lin, Z.; Kochi, J. K. Tetrahedron Lett. 1993, 34, (4) 1859.
- (5) Venkat Ram Reddy, M.; Kumareswaran, R.; Vankar, Y. D. Tetrahedron Lett. 1995, 36, 7149.
- Stach, H.; Hesse, M. Tetrahedron 1988, 44, 1573. (6)
- Rosini, G.; Ballini, R.; Petrini, M.; Marotta, E.; Righi, P. Org. (7)Prep. Proc. Int. 1990, 22, 707.
- Ballini, R.; Petrini, M. Synthetic Commun. 1986, 16, 1781. (8)
- (9) Ballini, R.; Petrini, M.; Polzonetti, V. Synthesis 1992, 355.
- (10) Ballini, R.; Bartoli, G.; Giovannini, R.; Marcantoni, E.; Petrini, M. Tetrahedron Lett. 1993, 34, 3301.
- (11) Ballini, R.; Marcantoni, E.; Petrini, M.; Rosini, G. Synthesis 1988, 915.
- (12) Ballini, R.; Petrini, M.; Rosini, G. Tetrahedron 1990, 46, 7531.
- (13) Ballini, R.; Petrini, M.; Polimanti, O. J. Org. Chem. 1996, 61, 5652.
- (14) Saika, A. K.; Hazarika, M.; Barua, N. C.; Bezbarua, M. S.; Sharma, R. P.; Ghosh, A. C. Synthesis 1996, 981.
- (15) Ballini, R.; Barboni, L.; Pintucci, L. Synlett 1997, 1389.
- (16) Ballini, R.; Bosica, G. Tetrahedron 1997, 53, 16131.
- (17) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847.
- (18) Greenlagh, R. P. Synlett 1992, 235.
- (19) Ceccherelli, P.; Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. J. Org. Chem. 1995, 60, 8412.
- (20) Denmark, S. E.; Forbes, D. C.; Hays, D. S.; De Pue, J. S.; Wilde, R. G. J. J. Org. Chem. 1995, 60, 1391.
- (21) Hirano, M.; Oose, M. Morimoto, T. Chem. Lett. 1991, 331.
- (22) Ceccherelli, P.; Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. Synlett 1996, 767.
- (23) Ceccherelli, P.; Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. Synth. Commun. 1998, 28, in press.

- (24) Ceccherelli, P.; Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. Tetrahedron Lett. 1998, in press.
- (25) General procedure for the preparation of α, ω -dicarboxylic acids (2) is as follows: To a solution of α -nitro ketone (0.7 mmol) in MeOH (4.2 ml), 25 ml of 0.5 M Na₂HPO₄ in a 1 N of NaOH were added and the resulting mixture was heated at 70 °C for 1-4 h, then Oxone[®] (1.75 mmol) in water (3 ml) was added to the cold solution (r. t.). After 4 h the mixture was diluted with brine (10 ml), acidified to pH=2 with a 10% solution of HCl and extracted with EtOAc (3 x 20 ml). The combined organic layers were washed with brine (10 ml), dried over Na2SO4 and evaporated to yield pure dicarboxylic acid 2.
- (26) General procedure for the preparation of α, ω -dicarboxylic acid monomethyl esters (3) is as follows: To a solution of α -nitro ketone (0.7 mmol) in MeOH (2 ml), 6 ml of a solution of KOH (1.75 mmol) in MeOH were added and the resulting mixture was heated at 65 °C for 4 h, then 17 ml of a 0.5 M of Na₂HPO₄ in a 1 N solution of NaOH and Oxone® (2.1 mmol) in water (5 ml) were added to the cold solution r.t.). After 4 h the mixture was diluted with water (20 ml) and a 5% solution of NaHCO₃ (5 ml), washed with CH₂Cl₂ (1 x 10 ml), acidified to pH=2 with a 1% solution of HCl and extracted with EtOAc (3 x 20 ml). The combined layerswere washed with brine 10 ml), dried over Na2SO4 and evaporated yielding the pure compound 3.

(27) Selected analytical data for the compounds **3b,c,e**:

3b: IR (CH₂Cl₂): v = 2890, 1730 and 1709 cm⁻¹; ¹H NMR $(CDCl_3)$: $\delta = 0.88$ (s, 9H), 1.28-2.47 (m, 7H), 3.62 (s, 3H), 9.20-9.80 (s br, 1H). Anal. Calcd. for C₁₁H₂₀O₄: C, 61.09; H, 9.32. Found: C, 61.17; H, 9.40.

3c: IR (CH₂Cl₂): ν = 2890, 1740 and 1710 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 0.85-0.97$ (d, 3H, J = 5.9 Hz), 1.35-2.45 (m, 7H), 3.62 (s, 3H), 8.75-9.45 (s br, 1H). Anal. Calcd. for C₈H₁₄O₄: C, 55.16; H, 8.10. Found: C, 55.09; H, 8.16.

3e: IR (CH₂Cl₂): v = 2890, 1733 and 1710 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.78-2.22$ (m, 4H), 2.55-2.62 (d, 2H, J = 7.3 Hz), 2.96-3.08 (m, 1H), 3.53 (s, 3H), 7.10-7.27 (m, 5H), 9.25-9.75 (s br, 1H). Anal. Calcd. for C13H16O4: C, 66.09; H, 6.82. Found: C, 66.17; H, 6.90.