

www.elsevier.nl/locate/carres

CARBOHYDRATE RESEARCH

Carbohydrate Research 329 (2000) 269-286

Synthesis of 4-cyano- and 4-nitrophenyl 2,5-anhydro-1,6-dithio- α -D-gluco- and - α -L-guloseptanosides carrying different substituents at C-3 and C-4^{\Leftrightarrow}

Éva Bozó ^a, Sándor Boros ^b, László Párkányi ^c, János Kuszmann ^{b,*}

^a Gedeon Richter Chemical Works Ltd., PO Box 17, H-1475 Budapest, Hungary
 ^b Institute for Drug Research, PO Box 82, H-1325 Budapest, Hungary
 ^c Central Research Institute for Chemistry, Hungarian Academy of Sciences, PO Box 17, H-1525 Budapest, Hungary

Received 9 May 2000; accepted 23 June 2000

Dedicated to Professor András Lipták on the occasion of his 65th birthday

Abstract

Treatment of 1,6:2,5-dianhydro-3,4-di-O-methanesulfonyl-1-thio-D-glucitol in methanol with sodium hydroxide afforded 1,6:2,5:3,4-trianhydro-1-thio-allitol, 1,4:2,5-dianhydro-6-methoxy-1-thio-D-galactitol, 1,6:2,5-dianhydro-4-O-methyl-1-thio-D-glucitol, 1,6:2,5-dianhydro-3-O-methanesulfonyl-1-thio-D-glucitol and 1,6:2,5-dianhydro-4-deoxy-1-thio-D-erythro-hex-3-ulose (14) in 5, 4, 28, 5.5 and 41% yield, respectively. Formation of these derivatives can be explained via a common sulfonium intermediate. Reduction of 14 with sodium borohydride and subsequent acetylation afforded 3-O-acetyl-1,6:2,5-dianhydro-4-deoxy-1-thio-D-xylo-hexitol, the absolute configuration of which was proved by X-ray crystallography. The 1,6:2,5-dianhydro-1-thio-D-hexitol derivatives in which the free OH groups were protected by acetylation, methylation or mesylation were converted by a Pummerer reaction of their sulfoxides into the corresponding 1-O-acetyl hexoseptanose derivatives which were used as donors for the glycosidation of 4-cyano- and 4-nitrobenzenethiol, respectively. The Pummerer reaction of 1,6:2,5-dianhydro-4-deoxy-3-O-methyl-1thio-D-xylo-hexitol S-oxide gave, besides 1-O-acetyl-2,5-anhydro-3-deoxy-4-O-methyl-6-thio-a-L- (23) and 1-Oacetyl-2,5-anhydro-4-deoxy-3-O-methyl-6-thio-α-D-xylo-hexoseptanose (25), 1-O-acetyl-4-deoxy-2,6-thioanhydro-D*lyxo*-hexopyranose, formed in a rearrangement reaction. The same rearrangement took place, when a mixture of 23 and 25 was used as donor in the glycosidation reaction with 4-cyanobenzenethiol, applying trimethylsilyl triflate as promoter. The oral antithrombotic activity of the obtained α -thioglycosides was determined in rats, using Pescador's model. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Antithrombotic thioglycosides; Sulfonium intermediates; Pummerer reaction

1. Introduction

 * Orally active antithrombotic thiogly cosides, Part XI. For Part X, see Ref. [1].

* Corresponding author. Tel.: + 36-1-3993441; fax: + 36-1-3993356.

E-mail address: h13757kus@ella.hu (J. Kuszmann).

In a previous paper [1] we have shown that, in contrast to the statement of the literature [2], the oral antithrombotic effect of 4cyanophenyl 1,5-dithio-pentopyranosides is not restricted to the β -D-*xylo* configuration (1) as e.g., the overbridged, 2,5-anhydro-1,6dithio-D-gluco- (2) and L-guloseptanosides (3) possess a much stronger biological activity (Scheme 1). For checking the structure-activity relationship in this type of thioglycosides, the role of the free OH groups at C-3 and/or C-4 was studied by synthesising analogues of 2 and 3, in which OH-4 was either eliminated, methylated or exchanged with retention of configuration with an azido group, while OH-3 was kept intact or was converted into its methyl ether or mesyl ester.

2. Results and discussion

For the synthesis of the aforementioned thioglycosides, the 3,4-dimesylate of the corresponding 1,6-thioanhydro-D-glucitol derivative **4** was chosen as starting material, which can be prepared from 1,6-dibromo-1,6-dideoxy-D-mannitol in seven steps [3,4]. When **4** was treated in methanol with 40% aqueous sodium hydroxide, a complex mixture was formed, from which the monomesylate **6**

(5.5%), epoxide 7 (5%), two monohydroxymonomethoxy derivatives 9 (4%) and 11 (28%), as well as the ketone 14 (41%) could be chromatography isolated after column (Scheme 2). The formation of all these derivatives can be explained via the sulfonium intermediate 5 [3]. Attack of the OH⁻ ion at C-4 will lead with retention of configuration to the hydroxy-mesylate 6 which undergoes a trans elimination of methanesulfonic acid affording the known [3] allo epoxide 7. A similar attack of the MeO⁻ ion at C-4 will result in the methoxy-mesylate 10, the mesyl group of which will be split off in an E1cB type process [5] via regeneration of the 3-OH group affording 11. Furthermore, the MeO⁻ ion can attack the less polar, but less crowded C-6 bridge atom of 5 too, when rearrangement to the 1,4:2,5-dianhydro-3-O-methanesulfonyl-6methoxy-1-thio-D-galactitol isomer 8 takes place. The mesyl group of the latter will be split off as mentioned above yielding the isolated methoxy-hydroxy derivative 9. The main attack of the base occurs however either at H-3 (route a), splitting it off as a proton resulting in the enol-ester 12 from which the

mesyl group is removed by the base yielding 13 which rearranges immediately to the 3-keto compound 14. Another possibility would be an attack of the base on the methyl group of the mesyloxy substituent (route b) the deprotonation of which could trigger a chain reaction in which the mesyl group would be first eliminated as a sulfene [5] and the formed 3-oxy anion would form directly 14 via migration of H-3 to C-4 in a pinacoline-type rearrangement. The absolute configuration of 14 had to be established, as deprotonation of 4 at C-4 could not be ruled out and this process would lead via a similar reaction sequence to the isomeric 4-keto derivative, indistinguishable by NMR spectroscopy from 14. For this reason 14 was reduced with sodium borohydride, but from the theoretically possible two isomers 15 and 18 only the former was formed which was converted into its crystalline acetate 16. The stereoselectivity of the reduction is a consequence of the steric arrangement of 14, in which the thioether bridge is 'endo' related to the keto group, therefore the borohydride ion can approach the latter only from the less hindered 'exo' side, excluding the formation of 18. The hydroxy derivative 15, obtained as a by-product from 4 on reduction with LAH [5] had probably the same structure, but as the configuration of this compound was only deduced from the mechanism suggested for this reaction [5], this structure had still to be established. The absolute D-xylo configuration of 16 was finally established by X-ray crystallography (Fig. 1).

Fig. 1. ORTEP plot [15] (using the program PLATON) of 16. Thermal ellipsoids represent 40% probabilities.

Both the acetate 16 as well as the 3-Omethyl ether 17, which was obtained from 15 by methylation with methyl iodide in the presence of sodium hydride, were converted with hydrogen peroxide in acetic acid into the corresponding sulfoxides 20 and 21, respectively. Pummerer rearrangement of 20 gave a mixture from which the 3-deoxy- α -L- 22 and the 4deoxy- α -D-xylo-diacetate 24 could be isolated by column chromatography in a yield of 2 and 71%, respectively. When 24 was applied as donor in the glycosylation reaction with 4cvanobenzenethiol and trimethylsilyl triflate as promoter, the corresponding α -D-septanoside 26 was obtained in excellent yield (97%) and gave, after deacetylation according to Zemplén, 27 which was submitted to biological testing. When 4-nitrobenzenethiol was used as acceptor, and borontrifluoride etherate as promoter, the resulting acetylated thioglycoside **28** afforded **29** after deacetylation (Scheme 3).

When the methoxy derivative 21 was submitted to the Pummerer reaction, besides a 1:4 mixture of the isomeric monoacetates 23 and 25 the 4-deoxy-2,6-thioanhydro-D-lyxo-hexopyranose acetate 35 as well as its ethyl pyranoside 36α could be isolated in a yield of 40, 9.5 and 5%, respectively. The rearranged structure of the last two derivatives was established by NMR spectroscopy comparing their data with those of the thioseptanose acetates 23 and 25. Formation of 35 and 36 can be explained via the isomeric sulfenium ions 32 and 33, which are the hypothetical intermediates of the Pummerer reaction [6] and are in equilibrium with each other [1]. However 33 is probably in an equilibrium with the oxocarbenium ion 34 formed in a pinacoline-type rearrangement reaction via a shift of the C-3-C-2 bond to C-1 (Scheme 3). As 34 should be much more reactive than 33 the acetoxy anion will attack the former yielding the D-lyxopyranose acetate 35. This was obtained as a single isomer, the anomeric configuration of which could not be established by NMR spectroscopy. Nevertheless, it is most probably an α anomer as its optical rotation ($[\alpha]_{\rm D} + 23^{\circ}$) is very similar to that of the corresponding ethyl α -glycoside **36\alpha^1** ([α]_D + 17°).

¹ 36α is probably formed from 35 during work up (evaporation with EtOH).

The structure of 36α and 38 was established by NMR spectroscopy by the following data. According to selective INEPT experiments, there was a three-bond ¹H-¹³C connectivity in 36α between H-1 (5.26 ppm) and C-3 (70.4 ppm) proving the quasi-equatorial (β) arrangement of H-1. On the other hand, a long range coupling ⁴J_{4a,6b} of 2.3 Hz indicated the W-arrangement of H-4a and H-6b, enabling their identification. The corresponding ³J_{3,4a} and ³J_{3,4b} coupling constants of 9.5 and 2.7 Hz could be determined accordingly. Location of the two 4-cyanophenylthio groups in **38** at C-1 and C-3 was evident from the shift of the corresponding signals in the ¹³C NMR spectra (85.0 and 44.1 ppm) compared to those of **36a** (100.8 and 70.4 ppm). Furthermore, selective INEPT measurements showed a three-bond connectivity between H-1 as well as H-3 and the aromatic C-1' carbon atoms. Besides a long range coupling ${}^{4}J_{4a,6b}$ of 2.2 Hz, an intensive cross-peak between H-4b and H-6a could be detected too in full agreement with the steric arrangement of these protons in **38**. The inversion of configuration at C-3 was evident from the change in the value of the $J_{3,4a}$ and

 $J_{3,4b}$ coupling constants (9.5 \rightarrow 4.8 and 2.7 \rightarrow 11.0 Hz, respectively). In accordance with this arrangement, no NOE effect was observed between H-1 and H-3. The anomeric configuration of **38** was deduced further from the results of the selective INEPT experiments, as no three-band ¹H-¹³C connectivity could be detected between H-1 (6.28 ppm) and C-3 (44.1 ppm) and a strong NOE effect was observed on the aromatic protons on irradiating H-6b.

The mechanism of the rearrangement, depicted in Scheme 3 was further backed by the fact that, when the isomeric mixture of the 1-O-acetates 23 and 25 was used as donor in the glycosidation reaction with 4-cyanobenzenethiol in the presence of trimethylsilyl tri -flate as promoter, instead of the corresponding 4-deoxy- α -D-xylo-hexoseptanoside 30, only the thioglycoside of 2,6-thioanhydro-β-D-arabino-hexopyranoside 38, carrying a second 4cyanothiophenol substituent at C-3 could be isolated in 26% yield. The formation of 38 might be explained by the same sulfenium ion intermediate 33 mentioned above, which can be formed from both, 23 and 25 in the presence of trimethylsilyl triflate according to the mechanism depicted in Scheme 3 [1] and reacts via the oxocarbenium intermediate 34 to give first the rearranged thioglycoside 37, the 3-O-methyl group of which is then activated by trimethylsilyl triflate and undergoes a substitution reaction via inversion of configuration affording 38. The same glycoside 38 was obtained in a yield of 97%, when acetate 35 was used as donor. The desired 3-O-methyl thioseptanosides 30 and 31 were finally synthesised by methylating the 3-OH group of the corresponding glycosides 27 and 29, respectively, using methyl iodide in the presence of sodium hydride in N,N-dimethylformamide.

For the synthesis of the 4-O-methyl thioseptanosides 46 and 48, the 3-O-acetyl-4-Omethyl-glucitol derivative 39, which was obtained from 11 by acetylation, was converted via oxidation and Pummerer reaction of the obtained sulfoxide 40 into a 1:9 mixture of the isomeric acetates 41 and 42. This mixture could be separated by column chromatography, and the major component 42 was used as donor for the glycosidation of both, 4-cyano- and 4-nitrobenzenethiol affording **45** and **47** which on deacetylation gave **46** and **48**, respectively. Similar glycosidation of the minor component **41** with 4-cyanobenzenethiol gave **44** via **43** (Scheme 4).

For checking the influence of the free 3-OH group of the aforementioned 3-hydroxy-4methoxy-thioglycosides on the antithrombotic activity, the corresponding 3,4-di-O-methyl derivatives were synthesised too. Theoretically these derivatives could be obtained by methylating the free 3-OH group of 46 and 48 but, as shown above, these thioglycosides could be obtained in a multistep synthesis only, the overall yield of which was too low for using them as starting material in any further reaction. For this reason, 2,5-anhydro-6-bromo-6-deoxy-3,4-di-O-methyl-D-glucitol 49 was applied as starting material, which can be easily obtained from D-mannitol in few steps [7]. Reaction of 49 with potassium thioacetate afforded 50, which after mesylation and treatment of the obtained mixed ester 51 with methanolic sodium methoxide, gave the thioether 52 in excellent yield (Scheme 5). This was converted into the sulfoxide 53 the Pummerer rearrangement of which afforded the two isomeric acetates 59 and 61 in a ratio of 9:1. They were used without separation for the glycosylation of both, 4-cyano- and 4-nitrobenzenethiol and the formed thioglycosides 55 and 56 were isolated by column chromatography. By analogy, the corresponding 3,4-di-Omesylates 57 and 58 were also synthesised, using the known [9] sulfoxide 54 as starting material.

Finally, we decided to synthesise such analogs, in which the 4-OH group of 2 or 3 is exchanged by azide, as similar substitution in 1 type compounds led to a substantial increase in the antithrombotic activity [8]. As starting material 1,6-anhydro-3-O-tetrahydropyranyl-4-O-mesyl-6-thio-D-glucitol 63 [1] was chosen, the mesyloxy group of which could be exchanged by azide with retention of configuration affording 64 via an 5 type (OMs = OTHP)sulfonium intermediate (Scheme 6). After removing the tetrahydropyranyl group in methanol with an ion exchange resin (H^+) , the resulting hydroxy derivative 65 was acetylated and the acetate 66

Scheme 4.

converted via the Pummerer reaction of its sulfoxide **68** into a 1:4 mixture of the corresponding 1-O-acetates **70** and **72**. This mixture was used as donor in the glycosidation of 4-cyanobenzenethiol and gave, after column chromatography, the corresponding thioglucoside **75**. When 4-nitrobenzenethiol was used as aglycon, besides **78** the corresponding Lgulo isomer **74** could also be isolated in traces. Deacetylation of **75** and **78** afforded **76** and **79**, respectively. For checking the influence of the 3-OH group of these derivatives on the biological activity, the corresponding 3-*O*-mesyl compounds **77** and **80** were also prepared

applying analogous reactions, i.e., converting the known [3] 3-O-mesylate 67 via its sulfoxide 69 into the 1-O-acetyl isomers 71 and 73 and using this mixture for the glycosylation of 4-cyano- and 4-nitrobenzenethiol.

Biological results.—The oral antithrombotic activity of 27, 29, 30, 31, 38, 44, 46, 48, 55, 56, 57, 58, 76, 77, 79 and 80 was determined in rats, using Pescador's model [10] and 2 as reference compound. All compounds were administered orally 3 h before ligation at a dose of 2 mg/kg. From the data listed in Table 1, it can be seen that although there exists no straightforward structure-activity relationship in this type of thioglycosides, blocking of the 4-OH group by methylation (44, 46, 48) or its substitution by an azido group (76, 79) seems to have little influence on the activity when the 3-OH group is still present. Blocking of the latter by methylation (31, 55, 56) or mesylation (57, 58, 77) decreases the activity in most cases. It is worthwhile mentioning, that the 2,6-thioanhydro-Darabino-hexopyranoside 38, carrying a second 4-cyanothiophenol substituent at C-3 was as active (38%) as 1.

3. Experimental

General *methods.*—Organic solns were dried over MgSO4 and concd under diminished pressure at or below 40 °C. TLC: E. Merck precoated Silica Gel 60 F_{254} plates, with EtOAc (A), EtOAc-hexane mixtures (B, 1:1; C, 1:2; D, 1:4), toluene-MeOH mixture (E, 9:1), and toluene-acetone mixture (F, 4:1); detection by spraying the plates with a 0.02 M soln of I_2 and a 0.3 M soln of KI in 10% aq H_2SO_4 soln followed by heating at ca. 200 °C. For column chromatography, Kieselgel 60 was used. The mp are uncorrected. Optical rotations were determined on 1.0% solns in CHCl₃ at 20 °C unless stated otherwise. NMR spectra were recorded with a Bruker AC 250 spectrometer at 250 MHz (¹H) and 62.9 MHz (¹³C) for solns in CDCl₃ (internal Me₄Si) unless stated otherwise. Multiplicities of the ¹³C NMR spectra were obtained from DEPT experiments. The assignment of the protons was based on homonuclear decoupling experiments. The selective INEPT pulse sequence was optimised to a heteronuclear coupling constant of 7 Hz. The ratio of α : β anomeric mixtures was determined by ¹H NMR.

Compound	7	27	29	30	31	44 ^a	46	48	55	56	57	58	76	77	62	80
C-3–R	НО	HO	НО	OMe	OMe	НО	НО	НО	OMe	OMe	OMs	OMs	НО	OMs	НО	OMs
C-4-R	НО	Η	Η	Η	Η	OMe	OMe	OMe	OMe	OMe	OMs	OM_S	Z S	Z,	\mathbf{N}_{3}	\mathbf{N}_{3}
C-4'-R	CN	CN	NO_2	CN	NO_2	CN	CN	NO_2	CN	NO_2	CN	NO_2	CN	CN	NO_2	NO_2
Inhibition (%) ^b	37	17	39	33	6	38	46	44	16	28	15	27	47	12	20	37
^a α-L-Guloseptar ^b Percentage inh:	noside. ibition at	an oral	dose of	2 mg/kg.												

model [10]

Table 1

É. Bozó et al. / Carbohydrate Research 329 (2000) 269-286

X-ray data (see Section 4). Unit cell parameters were determined by least-squares of the setting angles of 25 (40.87 $\leq \theta \leq 44.71^{\circ}$) reflections. Intensity data were collected on an Enraf-Nonius CAD4 diffractometer (graphite monochromator; Cu K_{α} radiation, $\lambda = 1.54180$ Å) at 293(2) K in the range $3.80 \leq$ $\theta \leq 74.52^{\circ}$ using $\omega - 2\theta$ scans. The intensities of three standard reflections were monitored regularly (every 60 min). The intensities of the standard reflections indicated a crystal decay

Empirical formula	$C_8H_{12}O_3S$
Formula weight	188.24
Temperature (K)	293(2)
Radiation	Cu K _~
Wavelength, λ (Å)	1.54180
Crystal system	monoclinic
Space group	$P2_1$
Unit cell dimensions	1
a (Å)	5.529(1)
$b(\mathbf{A})$	6.989(1)
$c(\dot{A})$	11.633(2)
β (°)	90.20(1)
Volume $(Å^3)$	449.52(13)
Z	2
$D \to (g/cm^3)$	1 391
Absorption coefficient <i>u</i>	2 940
(mm^{-1})	2.910
F(000)	200
Crystal colour	transparent
Crystal description	prism
Crystal size (mm)	$0.40 \times 0.30 \times 0.30$
Absorption correction	psi-scan
Max. and min. transmission	0.998 and 0.890
θ Range for data collection (°)	$3.80 < \theta < 74.52$
Index ranges (°)	-6 < h < 6, -8 < k < 8.
	-14 < l < 14
Reflections collected	2219
Number of standard reflections	3
Decay (%)	22.00
Independent reflections	$1811 [R_{\odot} = 0.0244]$
Reflections $[I > 2\sigma(I)]$	1774
Refinement method	full-matrix least-squares
	on F^2
Data/restraints/parameters	1811/1/110
Goodness-of-fit on F^2	1.1
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0466$
	$wR_2 = 0.1190$
R indices (all data)	$R_1 = 0.0471$.
	$wR_2 = 0.1199$
Absolute structure parameter	-0.01(2)
Max. and mean shift/esd	0.004. 0.000
Largest difference peak and hole	0.361 and -0.627
- 1	

 $(e Å^{-3})$

Table 3

Atomic coordinates ($\times\,10^4)$ and equivalent isotropic displacement parameters (Å^2 $\times\,10^3)$ of 16 a

	X	У	Ζ	U_{eq}
S-1	8804(1)	10080.1(7)	3343.1(5)	48(1)
O-1	4466(3)	7293(4)	3789(2)	59(1)
O-2	7972(3)	7054(3)	1206(1)	45(1)
O-3	4792(4)	7203(4)	11(2)	67(1)
C-1	5870(4)	9962(4)	2647(2)	47(1)
C-2	4806(4)	7967(4)	2637(2)	47(1)
C-3	6401(4)	6412(4)	2114(2)	46(1)
C-4	7944(5)	5690(4)	3128(2)	50(1)
C-5	6859(4)	6714(4)	4161(2)	48(1)
C-6	8278(5)	8476(4)	4535(2)	47(1)
C-7	6935(4)	7333(4)	173(2)	46(1)
C-8	8754(5)	7868(6)	-716(2)	64(1)

^a U(eq) is defined as one third of the trace of the orthogonalised U_{ij} tensor.

Table 4

Hydrogen coordinates ($\times 10^4)$ and isotropic displacement parameters of $16~({\rm \AA}^2\times 10^3)$

	x	у	Ζ	$U_{\rm iso}$
H-1a	4766	10816	3040	61
H-1b	6025	10408	1861	61
H-2	3243	7989	2237	61
H-3	5380	5367	1830	60
H-4a	7814	4313	3210	66
H-4b	9631	6031	3029	66
H-5	6727	5820	4807	62
H-6a	9818	8080	4858	61
H-6b	7387	9144	5129	61
H-8a	8317	7295	-1438	89
H-8b	10322	7418	-484	89
H-8c	8792	9234	- 799	89

of 22% (the data were corrected for decay). An empirical absorption correction (psi-scans) [11] was applied to the data.

The structure was solved by direct methods [12] and refined by full-matrix least-squares anisotropic least-squares on F^2 [13]. Crystal data and refinement details are shown in Table 2. Hydrogen atomic positions were calculated from assumed geometries. Scattering factors and their anomalous contributions were taken from [14]. Final atomic parameters are given in Tables 3 and 4, bond lengths, bond angles and torsion angle in Table 5. Selected ¹H NMR chemical shifts (δ) and coupling constants (Hz) for solns of the compounds under investigation in CDCl₃ are

given in Tables 6 and 7, respectively. Table 8 lists selected ${}^{13}C$ NMR data for solns in CDCl₃.

Reaction of 1,6:2,5-dianhydro-3,4-di-O*methanesulfonyl-1-thio-D-glucitol* (4) with NaOH.—A stirred soln of 4 (19.2 g, 60 mmol) [3,4] in MeOH (400 mL) and 40% aq NaOH (50 mL) was refluxed for 4 h. After cooling to rt the mixture was neutralised with solid CO_2 , filtered through Celite, concd and the residue was submitted to column chromatography (solvent C, then B). Concentration of the first fraction gave 1,6:2,5-dianhydro-4-deoxy-Derythro-hex-3-ulose (14, 3.56 g, 41%): mp 55-60 °C (hexane); $[\alpha]_{\rm D}$ + 72° (c 0.5, CHCl₃); R_f 0.7 (solvent C). Anal. Calcd for $C_6H_8O_2S$: C, 49.98; H, 5.59; S, 22.24. Found: C, 50.03; H, 5.62; S, 22.21.

Concentration of the second fraction gave 1,6:2,5:3,4-trianhydro-1-thio-allitol (7, 0.43 g, 5%): mp 104–105 °C (hexane); lit. 105–106 °C [3]; R_f 0.6 (solvent C).

Concentration of the third fraction gave 1,6:2,5-dianhydro-4-*O*-methyl-1-thio-D-glucitol (**11**, 2.97 g, 28%): mp 68–70 °C (ether); lit. 75–76 °C [16]; $[\alpha]_{\rm D}$ + 28° (*c* 0.5, CHCl₃); lit. $[\alpha]_{\rm D}$ + 31° [16]; R_f 0.4 (solvent B).

Concentration of the fourth fraction gave 1,4:2,5-dianhydro-6-methoxy-1-thio-D-galactitol (9, 425 mg, 4%) as an oil: $[\alpha]_D$ – 36° (*c* 0.5, CHCl₃); R_f 0.3 (solvent B). Anal. Calcd for C₇H₁₂O₃S: C, 47.71; H, 6.86; S, 18.19. Found: C, 47.75; H, 6.90; S, 18.23.

Table 5 Bond lengths (Å) and angles (°) of **16**

S-1–C-6	1.807(3)	S-1-C-1	1.813(2)
O-1–C-2	1.433(3)	O-1–C-5	1.448(3)
O-2–C-7	1.343(3)	O-2–C-3	1.442(3)
O-3–C-7	1.203(3)	C-1–C-2	1.513(5)
C-2–C-3	1.528(4)	C-3–C-4	1.538(3)
C-4-C-5	1.523(4)	C-5–C-6	1.523(4)
C-7–C-8	1.493(4)		
C-6–S-1–C-1	99.7(1)	C-2-O-1-C-5	104.4(2)
C-7–O-2–C-3	116.4(2)	C-2-C-1-S-1	113.1(2)
O-1-C-2-C-1	110.4(2)	O-1-C-2-C-3	102.5(2)
C-1-C-2-C-3	115.7(2)	O-2-C-3-C-2	114.8(2)
O-2-C-3-C-4	109.3(2)	C-2-C-3-C-4	104.3(2)
C-5-C-4-C-3	103.4(2)	O-1-C-5-C-6	109.2(2)
O-1-C-5-C-4	104.9(2)	C-6-C-5-C-4	113.7(2)
C-5-C-6-S-1	111.5(2)	O-3–C-7–O-2	123.1(2)
O-3–C-7–C-8	125.2(2)	O-2–C-7–C-8	111.7(2)

Table 6							
Selected	¹ H	NMR	data	for	solutions	in	CDCl ₃

Compound	Chemical sl	hifts (δ)							
	H-1a	H-1b	H-2	H-3	H-4a	H-4b	H-5	H-6a	H-6b
9	2.74	2.84	4.17	4.55	3.33		4.30	3.60	3.68
14	3.13	2.42	4.13		2.72	2.53	4.95	3.49	2.27
16	3.15	2.20	4.45	5.17	2.68	2.21	4.45	3.30	2.12
17	3.12	2.36	4.30	4.10	2.50	2.20	4.50	3.30	2.10
20	2.84	3.48	4.74	5.12	2.64	1.70	4.57	2.84	3.50
21	2.85	3.64	4.65	4.12	2.45	1.68	4.60	2.88	3.56
22	6.07		4.38	с	5.18		4.52	3.30	2.48
24	5.37		4.36	5.15	2.66	2.15	4.54	3.45	2.10
25	5.54		4.33	4.13	2.54	2.20	4.59	3.49	2.15
26	4.15		4.55	5.19	2.73	2.22	4.62	3.57	2.17
27 ^a	4.59		4.13	4.40	2.45	1.98	4.48	3.28	2.26
28	4.22		4.57	5.21	2.75	2.24	4.63	3.58	2.18
29 ^a	4.67		4.18	4.42	2.46	2.00	4.50	3.30	2.30
30	4.36		4.38	4.17	2.52	2.20	4.61	3.53	2.15
31	4.43		4.41	4.18	2.53	2.22	4.62	3.55	2.17
35	6.32		3.15	4.05	2.00 - 2.20	2.00 - 2.20	4.40	2.55	3.21
36a	5.26		3.01	4.11	2.50	1.49	4.27	2.69	2.93
38	6.28		3.01	4.33	2.10	2.50	4.40	2.82	3.57
40	2.75	3.24	4.84	5.07	3.72		4.40	2.82	3.50
41	6.00		4.20	4.53	5.18		4.81	3.25	2.25
42	5.25		4.70	5.23	4.41		4.40	3.45	2.30
43	4.20		4.35	4.38	5.20		4.88	3.40	2.05
44 ^a	4.90		4.06-4.16	4.06-4.16	4.20		4.45	3.12	2.35
45	3.97		4.83	5.18	4.42		4.42	3.50	2.32
46 ^a	4.57		4.38	4.25	4.10		4.30	3.18	2.42
47	4.03		4.86	5.19	4.44		4.44	3.52	2.32
48 ^a	4.63		4.43	4.28	4.12		4.30	3.21	2.46
50	3.78-3.88	3.78-3.88	4.06	3.79	3.58		3.90	3.25	3.12
51	4.30-4.50	4.30-4.50	4.25	3.73	3.58		3.94	3.22	3.08
52	3.12	2.28	4.56	3.98	4.25-4.32	4.25-4.32	4.25-4.32	3.22	2.20
53 ^a	2.57	3.43	4.74	3.87	3.62		4.40	2.53	3.68
55	4.28		4.61	4.02	4.28		4.42	3.45	2.24
56	4.35		4.63	4.03	4.30		4.43	3.50	2.26
57	4.32		4.80	5.28	5.72		4.64	3.49	2.48
58 ^a	4.70		4.88	5.38	5.65		4.70	3.35	2.70
59	5.51	2.24	4.55	3.97	4.27		4.38	3.45	2.24
64 ^b	3.09	2.34	4.50	4.32	4.60		4.24	3.19	2.23
64 °	3.09	2.47	4.49	4.44	4.50		4.26	3.20	2.23
60 (0.3	3.14	2.14	4.70	5.17	4.53		4.32	3.22	2.28
68 ^a	2.62	3.50	4.84	5.03	4.14		4.45	2.62	3.78
69 ^a	2.72	3.58	4.90	5.13	4.41		4.53	2.65	3.85
70	5.43		4.27	4.34	5.19		4.80	3.33	2.19
/1	6.02		4.28	4.85	5.03		4.70	3.32	2.65
12	5.57		4.64	5.19	4.50		4.40	5.45 2.47	2.30
13	5.50		4.64	5.08	4.72		4.46	5.4/	2.35
74 75	4.40		4.23	4.49	5.20		4.83	5.44 2.50	2.23
13 76 a	4.08		4.//	J.18	4.52	1 25 1 15	4.42	3.50	2.33
/0 77	4.58		4.23-4.43 1 72	4.23-4.43	4.23-4.43	4.23–4.43	4.23-4.43 1 10	5.20 2.55	2.33
// 79	4.33		4./3	5.07	4./2		4.48	5.55	2.38 2.27
/ð 70 a	4.15		4.80	5.18 4 25 4 50	4.33	4 25 4 50	4.43	3.33	2.31
/ 7 ~	4.03		4.23-4.30	4.23-4.30 5 00	4.23-4.30	4.23-4.30	4.23-4.30	5.20 2.56	2.38
00	4.40		4./3	5.08	4./2		4.50	3.30	2.40

^a Me₂SO-*d*₆. ^b Signals of the two THP-diastereomers.

^c H-3a 2.60, H-3b 2.38 ppm.

Table 7 Selected ¹H NMR data for solutions in CDCl₃

Compound	Couplin	g consta	nts (Hz)										
	$\overline{J_{1a,1b}}$	$J_{1a,2}$	$J_{1\mathrm{b},2}$	$J_{2,3}$	$J_{3,4a}$	$J_{3,4b}$	$J_{ m 4a,4b}$	$J_{4\mathrm{a},5}$	$J_{4{ m b},5}$	$J_{5,6a}$	$J_{5,6b}$	$J_{6\mathrm{a},6\mathrm{b}}$	$J_{ m 1b,6b}$
9	10.9	0.8	1.9	2.5	2.3			2.3		6.3	7.7	9.8	
14	12.9	2.9	1.2				17.8	7.6	~ 0	2.7	~ 1	13.4	~1
16	13.4	3.4	~1	6.4	11.2	5.0	13.2	7.7	<1	2.4	~ 1	12.9	~1
17	13.4	3.4	~ 1	6.3	11.2	5.0	12.7	7.8	1.7	2.7	~ 1	12.9	~ 1
20	13.2	~ 3	~1	6.9	11.5	3.4	14.4	8.5	0.7	~2.5	~1.5	~13	~1
21	13.3	3.4	~1.5	~ 7	9.5	3.3	13.9	9.5	<1	~2.5	~1.5	~12	~1
22		3.4		b	9.7	4.9	с	4.8		3.4	~ 1	13.7	<1
24		1.7		6.8	10.7	5.0	13.4	7.8	1.6	2.7	~1.5	12.9	~1
25		1.7		6.6	10.3	5.1	12.9	7.9	1.9	2.7	~1.5	12.7	~1
26		~ 1		6.4	11.0	4.9	13.4	7.8	1.5	2.4	~1.5	13.2	~1
27 ^a		~1		6.6	11.0	5.1	12.7	7.8	1.4	2.4	~1.5	13.2	~1
28		~1		6.8	11.0	5.1	13.2	7.6	1.5	2.4	~1.5	13.2	~1
29 ^a		~1		6.6	11.0	5.0	12.5	7.9	1.5	2.4	~1.5	12.9	~1
30		~1		71	10.3	49	13.0	7.8	1.5	2.5	~ 1.5	13.0	~1
31		~1		63	10.3	49	12.7	7.8	1.5	2.3	~ 1.5	12.8	~1
35		29		3 5	8.8	~ 3	nd^{d}	~ 4	$\sim^{1.5}$	2.1	~ 3	10.8	1
36a		2.7		4 1	9.5	27	14.5	4.8	~ 1.5	~1	44	11.0	
38		2.7		2.8	4.8	11.0	14.5	5.1	1.2	23	~2	11.0	
30 40	13.0	2.7	~1	~7	~ 2	11.0	14.7	~ 0	1.2	2.5	~ 1.5	12.5	~1
40	15.0	3.1		~0	2 9			6.8		2.7	~1.5	12.5	~ 1
42		2. 1		68	2.7			0.0 nd		29	1.5	12.0	~1
42		~ 2		0.8	3.2 2.7			6.6		2.9	1.7	12.9	~ 1
43 11 a		1.5		~ 0	2.7			5.0		3.2	~ 1	13.9	~ 1
44		~1.5		~0	2.0			J.9		5.2 2.4	~ 1	12.2	~1
45 46 a		~ 1		0.0	2.7			110		2.4	~ 1.5	13.2	~ 1
40		~ 1		6.8	2.9			~ 0		2.4	~ 1.5	13.2	~ 1
41/ 10 a		~1		0.8	2.9			10		2.7	~ 2	13.4	~1
48 -		~ 1	5	/.1	2.7			~ 0		2.4	~ 1.5	13.2	~ 1
50	na 11.0	~ 3	~ 3	4.9	2.0			3.7		5.9	0.9	13./	
51	11.0	4.6	0.8	4.1	~ 1			2.7		0.4	/.1	13.9	1
52 52 a	13.2	3.2	~1	6.8	3.4			na		2.7	~ 1.5	13.2	~ 1
53 " 55	12.5	3.4	~ 2	6.9	2.2			~ 0		2.9	~2	12.5	~1.5
55 5(~1		6.8	2.8			na		~2	~ 1.5	13.2	~1
50		~1		6.6	2.7			~ 0		2.7	~ 1.5	13.2	~1
5/		~ 1.5		6.8	2.7			~ 0		2.2	~ 1.5	13./	~1
58 "		~ 1		6.8	2.7			~ 0		~ 2.5	~ 1.5	13.9	~1
59	12.2	1./	1	6.8	2.8			~ 0		3.2	~2	13.0	~1
64	13.2	3.2	~1	6.8	3.2			~ 0		2.4	~1.5	13.2	~1
00 (0.3	13.7	3.2	~1	6.8	3.4			~ 0		2.6	~ 1	13.4	~ 1
68 °	~ 13	~ 3	~2	~ 7	~2.5			~ 0		~ 3	~2	12.5	~2
69 ª 70	12.9	3.2	2.4	7.1	2.7			~ 0		2.9	2.4	12.2	2.4
70		2.7		~ 0	3.2			~ 1		3.4	nd	13.7	<1
/1		3.3		~ 0	3.7			6.8		3.4	~ 1.5	14.2	<1
72		2.2		7.1	3.7			~ 0		2.9	1.7	13.4	<1
73		1.9		6.8	3.7			~0		2.7	~1.5	13.2	~1
74		~1.5		~ 0	3.4			6.6		2.7	~ 1	13.9	~1
75		~ 1		6.8	3.2			~ 0		2.7	~2	13.8	~1
7 6 ^a		~ 1		nd	nd			nd		2.4	~ 1.5	13.2	~1
77		~ 1		6.6	3.7			~ 0		2.4	~ 1.5	13.2	~ 1
78		~ 1		6.8	3.4			~ 0		2.6	~ 2	13.7	~ 1
79 ^a		~ 1		nd	nd			nd		2.2	~ 1	13.1	~ 1
80		~ 1		6.8	3.4			~ 0		2.4	~ 1.5	13.7	~ 1

^a Me₂SO-*d*₆. ^b *J*_{2,3a} 7.3, *J*_{2,3b} 1.5 Hz. ^c *J*_{3a,3b} 14.1 Hz. ^d nd, not determined.

Table 8							
Selected	¹³ C	NMR	data	for	solutions	in	CDCl ₃

Compound	Chemica	al shifts	(δ)				
	C-1	C-2	C-3	C-4	C-5	C-6	Others
9	34.5	77.7	75.5	52.0	80.2	73.4	59.0 (OMe)
14	26.4	75.6	213.7	40.7	73.4	30.5	
16	25.2	73.1 ^a	73.3 ^a	34.0	73.4 ^a	31.4	170.8 (CO); 20.7 (OAc)
17	24.8	73.8	81.3	33.9	73.5	31.7	58.6 (OMe)
20	52.5	72.7 ^a	73.2 ^a	34.8	74.3 ^a	56.2	170.3(CO); 20.6 (OAc)
21	52.1	75.1	80.6	34.6	72.9	56.1	58.3 (OMe)
22	70.3	73.1 ^a	31.3	73.3 ^a	74.6 ^a	27.8	168.9, 170.7 (CO); 20.6, 20.7 (OAc)
24	68.2	76.2	72.6	33.2	72.9	29.8	169.8, 170.6 (CO); 20.7, 21.2 (OAc)
25	68.4	76.6	80.6	32.7	72.7	29.8	169.8 (CO); 21.1 (OAc); 58.5 (OMe)
26	46.1	76.8	74.0	33.8	73.8	30.0	170.8 (CO); 20.9 (OAc); 118.6 (CN)
28	45.8	76.6	73.9	33.6	73.7	29.9	170.8 (CO); 20.8 (OAc)
30	45.5	74.0 ^a	81.5	33.1	77.3 ^a	30.2	58.7 (OMe);118.6 (CN)
31	45.4	74.0	81.5	33.1	77.3	30.2	58.7 (OMe)
35	91.2	33.8	76.5	33.2	66.0	29.3	169.8 (CO); 21.0 (OAc); 55.9 (OMe)
36a	100.8	36.5	70.4	33.9	65.4	29.2	62.8, 15.0 (OEt); 55.7 (OMe)
38	85.0	37.7	44.1	32.4	65.8	29.7	118.2, 118.6 (CN)
40	51.3	74.4 ^a	78.2 ^a	86.6	79.7 ^a	54.2	169.8 (CO); 20.5 (OAc); 57.0 (OMe)
41	68.2	75.2 ^a	79.4 ^a	80.1 ^a	84.9 ^a	27.2	168.8, 170.3 (CO); 20.7 (OAc); 57.1 (OMe)
42	67.6	78.2	79.2	87.1	78.0	27.1	169.8, 170.1 (CO); 20.7, 21.1 (OAc); 57.1 (OMe)
43	49.5	81.2	88.1	79.6	76.0	22.9	170.2 CO); 20.7 (OAc); 57.1 (OMe); 118.4 (CN)
45	45.4	78.5 ^a	78.7 ^a	87.0	80.6 ^a	27.2	170.3 CO); 20.7 (OAc); 57.0 (OMe); 118.4 (CN)
47	45.3	78.5 ^a	78.8 ^a	87.0	80.6 ^a	27.2	170.4 (CO); 20.7 (OAc); 57.0 (OMe)
50	61.0	80.8 ^a	85.6 ^a	86.7 ^a	81.5 ^a	31.9	195.1 (CO); 57.2, 57.4 (OMe); 30.3 (SAc)
51	68.5	78.7 ^a	84.3 ^a	86.0 ^a	82.6 ^a	31.8	194.9 (CO); 57.3, 57.2 (OMe); 37.3 (Ms); 30.4 (SAc)
52	24.3	75.7 ^a	88.3 ^a	$88.4^{\rm a}$	78.2 ^a	29.1	57.0, 58.7 (OMe)
55	45.4	79.2	88.7	87.6	78.4	27.4	57.1, 58.8 (OMe); 118.5 (CN)
56	45.4	79.3	88.8	87.6	78.5	27.5	57.2, 58.9 (OMe)
59	68.2	77.9 ^a	87.9 ^a	87.8 ^a	78.5 ^a	27.3	169.9 (CO); 21.1 (OAc); 57.1, 58.7 (OMe)
64 ^b	24.5	76.2	85.6	68.8	79.8	29.3	
64 ^b	24.6	76.8	83.4	68.7	78.8	29.2	
66	24.7	75.6 ^a	79.2 ^a	68.4	80.0 ^a	29.2	170.4 CO); 20.6 (OAc);
70	69.4 ^a	81.5 ^a	67.8 ^a	79.3 ^a	75.2 ^a	22.8	169.8, 170.2 (CO); 20.7, 21.2 (OAc);
71	68.2	75.6 ^a	65.6	80.4 ^a	82.7 ^a	27.0	168.6 (CO); 20.6 (OAc); 38.1 (OMs)
72	67.4 ^a	78.2 ^a	79.1 ^a	68.2 ^a	79.3 ^a	27.4	169.8, 170.2 (CO); 20.7, 21.2 (OAc)
73	67.0 ^a	78.2 ^a	78.9 ^a	67.4 ^a	81.9 ^a	27.4	169.6 (CO); 21.1 (OAc); 38.2 (OMs)
75	45.8	78.7 ^a	79.6 ^a	68.1	80.3 ^a	27.4	170.2 (CO); 20.6 (OAc); 118.3 (CN)
78	45.7	78.7 ^a	79.7 ^a	68.1	80.4 ^a	27.5	170.4 (CO); 20.7 (OAc)
80	44.8	78.8 ^a	79.2 ^a	67.4	83.4 ^a	27.7	38.1 (OMs)

^a Arbitrary assignment.

^b Signals of the two THP-diastereomers.

Concentration of the fifth fraction gave 1,6:2,5 - dianhydro - 3 - *O* - methanesulfonyl - 1-thio-D-glucitol (**6**, 0.8 g, 5.5%): mp 99–101 °C (hexane); lit. 98–100 °C [3]; $[\alpha]_D$ + 19° (*c* 0.5, CHCl₃); lit. $[\alpha]_D$ + 17.5° (*c* 1, CHCl₃) [3]; R_f 0.2 (solvent B).

3-O-Acetyl-1,6:2,5-dianhydro-4-deoxy-1thio-D-xylo-hexitol (16).—To a stirred soln of 14 (2.5 g, 17.3 mmol) in EtOH (85 mL), NaBH₄ (2.4 g, 63.5 mmol) was added at rt and stirring was continued for 30 min. The mixture was neutralised with 4% aq HCl, concd and toluene (50 mL) was evaporated from the residue. The resulting residue was acetylated in a mixture of pyridine (20 mL) and Ac₂O (10 mL) to give, after the usual processing and column chromatography (solvent D), **16** (2.88 g, 88%): mp 87–88 °C (acetone); $[\alpha]_D$ + 5° (*c* 0.5, CHCl₃); R_f 0.4 (solvent D). Anal. Calcd for C₈H₁₂O₃S: C, 51.04; H, 6.43; S, 17.03. Found: C, 51.07; H, 6.46; S, 17.08

1,6:2,5-Dianhydro-4-deoxy-3-O-methyl-1thio-D-xylo-hexitol (17).—To a stirred soln of 16 (3.3 g, 17.5 mmol) in MeOH (50 mL), 1 M NaOMe (0.1 mL) in MeOH was added at rt and stirring was continued for 1 h. The mixture was neutralised with solid CO₂, concd and toluene (25 mL) was evaporated from the residue. The residue was dissolved in dry DMF (25 mL) and 80% NaH (0.65 g, 21.7 mmol) in oil was added. After stirring at rt for 30 min, MeI (1.5 mL, 24 mmol) was added and stirring was continued for 1 h. The mixture was poured into ice-water, extracted with CH₂Cl₂, concd and the residue was submitted to column chromatography (solvent B) to give 17 (1.91 g, 68%) as an oil: $[\alpha]_{\rm D}$ + 46° (c 0.5, CHCl₃); R_f 0.7 (solvent B). Anal. Calcd for C₇H₁₂O₂S: C, 52.47; H, 7.55; S, 20.01. Found: C, 52.44; H, 7.53; S, 19.98.

3-O-Acetyl-1,6:2,5-dianhydro-4-deoxy-1thio-D-xylo-hexitol S-oxide (20). — To a stirred soln of 16 (2.88 g, 15.3 mmol) in AcOH (45 mL) 33% aq H₂O₂ (2.2 mL) was added and the mixture was kept overnight at rt. The reaction was concd and EtOH (50 mL) was evaporated from the residue to give, after crystallisation with ether, 20 (2.62 g, 84%): mp 139–143 °C (ether); $[\alpha]_D - 7^\circ$ (*c* 0.5, CHCl₃); R_f 0.3 (solvent A). Anal. Calcd for C₈H₁₂O₄S: C, 47.05; H, 5.92; S, 15.70. Found: C, 47.09; H, 5.98; S, 15.67.

1,6:2,5-Dianhydro-4-deoxy-3-O-methyl-1thio-D-xylo-hexitol S-oxide (21).—Oxidation of 17 (1.55 g, 9.67 mmol) was carried out as described for 20 to give 21 (1.70 g, 100%) as an oil: $[\alpha]_D$ + 12°; R_f 0.2 (solvent A). Anal. Calcd for C₈H₁₂O₄S: C, 47.71; H, 6.86; S, 18.19. Found: C, 47.69; H, 6.88; S, 18.22.

1,4-Di-O-acetyl-2,5-anhydro-3-deoxy-6-thio- α -L-xylo-hexoseptanose (22) and 1,3-di-O-acetyl-2,5-anhydro-4-deoxy-6-thio- α -D-xylo-hexoseptanose (24).—A soln of 20 (2.2 g, 10.77 mmol) in Ac₂O (22 mL) was stirred at 80 °C for 15 h. The mixture was concd and toluene (30 mL) was evaporated from the residue. The resulting residue was submitted to column chromatography (solvent C). Concentration of the first fraction gave 22 (60 mg, 2%) as an oil: $[\alpha]_D$ + 22° (*c* 0.5, CHCl₃); *R*_f 0.5 (solvent C). Anal. Calcd for C₁₀H₁₄O₅S: C, 48.77; H, 5.73; S, 13.02. Found: C, 48.81; H, 5.68; S, 13.07.

Concentration of the second fraction gave **24** (1.88 g, 71%) as an oil: $[\alpha]_D + 261^\circ$; $R_f 0.4$ (solvent C). Anal. Calcd for $C_{10}H_{14}O_5S$: C, 48.77; H, 5.73; S, 13.02. Found: C, 48.75; H, 5.69; S, 13.06.

1 - O - Acetyl - 2,5 - anhydro - 3 - deoxy - 4 - Omethyl-6-thio- α -L-xylo-hexoseptanose (23), 1-O-acetyl-2,5-anhydro-4-deoxy-3-O-methyl-6thio- α -D-xylo-hexoseptanose (25), 1-O-acetyl-2,6-anhydro-4-deoxy-3-O-methyl-6-thio-Dlyxo-hexopyranose (35) and ethyl 2,6anhydro-4-deoxy-3-O-methyl-6-thio- α -D-lyxohexopyranoside (36a).—A soln of 21 (1.7 g, 9.6 mmol) in Ac₂O (20 mL) was stirred at 100 °C for 5 h. The mixture was concd and EtOH (30 mL) was evaporated from the residue. The resulting residue was submitted to column chromatography (solvent C). Concentration of the first fraction gave 36α (100) mg, 5%) as an oil: $[\alpha]_{D}$ + 17° (*c* 0.5, CHCl₃); $R_f 0.8$ (solvent C). Anal. Calcd for C₉H₁₆O₃S: C, 52.92; H, 7.89; S, 15.70. Found: C, 52.97; H, 7.85; S, 15.73.

Concentration of the second fraction gave **35** (200 mg, 9.5%) as an oil: $[\alpha]_D + 23^\circ$ (*c* 0.5, CHCl₃); R_f 0.6 (solvent C). Anal. Calcd for C₉H₁₄O₄S: C, 49.53; H, 6.47; S, 14.69. Found: C, 49.56; H, 6.50; S, 14.71.

Concentration of the third fraction gave a 1:4 mixture of 23 and 25 (0.85 g, 40%): $[\alpha]_{D}$ $+227^{\circ}$ (c 0.5, CHCl₃); R_{f} 0.4 (solvent C). Anal. Calcd for $C_9H_{14}O_4S$: C, 49.53; H, 6.47; S, 14.69. Found: C, 49.51; H, 6.44; S, 14.65. 4-Cyanophenyl 3-O-acetyl-2,5-anhydro-4deoxy-1,6-dithio- α -D-xylo-hexoseptanoside(26).—To a soln of 24 (1.3 g, 5.3 mmol) and 4-cyanobenzenethiol (1.43 g, 10.6 mmol) in dry 1,2-dichloroethane (25 mL) TMSOTf (0.98 mL, 5.3 mmol) under argon, was added at -10 °C. After stirring at rt for 1 h, the reaction was quenched with Et₃N, concd and submitted to column chromatography (solvent C) to give **26** (1.65 g, 97%): mp 139–144 °C (EtOAc-hexane); $[\alpha]_{\rm D}$ + 389°; $R_f 0.5$ (solvent C). Anal. Calcd for $C_{15}H_{15}NO_3S_2$: C, 56.05; H, 4.70; N, 4.36; S, 19.95. Found: C, 56.09; H, 4.76; N, 4.40; S, 19.91.

4-Cyanophenyl 2,5-anhydro-4-deoxy-1,6dithio- α -D-xylo-hexoseptanoside (27).—To a soln of 26 (1.65 g, 5.1 mmol) in MeOH (30 mL), 1 M NaOMe (0.1 mL) in MeOH was added and the mixture was stirred at rt for 1 h. After neutralising with solid CO₂ the mixture was concd to give, after column chromatography (solvent B), **27** (1.0 g, 70%): mp 42–44 °C (EtOH–water); $[\alpha]_D$ + 519°(*c* 0.5 MeOH); R_f 0.4 (solvent B). Anal. Calcd for C₁₃H₁₃NO₂S₂: C, 55.89; H, 4.69; N, 5.01; S, 22.95. Found: C, 55.85; H, 4.73; N, 5.05; S, 22.91.

4-Nitrophenyl 3-O-acetyl-2,5-anhydro-4 $deoxy - 1, 6 - dithio - \alpha - D - xylo - hexoseptanoside$ (28).—To a stirred soln of 24 (1.3 g, 5.3 mmol) and 4-nitrobenzenethiol (80% pure, 1.08 g, 5.5 mmol) in dry 1,2-dichloroethane (25 mL), BF₃·Et₂O (0.65 mL, 5.4 mmol) was added. After stirring at rt for 3 h, the mixture was poured into ice-cold 6% aq NaHCO₃ soln (50 mL), separated and the organic layer was washed with 6% aq NaHCO₃, water, concd and submitted to column chromatography (solvent C) to give **28** (1.8 g, 100%) as an oil: $[\alpha]_{D}$ $+398^{\circ}$; R_f 0.5 (solvent C). Anal. Calcd for C₁₄H₁₅NO₅S₂: C, 49.25; H, 4.43; N, 4.10; S, 18.78. Found: C, 49.28; H, 4.46; N, 4.07; S, 18.81.

4 - Nitrophenyl 2,5 - anhydro - 4 - deoxy - 1,6dithio- α -D-xylo-hexoseptanoside (29).—To a soln of 28 (1.8 g, 5.3 mmol) in MeOH (50 mL), 1 M NaOMe (0.1 mL) in MeOH was added and the mixture was stirred at rt overnight. After neutralising with solid CO₂ the mixture was concd to give, after column chromatography (solvent B), 29 (1.3 g, 82%) as an oil: [α]_D + 421°(*c* 0.5 MeOH); R_f 0.4 (solvent B). Anal. Calcd for C₁₂H₁₃NO₄S₂: C, 48.15; H, 4.38; N, 4.68; S, 21.42. Found: C, 48.18; H, 4.33; N, 4.65; S, 21.39.

4-Cyanophenyl 2,5-anhydro-4-deoxy-3-Omethyl - 1,6 - dithio - α - D - xylo - hexoseptanoside (30).—To a soln of 27 (0.9 g, 3.2 mmol) in DMF (10 mL), 50% NaH (0.2 g, 4.2 mmol) in oil was added and the mixture was stirred at rt for 30 min, then MeI (1.5 mL, 24 mmol) was added and the reaction was stirred at rt overnight. The mixture was poured into icewater, extracted with EtOAc, concd and the residue was submitted to column chromatography (solvent B) to give 30 (0.66 g, 70%): mp 175-183 °C (ether); $[\alpha]_{D} + 560 \text{ °}(c \ 0.5 \text{ CHCl}_{3})$; $R_{f} = 0.8$ (solvent B). Anal. Calcd for C₁₄H₁₅NO₂S₂: C, 57.31; H, 5.15; N, 4.77; S, 21.86. Found: C, 57.34; H, 5.19; N, 4.81; S, 21.90.

4-Nitrophenyl 2,5-anhydro-4-deoxy-3-Omethyl-1,6-dithio- α -D-xylo-hexoseptanoside (**31**).—To a soln of **27** (1.3 g, 4.34 mmol) in DMF (15 mL) 50% NaH (0.25 g, 5.2 mmol) in oil was added and the mixture was stirred at rt for 30 min, then MeI (1.5 mL, 24 mmol) was added and the reaction was stirred at rt overnight. The mixture was poured into icewater, extracted with EtOAc, concd and the residue was submitted to column chromatography (solvent B) to give **31** (0.96 g, 70%): mp 91–93 °C (ether); $[\alpha]_D$ + 611°(*c* 0.5 CHCl₃); *R_f* 0.8 (solvent B). Anal. Calcd for C₁₃H₁₅NO₄S₂: C, 49.82; H, 4.82; N, 4.47; S, 20.46. Found: C, 49.80; H, 4.86; N, 4.51; S, 20.42.

4- Cyanophenyl 3-S- (4- cyanophenyl) - 2,6thioanhydro-4-deoxy-2,3-dithio- β -D-arabinohexopyranoside (38).—(i) Glycosidation of 4-cyanobenzenethiol with a 1:4 mixture of 23 and 25 (0.42 g, 1.92 mmol) was carried out as described for 26 to give, after column chromatography (solvent C), 38 (0.2 g, 26%): mp 130–133 °C (ether); $[\alpha]_D$ + 318° (c 0.5, CHCl₃); R_f 0.5 (solvent C). Anal. Calcd for $C_{20}H_{16}N_2OS_3$: C, 60.58; H, 4.07; N, 7.06; S, 24.26. Found: C, 60.55; H, 4.06; N, 7.03; S, 24.22.

(ii) To a soln of **35** (0.17 g, 0.78 mmol) and 4-cyanobenzenethiol (0.25 g, 1.85 mmol) in dry 1,2-dichloroethane (10 mL) under argon, TM-SOTf (0.15 mL, 0.75 mmol) was added at 0 °C. After stirring at 0 °C for 30 min, the reaction was quenched with Et_3N , concd and submitted to column chromatography (solvent C) to give **38** (0.3 g, 97%), identical to the compound described above.

3-O-Acetyl-1,6:2,5-dianhydro-4-O-methyl-1thio-D-glucitol (**39**).—Acetylation of **11** (2.2 g, 12.5 mmol) with Ac₂O (5 mL) in pyridine (10 mL) gave, after the usual processing, **39** (2.67 g, 98%): mp 79–80 °C (ether–hexane); lit. 80– 82 °C [16]; R_f 0.7 (solvent C).

3-O-Acetyl-1,6:2,5-dianhydro-4-O-methyl-1thio-D-glucitol S-oxide (40).—Oxidation of 39 (2.67 g, 12.2 mmol) was carried out as described for 20 to give 40 (2.46 g, 86%): mp 153–157 °C (ether); $[\alpha]_{\rm D}$ – 46° (*c* 0.5 CHCl₃); R_f 0.3 (solvent A). Anal. Calcd for C₉H₁₄O₅S: C, 46.14; H, 6.02; S, 13.69. Found: C, 46.18; H, 6.07; S, 13.71.

1,4-Di-O-acetyl-2,5-anhydro-3-O-methyl-6thio - α - L - guloseptanose (41) and 1,3 - di - O- acetyl-2,5-anhydro-4-O-methyl-6-thio- α -D-glucoseptanose (42).—A soln of 40 (2.46 g, 10.5 mmol) in Ac₂O (25 mL) was stirred at 100 °C for 10 h. The mixture was concd and toluene (30 mL) was evaporated from the residue. The resulting residue was submitted to column chromatography (solvent C). Concentration of the first fraction gave 41 (220 mg, 7.5%) as an oil: $[\alpha]_D - 30^\circ$ (*c* 0.3, CHCl₃); R_f 0.55 (solvent C). Anal. Calcd for C₁₁H₁₆O₆S: C, 47.82; H, 5.84; S, 11.60. Found: C, 47.81; H, 5.88; S, 11.57.

Concentration of the second fraction gave **42** (2.45 g, 84%) as an oil: $[\alpha]_D$ + 186° (*c* 0.5, CHCl₃); R_f 0.5 (solvent C). Anal. Calcd for C₁₁H₁₆O₆S: C, 47.82; H, 5.84; S, 11.60. Found: C, 47.84; H, 5.81; S, 11.63.

4-Cyanophenyl 4-O-acetyl-2,5-anhydro-3-O - methyl - 1,6 - dithio - α - L - guloseptanoside (43).—Glycosidation of 4-cyanobenzenethiol with 41 (170 mg, 0.6 mmol) was carried out as described for 26 to give, after column chromatography (solvent C), 43 (190 mg, 88%) as an oil: $[\alpha]_D$ – 483° (c 0.36, CHCl₃); R_f 0.5 (solvent C). Anal. Calcd for C₁₆H₁₇NO₄S₂: C, 54.68; H, 4.88; N, 3.99; S, 18.25. Found: C, 54.71; H, 4.86; N, 4.03; S, 18.21.

4-Cyanophenyl 2,5-anhydro-3-O-methyl-1,6-dithio- α -L-guloseptanoside (44).—Deacetylation of 43 (190 mg, 0.54 mmol) was performed as described for 27 to give, after column chromatography (solvent E), 44 (130 mg, 78%): mp 166–168 °C (ether); $[\alpha]_D$ – 536°(*c* 0.3 acetone); R_f 0.4 (solvent E). Anal. Calcd for C₁₄H₁₅NO₃S₂: C, 54.35; H, 4.89; N, 4.53; S, 20.73. Found: C, 54.33; H, 4.83; N, 4.55; S, 20.71.

4-Cyanophenyl 3-O-acetyl-2,5-anhydro-4-O-methyl-1,6-dithio- α -D-glucoseptanoside (45). —Glycosidation of 4-cyanobenzenethiol with 42 (1.2 g, 4.3 mmol) was carried out as described for 26 to give, after column chromatography (solvent C), 45 (1.21 g, 79%) as an oil: $[\alpha]_D$ + 364° (*c* 0.5, CHCl₃); R_f 0.55 (solvent C). Anal. Calcd for C₁₆H₁₇NO₄S₂: C, 54.68; H, 4.88; N, 3.99; S, 18.25. Found: C, 54.65; H, 4.82; N, 4.01; S, 18.22.

4-Cyanophenyl 2,5-anhydro-4-O-methyl-1,6-dithio- α -D-glucoseptanoside (46).— Deacetylation of 45 (1.21 g, 3.4 mmol) was performed as described for 27 to give, after column chromatography (solvent F), **44** (0.9 g, 84%): mp 140–141 °C (ether); $[\alpha]_D$ + 522°(*c* 0.5 MeOH); R_f 0.4 (solvent F). Anal. Calcd for C₁₄H₁₅NO₃S₂: C, 54.35; H, 4.89; N, 4.53; S, 20.73. Found: C, 54.31; H, 4.84; N, 4.50; S, 20.76.

4-Nitrophenyl 3-O-acetyl-2,5-anhydro-4-Omethyl-1,6-dithio- α -D-glucoseptanoside (47). —Glycosidation of 4-nitrobenzenethiol with 42 (1.2 g, 4.3 mmol) was carried out as described for 28 to give, after column chromatography (solvent C), 47 (1.6 g, 99%) as an oil: $[\alpha]_D$ + 398° (c 0.5, CHCl₃); R_f 0.55 (solvent C). Anal. Calcd for C₁₅H₁₇NO₆S₂: C, 48.51; H, 4.61; N, 3.77; S, 17.26. Found: C, 48.54; H, 4.62; N, 3.80; S, 17.22.

4-Nitrophenyl 2,5-anhydro-4-O-methyl-1,6dithio- α -D-glucoseptanoside (48). — Deacetylation of 47 (1.6 g, 4.3 mmol) was performed as described for 27 to give, after column chromatography (solvent F), 44 (1.0 g, 70%): mp 145–147 °C (ether); $[\alpha]_D$ + 570° (*c* 0.5 MeOH); R_f 0.4 (solvent F). Anal. Calcd for C₁₃H₁₅NO₅S₂: C, 47.40; H, 4.59; N, 4.25; S, 19.47. Found: C, 47.44; H, 4.54; N, 4.20; S, 19.46.

6-S-*Acetyl*-2,5-anhydro-3,4-di-O-methyl-6thio-D-glucitol (**50**).—A soln of **49** (5.1 g, 20 mmol) [7] and potassium thioacetate (2.74 g, 24 mmol) in DMF (25 mL) was stirred at 100 °C for 1 h. The residue obtained on concentration was dissolved in CH₂Cl₂ (50 mL), washed with water, dried and concd to give, after column chromatography (solvent B), **50** (4.35 g, 87%): $[\alpha]_{\rm D}$ + 68°; R_f 0.4 (solvent B). Anal. Calcd for C₁₀H₁₈O₅S: C, 47.98; H, 7.25; S, 12.81. Found: C, 47.82; H, 7.30; S, 12.66.

6-S-Acetyl-2,5-anhydro-1-O-methanesulfonyl-3,4-di-O-methyl-6-thio-D-glucitol (51). —To a stirred soln of 50 (3.25 g, 13 mmol) in pyridine (15 mL) mesyl chloride (1.23 mL, 15.6 mmol) was added at 0 °C. After 30 min the mixture was processed the usual way to give on concentration 51 (4.18 g, 98%) as syrup, $[\alpha]_D + 49^\circ$; R_f 0.6 (solvent B). Anal. Calcd for C₁₁H₂₀O₇S₂: C, 40.23; H, 6.14; S, 19.53. Found: C, 40.11; H, 6.22; S, 19.44.

1,6:2,5-Dianhydro-3,4-di-O-methyl-1-thio-Dglucitol (52).—To a stirred soln of 51 (16.4 g, 50 mmol) in dioxane (160 mL), 4.5 M methanolic NaOMe (12.2 mL, 55 mmol) was added and the slurry was heated on a steam bath for 2 h. The cooled mixture was diluted with water (300 mL) and extracted with CH₂Cl₂. The organic soln was washed with water, dried, concd, and the residue distilled at 26.6 Pa to give **52** as colourless liquid (7 g, 78%), bp_{0.2} 75–80 °C; $[\alpha]_D$ + 5°; R_f 0.8 (solvent B). Anal. Calcd for C₈H₁₄O₃S: C, 50.50; H, 7.42; S, 16.85. Found: C, 50.48; H, 7.38; S, 12.82.

1,6:2,5-Dianhydro-3,4-di-O-methyl-1-thio-Dglucitol S-oxide (53).—Oxidation of 52 (1.0 g, 5.25 mmol) was carried out as described for 20 to give **53** (0.92 g, 85%): mp 81–83 °C (ether); $[\alpha]_{\rm D} - 21^{\circ} (c \ 0.5, \text{ acetone}); R_f \ 0.2 \text{ (solvent A)}.$ Anal. Calcd for $C_8H_{14}O_4S$: C, 46.59; H, 6.84; S, 15.55. Found: C, 46.63; H, 6.88; S, 15.57. 4 - Cyanophenyl 2,5 - anhydro - 3,4 - di - Omethyl-1,6-dithio- α -D-glucoseptanoside (55). -Glycosidation of 4-cyanobenzenethiol with a 9:1 mixture of 59 and 61 (0.6 g, 2.4 mmol) was carried out as described for 26 to give, after column chromatography (solvent C), 55 (0.7 g, 90%) as an oil: $[\alpha]_{\rm D}$ + 440° (c 0.5, CHCl₃); R_f 0.5 (solvent C). Anal. Calcd for C₁₅H₁₇NO₃S₂: C, 55.70; H, 5.30; N, 4.33; S, 19.83. Found: C, 55.74; H, 5.27; N, 4.30; S, 19.82.

4-Nitrophenyl 2,5-anhydro-3,4-di-O-methyl-1,6-dithio- α -D-glucoseptanoside (**56**).—Glycosidation of 4-nitrobenzenethiol with a 9:1 mixture of **59** and **61** (0.6 g, 2.4 mmol) was carried out as described for **28** to give, after column chromatography (solvent C), **56** (0.73 g, 88%) as an oil: $[\alpha]_D$ + 378° (c 0.5, CHCl₃); R_f 0.5 (solvent C). Anal. Calcd for C₁₄H₁₇NO₅S₂: C, 48.96; H, 4.99; N, 4.08; S, 18.67. Found: C, 48.98; H, 4.96; N, 4.07; S, 18.71.

4 - Cyanophenyl 2,5 - anhydro - 3,4 - di - Omethanesulfonyl-1,6-dithio- α -D-glucoseptanoside (57).—Glycosidation of 4-cyanobenzenethiol with **60** [9] (0.5 g, 1.33 mmol) was carried out as described for **26** to give, after column chromatography (solvent B, then A), **57** (0.53 g, 88%): mp 157–163 °C (ether); $[\alpha]_D$ + 216° (*c* 0.5, CHCl₃); R_f 0.6 (solvent B). Anal. Calcd for C₁₅H₁₇NO₇S₄: C, 39.90; H, 3.79; N, 3.10; S, 28.40. Found: C, 39.88; H, 3.83; N, 3.12; S, 28.44. 4 - Nitrophenyl 2,5 - anhydro - 3,4 - di - Omethanesulfonyl-1,6-dithio- α -D-glucoseptanoside (**58**).—Glycosidation of 4-nitrobenzenethiol with **60** (0.5 g, 1.33 mmol) was carried out as described for **28** to give **58** (0.58 g, 93%): mp 117–123 °C (ether); $[\alpha]_D$ + 250° (*c* 0.5, CHCl₃); R_f 0.6 (solvent B). Anal. Calcd for C₁₄H₁₇NO₉S₄: C, 35.66; H, 3.63; N, 2.97; S, 27.20. Found: C, 35.62; H, 3.66; N, 2.95; S, 27.17.

1-O-Acetyl-2,5-anhydro-3,4-di-O-methyl-6thio-α-D-glucoseptanose (**59**) and 1-O-acetyl-2,5-anhydro-3,4-di-O-methyl-6-thio-α-L-gulose ptanose (**61**).—A soln of **53** (3.3 g, 16 mmol) in Ac₂O (35 mL) was stirred at 100 °C for 5 h. The mixture was concd and toluene (30 mL) was evaporated from the residue to give, after column chromatography (solvent C), a 9:1 mixture of **59** and **61** (2.66 g, 67%) as an oil: $[\alpha]_D$ + 180° (*c* 0.5, CHCl₃); *R_f* 0.4 (solvent C). Anal. Calcd for C₁₀H₁₆O₅S: C, 48.37; H, 6.50; S, 12.91. Found: C, 48.41; H, 6.53; S, 12.96.

1,6:2,5-Dianhydro - 4- azido - 4- deoxy - 3-Otetrahydropyranyl-1-thio-D-glucitol (64).—To a soln of 63 [1] (5.4 g, 16.6 mmol) in DMF (55 mL) NaN₃ (2.5 g, 38.5 mmol) was added and the mixture was stirred at 110 °C for 1 h. After cooling to rt the reaction was poured into ice-water, extracted with ether and concd to give 64 (4.5 g, 100%) as an oil: R_f 0.8 (solvent C). Anal. Calcd for C₁₁H₁₇N₃O₃S: C, 48.69; H, 6.32; N, 15.49; S, 11.82. Found: C, 48.71; H, 6.33; N, 15.52; S, 11.86.

3-O-Acetyl-1,6:2,5-dianhydro-4-azido-4deoxy-1-thio-D-glucitol (**66**).—To a soln of **64** (4.27 g, 15.7 mmol) in MeOH (65 mL) Dowex 50WX ion exchange resin (1.5 g) was added and the mixture was stirred at rt for 24 h. Then the resin was filtered off, washed with MeOH and the filtrate was concd. The residue was acetylated with Ac₂O (5 mL) in pyridine (10 mL) to give, after the usual processing, **66** (2.96 g, 82%): mp 40–46 °C (hexane); $[\alpha]_D$ + 39.5° (*c* 0.5, CHCl₃); R_f 0.8 (solvent C). Anal. Calcd for C₈H₁₁N₃O₃S: C, 41.91; H, 4.84; N, 18.33; S, 13.99. Found: C, 41.94; H, 4.80; N, 18.37; S, 13.95.

3-O-Acetyl-1,6:2,5-dianhydro-4-azido-4deoxy-1-thio-D-glucitol S-oxide (68).—Oxidation of 66 (2.2 g, 9.6 mmol) was carried out as described for 20 to give 68 (2.1 g, 89%): mp 98–105 °C (ether); $[\alpha]_D$ + 9° (*c* 0.5, acetone); R_f 0.4 (solvent A). Anal. Calcd for $C_8H_{11}N_3O_4S$: C, 39.18; H, 4.52; N, 17.13; S, 13.07. Found: C, 39.20; H, 4.57; N, 17.15; S, 13.09.

1,6:2,5 - Dianhydro - 4 - azido - 4 - deoxy - 3 - Omethanesulfonyl - 1 - thio - D - glucitol S-oxide (69).—Oxidation of 67 [3] (2.5 g, 9.4 mmol) was carried out as described for 20 to give 69 (2.5 g, 94%): mp 133–138 °C (ether); $[\alpha]_D$ + 3° (c 0.5, acetone); R_f 0.3 (solvent A). Anal. Calcd for C₇H₁₁N₃O₅S₂: C, 29.89; H, 3.94; N, 14.94; S, 22.80. Found: C, 29.91; H, 3.92; N, 14.97; S, 22.77.

1,4- Di-O-acetyl-2,5-anhydro-3-azido-3deoxy-6-thio- α -L-guloseptanose (**70**) and 1,3-di-O-acetyl-2,5-anhydro-4-azido-4-deoxy-6-thio- α -D-glucoseptanose (**72**).—A soln of **68** (2.1 g, 7.3 mmol) in Ac₂O (20 mL) was stirred at 100 °C for 5 h. The mixture was concd and toluene (30 mL) was evaporated from the residue to give, after column chromatography (solvent C), a 1:4 mixture of **70** and **72** (1.7 g, 81%) as an oil: R_f 0.5 (solvent C). Anal. Calcd for C₁₀H₁₃N₃O₅S: C, 41.81; H, 4.56; N, 14.63; S, 11.16. Found: C, 41.85; H, 4.53; N, 14.66; S, 11.20.

1-O-Acetyl-2,5-anhydro-3-azido-3-deoxy-4-O-methanesulfonyl-6-thio- α -L-guloseptanose (71) and 1-O-acetyl-2,5-anhydro-4-azido-4deoxy-3-O-methanesulfonyl-6-thio- α -D-glucoseptanose (73).—A soln of **69** (2.5 g, 8.9 mmol) in Ac₂O (25 mL) was stirred at 100 °C for 5 h. The mixture was concd and toluene (30 mL) was evaporated from the residue. The resulting residue was submitted to column chromatography (solvent C). Concentration of the first fraction gave **71** (150 mg, 5%) as an oil: [α]_D + 14° (c 0.5, CHCl₃); R_f 0.45 (solvent C). Anal. Calcd for C₉H₁₃N₃O₆S₂: C, 33.43; H, 4.05; N, 13.00; S, 19.83. Found: C, 33.46; H, 4.03; N, 13.03; S, 19.87.

Concentration of the second fraction gave **73** (1.5 g, 52%) as an oil: $[\alpha]_D + 84^\circ$ (*c* 0.5, CHCl₃); R_f 0.4 (solvent C). Anal. Calcd for C₉H₁₃N₃O₆S₂: C, 33.43; H, 4.05; N, 13.00; S, 19.83. Found: C, 33.40; H, 4.08; N, 12.98; S, 19.80.

4-Cyanophenyl 3-O-acetyl-4-azido-4-deoxy-2,5-anhydro-1,6-dithio- α -D-glucoseptanoside (75).—Glycosidation of 4-cyanobenzenethiol with a 1:4 mixture of 70 and 72 (0.5 g, 1.74 mmol) was carried out as described for 26 to give, after column chromatography (solvent D), 75 (0.45 g, 71%) as an oil: $[\alpha]_D$ + 403° (*c* 0.5, CHCl₃); R_f 0.7 (solvent C). Anal. Calcd for C₁₅H₁₄N₄O₃S₂: C, 49.71; H, 3.89; N, 15.46; S, 17.69. Found: C, 49.75; H, 3.84; N, 15.42; S, 17.72.

4-*Cyanophenyl* 4-azido-4-deoxy-2,5-anhydro-1,6-dithio- α -D-glucoseptanoside (76).— Deacetylation of 75 (0.45 g, 1.2 mmol) was performed as described for 27 to give, after column chromatography (solvent C), 76 (0.36 g, 90%) as an oil: $[\alpha]_{\rm D}$ + 456° (*c* 0.5 MeOH); R_f 0.3 (solvent C). Anal. Calcd for C₁₃H₁₂N₄O₂S₂: C, 48.74; H, 3.78; N, 17.49; S, 20.02. Found: C, 48.77; H, 3.75; N, 17.52; S, 19.99.

4-Cyanophenyl 4-azido-4-deoxy-2,5-anhydro - 3 - O - methanesulfonyl - 1,6 - dithio - α - Dglucoseptanoside (77).—Glycosidation of 4cyanobenzenethiol with 73 (0.7 g, 2.16 mmol) was carried out as described for 26 to give, after column chromatography (solvent EH 1:2), 77 (0.58 g, 67%): mp 94–96 °C (ether); [α]_D + 344° (c 0.5, CHCl₃); R_f 0.6 (solvent C). Anal. Calcd for C₁₄H₁₄N₄O₄S₃: C, 42.20; H, 3.54; N, 14.06; S, 24.14. Found: C, 42.22; H, 3.51; N, 14.02; S, 24.17.

4-Nitrophenyl 4-O-acetyl-3-azido-3-deoxy-2,5-anhydro-1,6-dithio- α -L-guloseptanoside (74) and 4-nitrophenyl 3-O-acetyl-4-azido-4-deoxy-2,5-anhydro-1,6-dithio- α -D-glucoseptanoside (78).—Glycosidation of 4-nitrobenzenethiol with a 1:4 mixture of 70 and 72 (0.62 g, 2.16 mmol) was carried out as described for 28 to give, after column chromatography (solvent D), 78 (0.4 g, 48%) as an oil: $[\alpha]_D$ + 394° (*c* 0.5, CHCl₃); R_f 0.7 (solvent C). Anal. Calcd for C₁₄H₁₄N₄O₅S₂: C, 43.97; H, 3.69; N, 14.65; S, 16.77. Found: C, 43.93; H, 3.71; N, 14.69; S, 16.73.

Concentration of the second fraction gave, after crystallisation with hexane, **74** (20 mg, 2%): mp 174–177 °C (hexane); $[\alpha]_{\rm D}$ – 447.5° (*c* 0.4 CHCl₃); R_f 0.65 (solvent C). Anal. Calcd for C₁₄H₁₄N₄O₅S₂: C, 43.97; H, 3.69; N, 14.65; S, 16.77. Found: C, 43.95; H, 3.66; N, 14.63; S, 16.79.

4-Nitrophenyl 4-azido-4-deoxy-2,5-anhydro-1,6-dithio- α -D-glucoseptanoside (79). — Deacetylation of 78 (0.4 g, 1.04 mmol) was performed as described for 27 to give, after column chromatography (solvent C), 79 (0.34 g, 96%): mp 96–101 °C (hexane); $[\alpha]_D$ + 476° (c 0.5 MeOH); R_f 0.4 (solvent C). Anal. Calcd for C₁₂H₁₂N₄O₄S₂: C, 42.34; H, 3.55; N, 16.46; S, 18.84. Found: C, 42.38; H, 3.54; N, 16.49; S, 18.80.

Glycosidation of 4-nitrobenzenethiol with **73** (0.7 g, 2.16 mmol) was carried out as described for **28** to give, after column chromatography (solvent C), **80** (0.49 g, 54%): mp 77–79 °C (ether); $[\alpha]_D$ + 324° (*c* 0.5, CHCl₃); R_f 0.6 (solvent C). Anal. Calcd for C₁₃H₁₄N₄O₆S₃: C, 37.31; H, 3.37; N, 13.39; S, 22.99. Found: C, 37.28; H, 3.41; N, 13.42; S, 23.02.

4. Supplementary material

Full crystallographic details, excluding structural features, have been deposited with the Cambridge Crystallographic Data Centre (CCDC number for 16: 146871). These data may be obtained, on request, from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

The authors are very much indebted to Dr Gabriella Szabó for the biological results.

References

- [1] É. Bozó, J. Kuszmann, *Carbohydr. Res.*, 325 (2000) 143–149.
- [2] F. Bellamy, V. Barberousse, N. Martin, P. Masson, J. Millet, S. Samreth, Ch. Sepulchre, J. Théveniaux, D. Horton, *Eur. J. Med. Chem.*, 30 (1995) 101–115.
- [3] J. Kuszmann, P. Sohár, Carbohydr. Res., 27 (1973) 157– 168.
- [4] J. Kuszmann, P. Sohár, Carbohydr. Res., 35 (1974) 97– 102.
- [5] É. Bozó, S. Boros, J. Kuszmann, E Gács-Baitz, Tetrahedron, 55 (1999) 8095–8102.
- [6] J. Kuszmann, P. Sohár, Gy. Horváth, *Tetrahedron*, 27 (1971) 5055–5061.
- [7] J. Kuszmann, Carbohydr. Res., 73 (1979) 93-101.
- [8] G. Szabó, E. Bozó, E. Barabás, R. Kedves, K. Csomor, J. Kuszmann, *Drugs Future*, 24 (1999) 1241–1248 and references cited therein.
- [9] J. Kuszmann, P. Sohár, Acta Chim. Hung., 88 (1976) 167–171.
- [10] D. Bagdy, G. Szabó, É. Barabás, S. Bajusz, Thromb. Haemost., 68 (1992) 125–129.
- [11] A.C. North, D.C. Philips, F. Mathews, Acta Crystallogr., Sect. A, 24 (1968) 350–359.
- [12] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.
- [13] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [14] A.J.C. Wilson (Ed.), International Tables for X-ray Crystallography, Vol. C, Kluwer Academic, Dordrecht, 1992.
- [15] A.L. Spek, Acta Crystallogr., Sect. A, 46 (1990) C34.
- [16] J. Kuszmann, P. Sohár, Acta Chim. Hung., 83 (1974) 373–379.